λ/4位相差フィルムの製造方法、長尺状偏光板、及び液晶表示装置

【課題】λ/4板部材として使え、かつスジと位相差値の幅手方向のバラつきが抑えられたλ/4位相差フィルムを、特に当該λ/4位相差フィルムを長尺状延伸フィルムとして、製造する製造方法を提供する。さらに、また、当該λ/4位相差フィルムが具備された長尺状偏光板及び液晶表示装置を提供する。
【解決手段】長尺原反フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン及び冷却ゾーンを通過させる工程を有するλ/4位相差フィルムの製造方法であって、特定要件を満たすことを特徴とするλ/4位相差フィルムの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、λ/4位相差フィルムの製造方法、当該λ/4位相差フィルムが具備された長尺状偏光板及び液晶表示装置に関する。
【0002】
より詳しくは、スジと位相差値の幅手方向のバラつきが抑えられたλ/4位相差フィルム及び当該λ/4位相差フィルムを長尺状延伸フィルムとして製造する製造方法に関する。
【背景技術】
【0003】
樹脂フィルムを延伸してなる延伸フィルムは、その光学異方性を利用して、ディスプレイ装置の構成要素等の光学材料として用いられている。例えば、液晶表示装置において、当該延伸フィルムを着色防止、視野角拡大などの光学補償などのための位相差フィルムとして用いたり、当該延伸フィルムと偏光子とを貼り合わせて偏光板として用いたりすることが知られている。
【0004】
近年、有機ELディスプレイや立体画像の表示が可能なテレビなどの立体画像表示装置が提唱されている。この立体画像を表示させる方式の一つに、専用の立体画像視認用眼鏡を観測者が着用することで、2次元画像を立体画像として観測者に認識させる方式がある。この方式で現在有力視されているのが、画像を表示するディスプレイに視差画像である右眼用画像と左眼用画像とを時系列で交互に切り替えて映し出し、観測者は図1に示すような立体画像視認用眼鏡(G)を着用して、液晶ディスプレイの画像を見るという方式である(例えば特許文献1参照。)。
【0005】
立体画像視認用眼鏡(G)には、図1に示すように左右の目に液晶シャッタ(S1)及び(S2)が備え付けられ、これらの液晶シャッタ(S1)及び(S2)を制御する制御回路Cが接続されている。
【0006】
図2に示す立体画像表示装置のように、液晶ディスプレイ(LCD)に映し出される画像としては、二枚のフィールドに、左眼用画像(LI)と右眼用画像(RI)とがそれぞれ割り当てられてあり、時系列でこれらが交互に高速に切り替わって表示される。液晶ディスプレイ(LCD)から出射される光は直線偏光である。さらに、立体画像視認用眼鏡Gの左右の液晶シャッタ(S1)及び(S2)の開閉の切り替えは、左眼用画像(LI)と右眼用画像(RI)の切り替えに同期させて行う。
【0007】
液晶シャッタ(S1)及び(S2)は、図3に示すように、偏光板(P1)及び(P2)と液晶層(LC)を有しており、液晶シャッタ(S1)及び(S2)に入射する直線偏光の光(L)の回転角を、液晶層(LC)を用いて制御することで、液晶シャッタ(S1)及び(S2)から出射する光の透過率を制御している。このように液晶ディスプレイ(LCD)と立体画像視認用眼鏡(G)とを制御することにより、図2に示すように、液晶ディスプレイ(LCD)に左眼用画像(LI)が表示されている時には右眼用の液晶シャッタ(S1)が閉じて左眼用の液晶シャッタ(S2)が開き、逆に右眼用画像(RI)が表示されているときには右眼用の液晶シャッタ(S1)が開いて左眼用の液晶シャッタ(S2)が閉じることになる。
【0008】
なお、液晶ディスプレイ(LCD)や反射防止のために円偏光板を用いた有機ELディスプレイのように発せられる光が直線偏光のディスプレイのほかに、発せられる光が直線偏光ではないディスプレイ、例えばプラズマディスプレイや反射防止のために円偏光板用いない有機ELディスプレイなどの自発光型ディスプレイを用いることもできる。
【0009】
上記の液晶ディスプレイと立体画像視認用眼鏡からなる立体画像表示装置では、首を傾けた際に、輝度低下や色味の変化という問題がある。首を傾けた際の輝度低下の抑制及び色味変化の抑制ためには、液晶ディスプレイの視認側及び立体画像視認用眼鏡の目から遠い側の表面にそれぞれλ/4板を用いることが有効である。
【0010】
また、特許文献2には、外光のフリッカー抑制、眼鏡の明るさ向上のために、偏光板を一枚しか使用しない眼鏡を使用した立体映像表示装置が開示されている。当該文献では、ディスプレイの前面に円偏光板、眼鏡の構成をλ/4位相差フィルム/液晶セル/直線偏光板とすることで、首を傾けた際のクロストーク(二重に見える現象)を抑制できることを開示している。
【0011】
このように、液晶シャッタを使用した方式においては、偏光板が二枚の眼鏡を使用する方式、偏光板が一枚の眼鏡を使用する方式、どちらの方式においても、首を傾けた際の表示性能を改善するためにλ/4位相差フィルムが必要である。とりわけ偏光板が一枚の眼鏡を使用する方式では、より重要である。
【0012】
また、立体映像表示装置は大型であるほど効果が大きいため、大型化の要望が非常に強い。よって、大型ディスプレイに使用できる大型のλ/4板が求められている。
【0013】
λ/4位相差フィルムは、反射防止膜や液晶表示装置に関連する多くの用途を有しており、すでに種々の観点から改良されたλ/4位相差フィルムが提案されている(例えば、特許文献3参照)。
【0014】
長尺なλ/4位相差フィルムを製造する手段の一つに、正又は負の固有複屈折性を有する長尺な原反フィルムを長尺方向に搬送させ、搬送方向に延伸し、その後搬送方向に対して直交方向(以後、幅手方向と呼称)に延伸する方法が知られている。(特許文献4参照)。
【0015】
しかしながら、上記文献7の実施例には本発明のようにλ/4板として使える位相差フィルムの光学値Roの記載がない。
【0016】
また、特許文献5には長尺フィルムの搬送方向と幅手方向にそれぞれ延伸し、λ/4板として使える位相差フィルムの光学値を実施している記載もあるが、記載されている例は幅手方向に遅相軸を持つフィルムのみである。この実施例では幅手に大きく延伸することによって生じるボーイングを解消させることができない。
【先行技術文献】
【特許文献】
【0017】
【特許文献1】特開平8−201942号公報
【特許文献2】特開2002−82307号公報
【特許文献3】特開2009−48204号公報
