説明

国際特許分類[H03F3/45]の内容

電気 (1,674,590) | 基本電子回路 (63,536) | 増幅器 (10,074) | 増幅素子として電子管のみまたは半導体装置のみをもつ増幅器 (6,434) | 差動増幅器 (968)

国際特許分類[H03F3/45]に分類される特許

101 - 110 / 968


【課題】オフセットの環境変動を小さくする。
【解決手段】第1の温度特性を備えた第1の電圧信号を出力する第1の電圧源と、入力電圧信号を第1のバイアス信号に応じて増幅し、第2の電圧信号として出力するプリアンプと、前記プリアンプのレプリカ回路構成を備え、入力した所定の電圧を前記第1のバイアス信号に応じて増幅し、コモン電圧信号として出力するレプリカプリアンプと、前記第1の電圧信号と、前記コモン電圧信号との電圧差から前記第1のバイアス信号を生成する誤差アンプと、前記第2の電圧信号に応じた出力電圧信号を出力し、オフセット制御信号に応じて、前記出力電圧信号のオフセット電圧を調整する増幅器と、を有する増幅回路。 (もっと読む)


【課題】高い周波数までの二次歪成分を除去し、出力電流信号の線形性を向上させることができ、二次歪耐性(IIP2)を向上させることができる広帯域増幅器を実現する。
【解決手段】第1及び第2のMOSトランジスタQ1,Q2による差動対が発生する二次歪成分電流と逆極性の電流信号を差動対の負荷電流源となる第3及び第4のMOSトランジスタQ3,Q4によって発生し、逆極性の二次歪電流を相互に打ち消し合うように作用させて線形性を向上させ、更に、第1及び第2のMOSトランジスタQ1,Q2の入力へのバイアスを設定する第1のバイアス回路を第1及び第2のMOSトランジスタのドレイン電流が流れるように、且つ、該ドレイン電流をゲート電圧で二回微分した成分の絶対値が極小となるようなバイアス値を得るようにし、且つ、第3及び第4のMOSトランジスタQ3,Q4のサイズを二次歪み成分が主成分である電流を生成するように設定する。 (もっと読む)


【課題】DCオフセットキャンセル回路の回路規模と消費電力とを低減する。
【解決手段】差動増幅器5の非反転出力端子と反転出力端子にDCオフセットキャンセル回路51の差動入力端子が接続され、キャンセル回路51の出力信号は差動増幅器5の出力DCオフセット電圧を低減する。回路51はオンチップローパスフィルタ51と直流制御増幅器512を有し、フィルタ511は第1定電流源CS1、差動対の第1と第2のトランジスタ素子Mp1、Mp2、オンチップ容量C1を含む。第1定電流源CS1は素子Mp1、Mp2の共通電極に接続され、回路51の差動入力端子Vinp、Viinは素子Mp1、Mp2の制御入力電極に接続される。オンチップ容量C1の一端と他端に素子Mp1、Mp2の出力電極とが接続され、直流制御増幅器512は容量C1の両端の電圧に直流的に応答する。 (もっと読む)


【課題】第2の入力信号に重畳されたノイズを増幅せずに第1の入力信号の信号レベルを変換することができる信号レベル変換回路並びにこれを用いた物理量検出装置及び電子機器を提供すること。
【解決手段】信号レベル変換回路1は、第1の差動増幅回路10と第2の差動増幅回路20とを含む。第1の差動増幅回路10は、第1の入力信号と第2の入力信号の電位差をG1倍して出力する。第2の差動増幅回路20は、第1の差動増幅回路10の出力信号と第2の入力信号との電位差をG2倍して出力する。この2つのゲインG1とG2は、G1×G2<0かつ0<−(G1+1)×G2<2の関係を満たす。 (もっと読む)


【課題】受信装置の終端抵抗器の抵抗値がばらついている場合であっても安定した通信を行うことができる送信装置を提供する。
【解決手段】送信装置10Aは、第1トランジスタ11、第2トランジスタ12、電流源13、送信回路14、差演算部15および電流調整部16を備える。トランジスタ11,12は差動対を構成している。差演算部15は、トランジスタ11,12のうちの一方がオン状態で他方がオフ状態であるときの第1出力端10aおよび第2出力端10bそれぞれからの出力電圧値を入力して、これら2つの出力電圧値の差(対象電圧)を求める。電流調整部16は、この対象電圧を入力するとともに、参照電圧入力端10dに入力された参照電圧を入力して、参照電圧に基づいて対象電圧を評価し、その評価結果に基づいて、対象電圧が目標値または目標範囲内となるように電流源13の出力電流値を調整する。 (もっと読む)


