説明

国際特許分類[G02B21/36]の内容

物理学 (1,541,580) | 光学 (228,178) | 光学要素,光学系,または光学装置 (130,785) | 顕微鏡 (4,815) | 写真撮影用または投影用に構成されたもの (665)

国際特許分類[G02B21/36]に分類される特許

11 - 20 / 665


【課題】 試料を適切な偏光状態の照明光で照明し、撮像光学系における焦点深度の拡大または高解像度の画像取得を実現することができる撮像装置を提供すること。
【解決手段】 光源111からの照明光により照明される試料130を結像する撮像光学系140と、撮像光学系140により結像された試料130を撮像する撮像素子120と、を有する撮像装置100であって、試料130と撮像素子120との間の光路上に配置され、照明光に対して複屈折性を有する複屈折平行平板50と、照明光の偏光状態を、無偏光または円偏光と、撮像光学系140の光軸に対する動径方向の偏光または接線方向の偏光と、に切り替え可能な偏光状態切替手段113と、を備えており、複屈折平行平板50の光学軸の方向は、撮像光学系140の光軸方向に対して平行な方向である。 (もっと読む)


【課題】観察対象領域の対象物の観察面に撮像部の焦点を短時間で合わせることが可能な拡大観察装置を提供する。
【解決手段】対物レンズを光軸方向に移動させることにより複数のZ位置で観察対象物の単位領域を撮像し、当該単位領域に対応する複数の画像データを取得する。取得された複数の画像データに基づいて観察対象物の画像がナビゲーション画像として表示部に表示される。取得された複数の画像データに基づいて当該単位領域における観察対象物の表面の位置を示す形状データが生成される。ナビゲーション画像に基づいて観察対象物における観察対象領域が指定される。生成された形状データに基づいて、指定された観察対象領域における観察対象物の表面に対物レンズの焦点が合わせられる。 (もっと読む)


【課題】試料の形態変化を定量的に観察できるようにする。
【解決手段】検出部52は、時間の経過とともに形態が変化する試料18の観察画像から、試料18としての破骨前駆細胞の領域を検出する。重畳部53は、時刻の異なる観察画像上の破骨前駆細胞の領域を重ね合わせ、演算部54は、重ね合わされた破骨前駆細胞の領域の面積に基づいて破骨前駆細胞の形態変化の度合いを算出し、形態変化の度合いに基づいて破骨前駆細胞が分化したかを判定する。加工部55は、分化したかの判定結果に基づいて、観察画像上の分化した破骨前駆細胞(成熟破骨細胞)と、分化していない破骨前駆細胞とを異なる表示形式で表示させる。本発明は、共焦点顕微鏡を用いた観察システムに適用することができる。 (もっと読む)


【課題】画像中の複数の領域のうち所望の領域を削除する処理を容易に行うことが可能な画像処理装置および画像処理プログラムを提供する。
【解決手段】画像データに基づく初期画像IM2において抽出される複数の領域C1〜C15が表示部260の画像表示領域261に表示される。使用者が入力装置を用いてカーソルで指定することにより、画像表示領域261に表示された複数の領域C1〜C15のいずれかが選択される。選択された領域よりも大きい面積を有する領域が必要領域として決定される。また、選択された領域以下の面積を有する領域が不要領域として決定される。画像表示領域261に表示された複数の領域C1〜C15のうち、不要領域を削除する処理が行われる。 (もっと読む)


【課題】撮像素子の位置ずれが生じた場合でも、画質の劣化を防止しつつ対象物の高解像度の画像を表示することが可能な拡大観察装置を提供する。
【解決手段】画素ずらし処理時に、単波長光が観察対象物に照射された状態で、アクチュエータによりカラーCCDが観察対象物と相対的に一画素分ずつ異なる複数の位置に移動される。このとき、複数の位置で観察対象物が撮像され、複数の位置の各々に対応する画像データが生成される(ステップS19)。生成された複数の画像データに基づいて各撮像時にカラーCCDの位置ずれが生じたか否かが判定される(ステップS20)。カラーCCDの位置ずれが生じた場合に、カラーCCDの位置ずれの量に基づいて画像データが補正される(ステップS21)。補正された画像データおよび他の位置に対応する画像データを合成することにより単波長領域画像データが生成される。 (もっと読む)