【特許文献4】特開2008−307888号公報
【特許文献5】特開2005−301225号公報
【発明の概要】
【発明が解決しようとする課題】
【0018】
本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、λ/4板部材として使え、かつスジと位相差値の幅手方向のバラつきが抑えられたλ/4位相差フィルムを、特に当該λ/4位相差フィルムを長尺状延伸フィルムとして、製造する製造方法を提供することである。さらに、また、当該λ/4位相差フィルムが具備された長尺状偏光板及び液晶表示装置を提供することである。
【課題を解決するための手段】
【0019】
本発明に係る上記課題は、以下の手段により解決される。
【0020】
1.長尺原反フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン及び冷却ゾーンを通過させる工程を有するλ/4位相差フィルムの製造方法であって、下記要件(1)〜(3)を満たすことを特徴とするλ/4位相差フィルムの製造方法。
(1)前記予熱ゾーンと第1延伸ゾーンの区間において二対のニップロールで長尺原反フィルムに張力を掛けながら、第1延伸ゾーンにおいて搬送方向に1.6〜2.0倍の範囲内で延伸する。
(2)前記二対のニップロール間のフィルムの長さを前記長尺原反フィルムの幅手方向の長さで除して得られる値(ニップロール間フィルム長さ/幅手方向フィルム長さ)が、2.5〜20の範囲内にある。
(3)第2延伸ゾーンにおいて、幅手方向に保持又は1.2倍以下の範囲内で延伸する。
【0021】
2.前記搬送方向の延伸時の環境温度が、160〜200℃の範囲内であることを特徴とする前記第1項に記載のλ/4位相差フィルムの製造方法。
【0022】
3.前記λ/4位相差フィルムが、アセチル基置換度が2.0〜2.6の範囲内にあるセルロースエステルを含有していることを特徴とする前記第1項又は第2項に記載のλ/4位相差フィルムの製造方法。
【0023】
4.前記第1項から第3項までのいずれか一項に記載のλ/4位相差フィルムの製造方法により製造されたλ/4位相差フィルムを、長尺状の偏光子の少なくとも一方の面に積層して形成されたことを特徴とする長尺状偏光板。
【0024】
5.前記第1項から第3項までのいずれか一項に記載のλ/4位相差フィルムの製造方法により製造されたλ/4位相差フィルムを断栽して形成された枚葉状フィルム、又は前記第4項に記載の長尺状偏光板を断栽して形成された枚葉状偏光板が具備されていることを特徴とする液晶表示装置。
【0025】
6.前記液晶表示装置が、立体画像表示装置であることを特徴とする前記第5項に記載の液晶表示装置。
【発明の効果】
【0026】
本発明の上記手段により、λ/4板部材として使え、かつスジと位相差値の幅手方向のバラつきが抑えられたλ/4位相差フィルムを、特に当該λ/4位相差フィルムを長尺状延伸フィルムとして、製造する製造方法と当該λ/4位相差フィルムを提供することができる。さらに、また、当該λ/4位相差フィルムが具備された長尺状偏光板及び液晶表示装置を提供することができる。
【図面の簡単な説明】
【0027】
【図1】従来の立体画像視認用眼鏡(液晶シャッタメガネ)Gの模式図
【図2】従来の立体画像表示装置の模式図(左目と右目に入る像の概略図)
【図3】従来の液晶シャッタS1及びS2の模式図
【図4】幅手方向に延伸、搬送方向に収縮させて得られる従来のλ/4位相差フィルムのフィルム面上に発生するボーイング現象の概略図
【図5】本発明のλ/4位相差フィルムの製造工程の模式図
【図6】立体映像表示装置(メガネの偏光板が一枚の方式)の模式図
【図7】立体映像表示装置(メガネの偏光板が二枚の方式)の模式図
【発明を実施するための形態】
【0028】
本発明のλ/4位相差フィルム(以下、単に「位相差フィルム」ともいう。)の製造方法は、長尺原反フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン及び冷却ゾーンを通過させる工程を有するλ/4位相差フィルムの製造方法であって、前記要件(1)〜(3)を満たすことを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
【0029】
本発明の実施態様としては、本発明の効果発現の観点から、前記搬送方向の延伸時の環境温度が、160〜200℃の範囲内であることが好ましい。さらに、前記λ/4位相差フィルムが、アセチル基置換度が2.0〜2.6の範囲内にあるセルロースエステルを含有していることが好ましい。
【0030】
本発明のλ/4位相差フィルムを、長尺状の偏光子の少なくとも一方の面に積層して長尺状偏光板を形成することができる。
【0031】
上記λ/4位相差フィルムを断栽して形成された枚葉状フィルム、又は上記長尺状偏光板を断栽して形成された枚葉状偏光板は、液晶表示装置に好適に用いることができる。特に、当該液晶表示装置は、立体画像表示装置であることが好ましい。
【0032】
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
【0033】
(本発明のλ/4位相差フィルムの製造方法の概要)
本発明のλ/4位相差フィルムの製造方法は、長尺原反フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン及び冷却ゾーンを通過させる工程を有するλ/4位相差フィルムの製造方法であって、下記要件(1)〜(3)を満たすことを特徴とする。
(1)前記予熱ゾーンと第1延伸ゾーンの区間において二対のニップロールで長尺原反フィルムに張力を掛けながら、第1延伸ゾーンにおいて搬送方向に1.6〜2.0倍の範囲内で延伸する。
(2)前記二対のニップロール間のフィルムの長さを前記長尺原反フィルムの幅手方向の長さで除して得られる値(ニップロール間フィルム長さ/幅手方向フィルム長さ)が、2.5〜20の範囲内にある。
【0034】
なお、二対のニップロール間のフィルムの長さを前記長尺原反フィルムの幅手方向の長さで除して得られる値(ニップロール間フィルム長さ/幅手方向フィルム長さ)を、以降便宜上「フィルム延伸寸法比」と呼称する。
(3)第2延伸ゾーンにおいて、幅手方向に保持又は1.2倍以下の範囲内で延伸する。
【0035】
なお、本発明のフィルムを作製する過程において、フィルムを延伸又は保持する場合の手段は特に限定しないが、例えば、幅手方向に保持・延伸する場合は、テンターを用いる手段が挙げられる。また、搬送方向に延伸する場合は、二つのロールでフィルムを挟めた一対のニップロールを搬送方向に二つ配置させて、二つのニップロールに速度差を与えることで、フィルムに搬送方向の張力を与える手段とすることができる。