【課題】0VからVDDの範囲でダイナミックに変化する差動入力電圧の全ての入力電圧範囲において出力電流を変化させることができる電圧電流変換回路を提供する。
【解決手段】電圧電流変換回路は、第1および第2の負荷抵抗と第1の電流源との間に接続された第1および第2のMOSトランジスタと、第1および第2の負荷抵抗と第2の電流源との間に接続された第3および第4のMOSトランジスタとを備える。第1および第4のMOSトランジスタのゲートには差動入力電圧の一方および他方が入力され、第2および第3のMOSトランジスタのゲートにはバイアス電圧が入力される。バイアス電圧は、差動入力電圧のいずれかが電源電圧のときを除いて第2および第3のMOSトランジスタの両方がオンする電圧に設定されている。 (もっと読む)


【課題】レベルシフト回路及びその方法の提供。
【解決手段】本発明のレベルシフト回路及びその方法は、レベルシフト回路のラッチ装置と電圧源の間に限流回路を接続して、前記ラッチ装置の駆動電流が設定値を超えないように制限する。これにより、レベルシフト回路を変換する時の消耗電流を減らし、通路の短いトランジスタを使用したラッチ装置を実現し、レベルシフト回路面積を縮小する。前記設定値は調節可能とし、レベルシフト回路の出力駆動能力を調整することにより、前記レベルシフト回路の変換速度を加速させることができる。 (もっと読む)


【課題】線形性能が優れたGmアンプ、このGmアンプを用いて高速動作が可能で、入力電圧範囲が広く、かつ線形性能の優れたGm−Cフィルタを提供する。
【解決手段】入力信号が端子17、18から供給され、ソース端子が電源端子に接続されるMOSトランジスタ11、12、同相制御信号がゲート端子から供給されるMOSトランジスタ13、14、出力信号を出力する出力端子対の平均電圧を一定にするためMOSトランジスタ13、14のゲート端子に同相制御信号を出力する同相制御アンプ15、入力信号を入力して、MOSトランジスタ11、12に入力される入力信号の大小に応じて基板電圧を制御する基板制御信号をMOSトランジスタ11、12の基板端子に供給する基板電圧制御回路21、22によってGmアンプを構成する。 (もっと読む)


【課題】物理量の検出精度が低下することを抑制することができる物理量検出方法および物理量検出装置を提供する。
【解決手段】第1スイッチ群SW1〜SW3を制御して第3ノードN3を第1ノードN1に接続すると共に第2スイッチ群SW4〜SW6を制御して第4ノードN4を第2ノードN2に接続した状態で、センシング部10に基準電圧より所定電圧高いまたは低い第1電圧を印加し、センシング部10から出力された電気的信号を増幅回路30で増幅して第1増幅信号を出力する。その後、センシング部10に第1電圧を印加したときの第1、第2スイッチ群SW1〜SW6をそのまま維持し、センシング部10に基準電圧を基準として反対の極性となる第2電圧を印加し、センシング部10から出力された電気的信号を増幅回路30で増幅して第2増幅信号を出力する。そして、演算回路30にて、第1、第2増幅信号を減算する演算工程を行う。 (もっと読む)


【課題】アンプの動作周波数に依存性を有するバイアス電流を供給することにより、消費電流を大幅に低減する。
【解決手段】DLL回路2は、入力されたクロック信号CKに基づいて、該クロック信号CKの周波数に比例関係を持つ制御電圧VCNTLを生成する。トランスリニア回路3は、DLL回路2が生成した制御電圧VCNTLに基づいて、クロック信号CKの周波数の2乗の関係を持つ電流を生成する。カレントミラー回路5は、トランスリニア回路3が生成した電流からアンプ電流を生成し、アンプ4のテール電流として該アンプ4に供給する。 (もっと読む)


101 - 110 / 968