【課題】より迅速に、よりサンプルにピントが合った画像を取得することができる。
【解決手段】撮像素子110は第1の面に結像された像に基づいて画像信号を出力する。AF素子111は第2の面に入射された光に基づいてコントラスト信号を出力する。光学系109は、第1の領域の一部である第2の領域の像を第1の面に結像させ、第2の領域の中にあり第2の領域の中心から少なくとも第1の方向にずれた位置に設定された第3の領域からの光を第2の面に入射する。合焦点検出部112は第2の領域の合焦点を算出する。制御部114は、合焦点に基づいて第2の領域を合焦位置に合わせ、第2の領域が第1の領域上を第1の方向に走査するように光学系109とステージ102との相対位置を変化させながら、撮像素子110が複数の画像信号を出力するよう制御する。画像信号生成部115は、複数の画像信号に基づいて画像を作成する。 (もっと読む)


【課題】立体視データの取得に用いられる顕微鏡を小型化する。
【解決手段】本体21は、回転基部57の回転軸T1を中心に回転されることで、標本Sの観察部位を中心に回転され、標本Sの上面の垂直軸V1と、光軸L1との相対角度を変更することで得られる観察画像のデータを取得し、画像処理基板65は、複数の観察画像のデータを、視差画像のデータとして取得し、取得された複数の視差画像のデータに基づいて、立体視データを生成するので、立体視データの取得に用いられる顕微鏡を小型化することができる。本発明は、顕微鏡に適用することができる。 (もっと読む)


【課題】検鏡法に応じた画像の方向性をより一層活かした画像を生成することができる顕微鏡システムを提供する。
【解決手段】試料からの光を集光して該試料の観察像を生成する顕微鏡と、観察像を電子的に撮像して画像信号を出力する撮像素子42と、画像信号に対応する画像の方向性に関する方向性情報を含む設定情報を顕微鏡から取得する顕微鏡コントロール部と、上記画像に対し、方向性情報に応じて画像のコントラストを強調する処理を実行する信号処理部201とを備える。 (もっと読む)


【課題】標本内の蛍光物質の濃度差が大きい場合であっても、標本内の蛍光物質の分布や濃淡を正確に把握し、所望の組織の状態を良好に観察する。
【解決手段】標本から発せられる光を波長毎に検出し、異なる複数の波長に対する複数の画像データからなるλスタック画像データを取得するλスタック画像データ取得手段1と、前記λスタック画像データに基づいて、画素毎のスペクトルを生成するスペクトル生成手段10と、前記画素毎のスペクトルを複数のクラスタにクラスタリングするクラスタリング手段11と、各前記クラスタに夫々異なる色を設定する色設定手段12と、各前記クラスタに含まれる画素を前記色設定手段により設定された色で表示して前記標本の画像を生成する画像生成手段14と、を備えた顕微鏡装置100を提供する。 (もっと読む)


【課題】焦点位置が異なる複数の撮像画像から画素位置ごとに焦点が合った画像及び高さ情報を、大域的な領域に亘って適切に焦点が合うように生成する。
【解決手段】焦点位置が異なる複数の画像を取得する(ステップS1)。各画像からグレースケール画像を取得する(ステップS5)。グレースケール画像にウェーブレット変換を施し、多重解像度画像を生成する(ステップS6〜S13)。多重解像度画像に基づいて焦点位置に関する確率分布を生成する(ステップS14)。確率分布に基づくコスト関数とペナルティ関数とを足し合わせた評価関数が最小になるような最適な焦点位置を、確率伝播法を用いて、画素位置ごとに近似的に算出する(ステップS17〜S20)。最適な焦点位置から、画素位置ごとに焦点が合った画像及び高さ情報を生成する(ステップS22)。 (もっと読む)


11 - 20 / 665