【0036】
本発明の上記構成により、λ/4板部材として使え、かつスジと位相差値の幅手方向のバラつきが抑えられたλ/4位相差フィルムを、特に当該λ/4位相差フィルムを長尺状延伸フィルムとして、製造する製造方法と当該λ/4位相差フィルムを提供することができる。
【0037】
本発明の実施態様としては、本発明の効果発現の観点から、前記搬送方向の延伸時の環境温度が、160〜200℃の範囲内であることが好ましい。さらに、前記λ/4位相差フィルムが、アセチル基置換度が2.0〜2.6の範囲内にあるセルロースエステルを含有していることが、位相差値発現性や偏光板貼合適性などの観点から、好ましい。
【0038】
本発明のλ/4位相差フィルムは、後述するようにλ/4板として用いることができる。
【0039】
本発明のλ/4位相差フィルムの平均厚さは、機械的強度などの観点から、好ましくは20〜80μm、さらに好ましくは30〜60μm、特に好ましくは30〜40μmである。
【0040】
また、幅方向の厚さムラは、巻取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。
【0041】
なお、本発明においては、延伸前のフィルムを「原反フィルム」と呼称する。また、本発明において、「搬送方向」というのは、ロール状の長尺のフィルム長尺方向であり、長尺方向に対して−3〜3°の範囲内でなす角度の方向のことであり、好ましくは−1〜1°であり、更に好ましくは0°である。
【0042】
また、本発明において、「幅手方向」というのは、長尺のフィルムを長尺方向に搬送したときの、搬送方向に対して87〜93°の範囲内でなす角度の方向のことであり、好ましくは89〜91°であり、更に好ましくは90°である。
【0043】
ここで、角度の符号は、長尺のフィルムを繰り出される方向から面を正対して見たときに、反時計回りの角度を正、時計回りの角度を負とする。
【0044】
本願において、「長尺状」とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管又は運搬される程度の長さを有するもの(フィルムロール)としうる。
【0045】
本発明のλ/4位相差フィルムの製造方法は、上記要件(1)〜(3)を満たしていれば特に限定されないが、例えば図5のような装置によって製造することができる。
【0046】
すなわち、フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン、冷却ゾーンを通過させる工程が挙げられる。予熱ゾーンと第1延伸ゾーンの区間を2対のニップロールでフィルムに張力を掛けながら、予熱ゾーン及び第1延伸ゾーンで搬送方向に延伸する。その後、第2延伸ゾーンで幅手方向に延伸し、冷却ゾーンを経てロールに巻き取る。各ゾーンの温度設定は適切に調整すればよいが、予熱ゾーン及び第1、第2延伸ゾーンの環境温度が160〜200℃の必要がある。冷却ゾーンの環境温度は予熱ゾーン及び第1、第2延伸ゾーンよりも低ければよい。
【0047】
本発明の位相差フィルム(延伸フィルム)の面内リターデーションRoは、用いられる表示装置の設計によって最適値が選択される。なお、前記Roは、面内遅相軸方向の屈折率nと面内で前記遅相軸に直交する方向の屈折率nとの差にフィルムの平均厚さdを乗算した値(Ro=(n−n)×d)である。
【0048】
立体画像表示装置に本発明の長尺状位相差フィルム(延伸フィルム)を組み込む場合、下記特徴と有するλ/4板であることが好ましい。
【0049】
<フィルム基材>
フィルム基材としては、種々の樹脂を用いる主として熱可塑性樹脂が用いられる。ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
【0050】
一般的な位相差フィルム(光学フィルム)用樹脂としてのポリカーボネート、ポリエステル、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリオレフィン等を用いることができる。また、ポリエチレンテレフタレート、ポリイミド、ポリメチルメタクリレート、ポリスルホン、ポリエチレン、ポリ塩化ビニル、脂環式オレフィンポリマー、アクリル系ポリマー、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートなどのセルロースエステル等を用いてもよい。特にセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート等のセルロースエステル、ラクトン環構造を有するアクリル系ポリマー等がより好ましい。これらの原料は単独で用いても良いし、異なる熱可塑性樹脂を混合して用いてもよい。混合して使用する場合は、セルロースエステルとアクリル系ポリマーの混合がより好ましい。
【0051】
なお、本発明においては、本発明に係るフィルムが、正の固有複屈折値を有する樹脂を含有していることが好ましい。なお、「正の固有複屈折値を有する樹脂」とは、延伸した方向の屈折率が大きくなる樹脂をいう。正の固有複屈折値を有する樹脂としては、セルロースアシレート系樹脂、環状オレフィン系樹脂、ポリカーボネート系樹脂を挙げることができる。
【0052】
原料とする樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤が適宜配合されたものであってもよい。
【0053】
なお、フィルムは、単層フィルムであっても、多層フィルムであってもよい。
【0054】
フィルムとしては、主として原反フィルムが用いられるが、既に縦延伸、横延伸、斜め延伸のいずれかを単独で、あるいは複数回実施したフィルムであっても構わない。
【0055】
<セルロースエステル>
本発明のλ/4位相差フィルムは、種々の樹脂基材を用いて作製することができるが、セルロースエステルを含有する態様であることが好ましい。従って、以下において、本発明のλ/4位相差フィルムをセルロースエステルフィルムと呼称する場合がある。
【0056】
本発明に用いることができるセルロースエステルは、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。
【0057】
これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
【0058】
混合脂肪酸エステルの置換度として、炭素原子数2〜4のアシル基を置換基として有している場合、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルであることが好ましい。すなわち、本発明のλ/4相差フィルムは、特に、アセチル基置換度が2.0〜2.6の範囲内にあるセルロースエステルを含有していることが好ましい。
【0059】
式(I): 2.0≦X+Y≦3.0
式(II): 2.0≦X≦2.6
さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5〜5.5のものが好ましく用いられ、特に好ましくは2.0〜5.0であり、さらに好ましくは2.5〜5.0であり、更に好ましくは3.0〜5.0のセルロースエステルが好ましく用いられる。
【0060】
本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。
【0061】
例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。
【0062】
本発明において、セルロースエステルは、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌した時のpHが6〜7、電気伝導度が1〜100μS/cmであることが好ましい。
【0063】
また、セルロースエステルは、工業的には、硫酸を触媒として合成されているが、この硫酸は完全には除去されておらず、残留する硫酸が溶融製膜時に各種の分解反応を引き起こし、得られるセルロースエステルフィルムの品質に影響を与えるため、本発明に用いられるセルロースエステル中の残留硫酸含有量は、硫黄元素換算で0.1〜40ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が40ppmを超えると熱溶融時のダイリップ部の付着物が増加するため好ましくない。また、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなるため好ましくない。少ない方が好ましいが、0.1未満とするにはセルロースエステルの洗浄工程の負担が大きくなり過ぎるため好ましくないだけでなく、逆に破断しやすくなることがあり好ましくない。これは洗浄回数が増えることが樹脂に影響を与えているのかもしれないがよく分かっていない。更に0.1〜30ppmの範囲が好ましい。残留硫酸含有量は、同様にASTM−D817−96により測定することができる。
【0064】
また、その他(酢酸等)の残留酸を含めたトータル残留酸量は1000ppm以下が好ましく、500ppm以下が更に好ましく、100ppm以下がより好ましい。
【0065】
セルロースエステルの洗浄は、水に加えて、メタノール、エタノールのような貧溶媒、或いは結果として貧溶媒であれば貧溶媒と良溶媒の混合溶媒を用いることができ、残留酸以外の無機物、低分子の有機不純物を除去することができる。
【0066】
また、セルロースエステルの耐熱性、機械物性、光学物性等を向上させるため、セルロースエステルの良溶媒に溶解後、貧溶媒中に再沈殿させ、セルロースエステルの低分子量成分、その他不純物を除去することができる。更に、セルロースエステルの再沈殿処理の後、別のポリマー或いは低分子化合物を添加してもよい。
【0067】
また、本発明で用いられるセルロースエステルはフィルムにした時の輝点異物が少ないものであることが好ましい。輝点異物とは、二枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光が漏れて見える点のことである。このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物はセルロースエステルに含まれる未酢化もしくは低酢化度のセルロースがその原因の1つと考えられ、輝点異物の少ないセルロースエステルを用いることと、溶融したセルロースエステルもしくはセルロースエステル溶液を濾過すること、或いはセルロースエステルの合成後期の過程や沈殿物を得る過程の少なくともいずれかにおいて、一度溶液状態として同様に濾過工程を経由して輝点異物を除去することもできる。溶融樹脂は粘度が高いため、後者の方法のほうが効率がよい。
【0068】
なお、本発明の位相差フィルムには、本発明の効果を害しない限りにおいて、上記セルロースアセテート以外の熱可塑性樹脂を併用することもできる。
【0069】
熱可塑性樹脂としては、一般的汎用樹脂としては、ポリエチレン(PE)、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等を用いることができる。
【0070】
また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF−PET)、環状ポリオレフィン(COP)等を用いることができる。
【0071】
さらに、高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。
【0072】
なお、本発明の用途にそって樹脂の種類、分子量の組み合わせを行うことが可能である。
【0073】
本発明の位相差フィルムは、後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
【0074】
<添加剤>
ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、リターデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本発明において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。以下に添加剤を説明する。
【0075】
(一般式A(1)で表される化合物)
本発明に好ましく用いられる下記一般式A(1)で表される化合物、及び参考化合物を、以下に記載するが本発明はこれらに限定されない。
【0076】
一般式A(1)中、R〜Rは、各々独立に、置換又は無置換のアルキルカルボニル基、若しくは、置換又は無置換のアリールカルボニル基を表し、R〜Rは相互に同じであっても、異なっていてもよい。なお、下表中に記載のRは、R〜Rのうちのいずれかを表す。アルキルカルボニル基及びアリールカルボニル基の置換基としては、下表に示すアルキルカルボニル基及びアリールカルボニル基が有するフェニル基、アルコキシ基等の置換基が好ましい。
【0077】
【化1】

【0078】
【化2】

【0079】
(合成例:本発明に用いられる化合物の合成)
【0080】
【化3】

【0081】
撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.8モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエン1L、0.5質量%の炭酸ナトリウム水溶液300gを添加し、50℃で30分間撹拌後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A−1、A−2、A−3、A−4及びA−5の混合物を得た。得られた混合物をHPLC及びLC−MASSで解析したところ、A−1が7質量%、A−2が58質量%、A−3が23質量%、A−4が9質量%、A−5が3質量%であった。なお、得られた混合物の一部をシリカゲルを用いたカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA−1、A−2、A−3、A−4及びA−5を得た。
【0082】
本発明の位相差フィルムに添加される、一般式A(1)で表される化合物の総平均置換度は6.1〜6.9であるが、当該置換度の範囲は4.0〜8.0であることが好ましい。置換度分布は、エステル化反応時間の調節、又は置換度違いの化合物を混合することにより目的の置換度に調整してもよい。
【0083】
(可塑剤)
本発明の位相差フィルムには、所謂可塑剤として知られる化合物を、機械的性質向上、柔軟性を付与、耐吸水性付与、水蒸気透過率低減、リターデーション調整等の目的で添加することが好ましく、例えばリン酸エステルやカルボン酸エステルが好ましく用いられる。
【0084】
可塑剤はセルロースエステルフィルム中に1〜40質量%、特に1〜30質量%含有することが好ましい。
【0085】
リン酸エステルとしては、例えばトリフェニルホスフェート、トリクレジルホスフェート、フェニルジフェニルホスフェート等を挙げることができる。
【0086】
カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルホスフェート、ジオクチルフタレート及びジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチル及びクエン酸アセチルトリブチルを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1〜8のアルキル基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることができ、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく用いられる。またこれらアルキルフタリルアルキルグリコレートを二種以上混合して使用してもよい。
【0087】
また、可塑剤として特許第3793184号公報記載の下記一般式(1)〜(3)で表されるクエン酸エステル系可塑剤を用いることも好ましい。
【0088】
【化4】

【0089】
【化5】

【0090】
【化6】

【0091】
また、多価アルコールエステルも好ましく用いられる。
【0092】
本発明の位相差フィルムに用いられる多価アルコールは次の一般式(4)で表される。
【0093】
一般式(4):R−(OH)
但し、Rはn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性ヒドロキシ基(水酸基)を表す。
【0094】
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
【0095】
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
【0096】
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
【0097】
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
【0098】
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
【0099】
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
【0100】
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
【0101】
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を二個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
【0102】
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
【0103】
多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
【0104】
以下に、本発明に用いられる多価アルコールエステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
【0105】
【化7】

【0106】
【化8】

【0107】
【化9】

【0108】
【化10】

【0109】
これらの化合物は、セルロースエステルに対して1〜30質量%、好ましくは1〜20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
【0110】
これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
【0111】
更に本発明では、下記一般式(5)で表される芳香族末端エステル系可塑剤を用いることが好ましい。
【0112】
一般式(5):B−(G−A)−G−B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2〜12のアルキレングリコール残基又は炭素数6〜12のアリールグリコール残基又は炭素数が4〜12のオキシアルキレングリコール残基、Aは炭素数4〜12のアルキレンジカルボン酸残基又は炭素数6〜12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
一般式(5)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基又はオキシアルキレングリコール残基又はアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
【0113】
本発明に用いられる芳香族末端エステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ一種又は二種以上の混合物として使用することができる。
【0114】
本発明に用いられる芳香族末端エステル系可塑剤の炭素数2〜12のアルキレングリコール成分としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロ−ルペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール1,6−ヘキサンジオール、2,2,4−トリメチル1,3−ペンタンジオール、2−エチル1,3−ヘキサンジオール、2−メチル1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等があり、これらのグリコールは、一種又は二種以上の混合物として使用される。
【0115】
また、芳香族末端エステルの炭素数4〜12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
【0116】
また、芳香族末端エステルの炭素数6〜12のアリールグリコール成分としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
【0117】
芳香族末端エステルの炭素数4〜12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ一種又は二種以上の混合物として使用される。炭素数6〜12のアリールジカルボン酸成分としては、フタル酸、テレフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。
【0118】
芳香族末端エステル系可塑剤は、数平均分子量が、好ましくは300〜2000、より好ましくは500〜1500の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下のものが好適である。
【0119】
〈芳香族末端エステルの酸価、ヒドロキシ(水酸基)価〉
酸価とは、試料1g中に含まれる酸(分子末端に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価及びヒドロキシ(水酸基)価はJIS K0070(1992)に準拠して測定したものである。
【0120】
以下、本発明に用いられる芳香族末端エステル系可塑剤の合成例を示す。
【0121】
〈サンプルNo.1(芳香族末端エステルサンプル)〉
反応容器に、フタル酸820部(5モル)、1,2−プロピレングリコール608部(8モル)、安息香酸610部(5モル)及び触媒としてテトライソプロピルチタネート0.30部を一括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2以下になるまで130〜250℃で加熱を続け生成する水を連続的に除去した。次いで200〜230℃で6.65×10Pa〜最終的に4×10Pa以下の減圧下、留出分を除去し、この後濾過して次の性状を有する芳香族末端エステルを得た。
【0122】
粘度(25℃、mPa・s);19815
酸価 ;0.4
〈サンプルNo.2(芳香族末端エステルサンプル)〉
反応容器に、アジピン酸500部(3.5モル)、安息香酸305部(2.5モル)、ジエチレングリコール583部(5.5モル)及び触媒としてテトライソプロピルチタネート0.45部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
【0123】
粘度(25℃、mPa・s);90
酸価 ;0.05
〈サンプルNo.3(芳香族末端エステルサンプル)〉
反応容器にフタル酸410部(2.5モル)、安息香酸610部(5モル)、ジプロピレングリコール737部(5.5モル)及び触媒としてテトライソプロピルチタネート0.40部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステル系可塑剤を得た。
【0124】
粘度(25℃、mPa・s);43400
酸価 ;0.2
以下に、本発明に用いられる芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
【0125】
【化11】

【0126】
【化12】

【0127】
本発明に用いられる芳香族末端エステル系可塑剤の含有量は、セルロースエステルフィルム中に1〜20質量%含有することが好ましく、特に3〜11質量%含有することが好ましい。
【0128】
(ポリエステルポリオール)
本発明で用いられるポリエステルポリオールは、二塩基酸又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基(水酸基)となる重合体である。ここで言うエステル形成性誘導体とは、二塩基酸のエステル化物、二塩基酸クロライド、二塩基酸の無水物のことである。
【0129】
前記ポリエステルポリオールは、芳香族二塩基酸とグリコールとの脱水縮合反応、芳香族無水二塩基酸へのグリコールの付加及び脱水縮合反応、又は芳香族二塩基酸のエステル化物とグリコールとの脱アルコールによる縮合反応により得ることができる。
【0130】
前記芳香族二塩基酸又はこれらのエステル形成性誘導体として、単独で10〜16個の炭素原子を有する芳香族ジカルボン酸又はそのエステル形成性誘導体を使用できるが、例えばベンゼン環構造、ナフタレン環構造、アントラセン環構造等の芳香族環式構造を有するジカルボン酸やそのエステル形成性誘導体を使用することができ、例えば置換基を有するオルソフタル酸、置換基を有するイソフタル酸、置換基を有するテレフタル酸、置換基を有する無水フタル酸、1,4−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、2,6−アントラセンジカルボン酸等やこれらのエステル化物、及び酸塩化物、1,8−ナフタレンジカルボン酸の酸無水物等を挙げることができ、これらは芳香族環に置換基を有していても良く、これらを単独で使用又は二種以上併用できる。好ましくは、1,4−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸及びそのエステル化物であり、更に好ましくは、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸及びそのエステル化物であり、特に好ましくは、2,6−ナフタレンジカルボン酸及びそのエステル化物である。
【0131】
前記ポリエステルポリオールの二塩基酸の炭素数の平均とは、単一の二塩基酸を用いてポリエステルポリオールを重合する場合は当該二塩基酸の炭素数を意味するが、二種以上の二塩基酸を用いてポリエステルポリオールを重合する場合、それぞれの二塩基酸の炭素数とその二塩基酸のモル分率の積の合計を意味する。
【0132】
本発明において、ポリエステルポリオールの原料として使用する二塩基酸の炭素数の平均が10〜16の範囲であることが重要である。かかる二塩基酸の炭素数の平均が10以上であれば、リターデーションの発現性に優れ、炭素数の平均が16以下であれば、セルロースエステルとの相溶性が著しく優れる。二塩基酸として、好ましくは炭素数の平均が10〜14であり、更に好ましくは炭素数の平均が10〜12である。
【0133】
前記炭素数の平均が10〜16であれば、前記10〜16個の炭素原子を有する芳香族二塩基酸とそれ以外の二塩基酸を併用することができる。
【0134】
併用できる二塩基酸として、4〜9個の炭素原子を有するジカルボン酸又はそのエステル形成性誘導体が好ましく、例えば、コハク酸、グルタル酸、アジピン酸、マレイン酸、無水コハク酸、無水マレイン酸、オルソフタル酸、イソフタル酸、テレフタル酸、無水フタル酸等やこれらのエステル化物、及び酸塩化物を挙げることができる。
【0135】
前記グリコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、2−メチル1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,2−シクロペンタンジオール、1,3−シクロペンタンジオール、1,4−シクロヘキサンジオール等を単独で使用又は二種以上併用することができ、なかでもエチレングリコール、ジエチレングリコール、1,2−プロピレングリコール、2−メチル1,3−プロパンジオールが好ましく、更に好ましくは、エチレングリコール、ジエチレングリコール、1,2−プロピレングリコールである。
【0136】
本発明に用いられるポリエステルポリオールは、前記二塩基酸又はそれらのエステル形成性誘導体とグリコールを必要に応じてエステル化触媒の存在下で、例えば、180〜250℃の温度範囲内で、10〜25時間、周知慣用の方法でエステル化反応させることによって製造することができる。
【0137】
エステル化反応を行う際に、トルエン、キシレン等の溶媒を用いても良いが、無溶媒若しくは原料として使用するグリコールを溶媒として用いる方法が好ましい。
【0138】
前記エステル化触媒としては、例えば、テトライソプロピルチタネート、テトラブチルチタネート、p−トルエンスルホン酸、ジブチル錫オキサイド等を使用することができる。前記エステル化触媒は、二塩基酸又はそれらのエステル形成性誘導体の全量100質量部に対して0.01〜0.5質量部使用することが好ましい。
【0139】
二塩基酸又はそれらのエステル形成性誘導体とグリコールを反応させる際のモル比は、ポリエステルの末端基がヒドロキシ基(水酸基)となるモル比でなければならず、そのため二塩基酸又はそれらのエステル形成性誘導体1モルに対してグリコールは1.1〜10モルである。好ましくは、二塩基酸又はそれらのエステル形成性誘導体1モルに対して、グリコールが1.5〜7モルであり、更に好ましくは、二塩基酸又はそれらのエステル形成性誘導体1モルに対して、グリコールが2〜5モルである。
【0140】
一方、前記ポリエステルポリオール中に於けるカルボキシ基末端は、湿度安定性を低下させるため、その含有量は低い方が好ましい。具体的には、酸価5.0以下が好ましく、更に好ましくは1.0以下であり、特に好ましくは0.5以下である。
【0141】
ここで言う酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
【0142】
前記ポリエステルポリオールは、ヒドロキシ(水酸基)価(OHV)が35mg/g〜220mg/gの範囲であることが好ましい。ここで言うヒドロキシ(水酸基)価とは、試料1g中に含まれるOH基をアセチル化したときに、ヒドロキシ基(水酸基)と結合した酢酸を中和するために要する水酸化カリウムのミリグラム数をいう。無水酢酸を用いて試料中のOH基をアセチル化し、使われなかった酢酸を水酸化カリウム溶液で滴定し、初期の無水酢酸の滴定値との差より求める。
【0143】
前記ポリエステルポリオールのヒドロキシ基(水酸基)含有量は、70%以上であることが好ましい。ヒドロキシ基(水酸基)含有量が少ない場合、ポリエステルポリオールとセルロースエステルとの相溶性が低下する。このため、ヒドロキシ基(水酸基)含有量は、70%以上が好ましく、更に好ましくは90%以上であり、最も好ましくは99%以上である。
【0144】
本発明において、ヒドロキシ基(水酸基)含有量が50%以下の化合物は、末端基の一方がヒドロキシ基(水酸基)以外の基で置換されているためヒドロキシ基(水酸基)ポリエステルポリオールには含まれない。
【0145】
前記ヒドロキシ基(水酸基)含有量は、下記の式(A)により求めることができる。式(A):Y/X×100=ヒドロキシ基(水酸基)含有量(%)
X:前記ポリエステルポリオールのヒドロキシ(水酸基)価(OHV)
Y:1/(数平均分子量(Mn))×56×2×1000
前記ポリエステルポリオールは、300〜3000の範囲内の数平均分子量を有することが好ましく、350〜2000の数平均分子量を有することがより好ましい。
【0146】
また、本発明に用いられるポリエステルポリオールの分子量の分散度は1.0〜3.0であることが好ましく、1.0〜2.0であることが更に好ましい。分散度が上記範囲以内であれば、セルロースエステルとの相溶性に優れたポリエステルポリオールを得ることができる。また、前記ポリエステルポリオールは、分子量が300〜1800の成分を50%以上含有することが好ましい。数平均分子量を前記範囲とすることにより、相溶性を大幅に向上させることができる。
【0147】
数平均分子量、分散度及び成分含有率を上記の好ましい範囲に制御する方法として、二塩基酸又はそれらのエステル形成性誘導体1モルに対してグリコールを2〜5モル使用し、未反応のグリコールを減圧留去する方法が好ましい。減圧留去する温度は、100〜200℃が好ましく、更に好ましくは120〜180℃であり、特に好ましくは130〜170℃が好ましい。減圧留去する際の減圧度は、0.01〜67kPa(0.1〜500Torr)が好ましく、更に好ましくは0.06〜27kPa(0.5〜200Torr)であり、最も好ましくは0.13〜13kPa(1〜100Torr)である。
【0148】
ポリエステルポリオール数平均分子量(Mn)及び分散度は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
【0149】
測定条件の一例は以下の通りであるが、これに限られることはなく、同等の測定方法を用いることも可能である。
【0150】
溶媒: テトラヒドロフラン(THF)
カラム: TSKgel G2000HXL(東ソー(株)製を2本接続して使用する。)
カラム温度:40℃
試料濃度: 0.1質量%
装置: HLC−8220(東ソー(株)製)
流量: 1.0ml/min
校正曲線: PStQuick F(東ソー(株)製)による校正曲線を使用する。
【0151】
本発明の効果を得る上で、ポリエステルポリオールをフィルム中に5〜30質量%含有することが好ましい。より好ましくは5〜20質量%である。
【0152】
以下に、炭素数が10〜16である二塩基酸の具体例を示すが、本発明はこれに限定されない。
【0153】
(1)2,6−ナフタレンジカルボン酸
(2)2,3−ナフタレンジカルボン酸
(3)2,6−アントラセンジカルボン酸
(4)2,6−ナフタレンジカルボン酸:コハク酸(75:25〜99:1 モル比)
(5)2,6−ナフタレンジカルボン酸:テレフタル酸(50:50〜99:1 モル比)
(6)2,3−ナフタレンジカルボン酸:コハク酸(75:25〜99:1 モル比)
(7)2,3−ナフタレンジカルボン酸:テレフタル酸(50:50〜99:1 モル比)
(8)2,6−アントラセンジカルボン酸:コハク酸(50:50〜99:1 モル比)
(9)2,6−アントラセンジカルボン酸:テレフタル酸(25:75〜99:1 モル比)
(10)2,6−ナフタレンジカルボン酸:アジピン酸(67:33〜99:1 モル比)
(11)2,3−ナフタレンジカルボン酸:アジピン酸(67:33〜99:1 モル比)
(12)2,6−アントラセンジカルボン酸:アジピン酸(40:60〜99:1 モル比)
(紫外線吸収剤)
本発明の位相差フィルムには、紫外線吸収剤を含有させることができる。使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号、同8−337574号、特開2001−72782号記載の紫外線吸収剤、特開平6−148430号、特開2002−31715号、同2002−169020号、同2002−47357号、同2002−363420号、同2003−113317号記載の高分子紫外線吸収剤も好ましく用いられる。紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
【0154】
本発明に有用な紫外線吸収剤の具体例として、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもBASFジャパン社製)を好ましく使用できる。高分子紫外線吸収剤としては、大塚化学社製の反応型紫外線吸収剤RUVA−93を例として挙げることができる。
【0155】
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。
【0156】
本発明で好ましく用いられる上記記載の紫外線吸収剤は、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
【0157】
紫外線吸収剤のドープへの添加方法は、ドープ中で紫外線吸収剤を溶解するようなものであれば制限なく使用できるが、本発明においては紫外線吸収剤をメチレンクロライド、酢酸メチル、ジオキソラン等のセルロースエステルに対する良溶媒、又は良溶媒と低級脂肪族アルコール(メタノール、エタノール、プロパノール、ブタノール等)のような貧溶媒との混合有機溶媒に溶解し紫外線吸収剤溶液としてセルロースエステル溶液に添加してドープとする方法が好ましい。この場合できるだけドープ溶媒組成と紫外線吸収剤溶液の溶媒組成とを同じとするか近づけることが好ましい。紫外線吸収剤の含有量は0.01〜5質量%、特に0.5〜3質量%である。
【0158】
(酸化防止剤)
酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N′−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト等が挙げられる。特に2,6−ジ−t−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4−ジ−t−ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。
【0159】
これらの化合物の添加量は、セルロースエステルに対して質量割合で1ppm〜1.0%が好ましく、10〜1000ppmが更に好ましい。
【0160】
また、下記一般式(L)で表される化合物を用いることも好ましい。
【0161】
【化13】

【0162】
〔式中、R〜Rは、各々、互いに独立して水素原子又は置換基を表し、Rは水素原子又は置換基を表し、nは1又は2を表す。nが1であるとき、Rは置換基を表し、nが2であるとき、Rは2価の連結基を表す。〕
前記一般式(L)において、R〜Rはおのおの互いに独立して水素原子又は置換基を表す。R〜Rで表される置換基は、特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2−プロペニル基、3−ブテニル基、1−メチル−3−プロペニル基、3−ペンテニル基、1−メチル−3−ブテニル基、4−ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシ基、カルボン酸の塩、ヒドロキシ基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によって更に置換されていてもよい。
【0163】
前記一般式(L)において、R〜Rは、水素原子又はアルキル基が好ましい。
【0164】
前記一般式(L)において、Rは水素原子又は置換基を表し、Rで表される置換基は、R〜Rが表す置換基と同様な基を挙げることができる。
【0165】
前記一般式(L)において、Rは水素原子が好ましい。
【0166】
前記一般式(L)において、nは1又は2を表す。
【0167】
前記一般式(L)において、nが1であるとき、Rは置換基を表し、nが2であるとき、Rは2価の連結基を表す。Rが置換基を表すとき、置換基としては、R〜Rが表す置換基と同様な基を挙げることができる。Rは2価の連結基を表すとき、2価の連結基として例えば、置換基を有しても良いアルキレン基、置換基を有しても良いアリーレン基、酸素原子、窒素原子、硫黄原子、或いはこれらの連結基の組み合わせを挙げることができる。
【0168】
前記一般式(L)において、nは1が好ましく、その時のRは置換又は無置換のフェニル基が好ましく、アルキル基が置換したフェニル基が更に好ましい。
【0169】
次に、本発明における前記一般式(L)で表される化合物の具体例を示すが、本発明は以下の具体例によって限定されるものではない。
【0170】
【化14】

【0171】
【化15】

【0172】
【化16】

【0173】
これらの化合物は、それぞれ一種或いは二種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001〜10.0質量部、好ましくは0.01〜5.0質量部、更に好ましくは、0.1〜3.0質量部である。
【0174】
(リターデーション調整剤)
リターデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
【0175】
また、二種類以上の芳香族化合物を併用してもよい。当該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5−トリアジン環が特に好ましい。
【0176】
芳香族化合物が有する芳香族環の数は2〜20であることが好ましく、2〜12であることがより好ましく、2〜8であることが更に好ましく、3〜6であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。
【0177】
(a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環及びチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環及びキノリン環が好ましい。
【0178】
(b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環又は非芳香族性複素環を形成してもよい。
【0179】
(c)の連結基も二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、−CO−、−O−、−NH−、−S−又はそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。
【0180】
−CO−O−、−CO−NH−、−アルキレン−O−、−NH−CO−NH−、−NH−CO−O−、−O−CO−O−、−O−アルキレン−O−、−CO−アルケニレン−、−CO−アルケニレン−NH−、−CO−アルケニレン−O−、−アルキレン−CO−O−アルキレン−O−CO−アルキレン−、−O−アルキレン−CO−O−アルキレン−O−CO−アルキレン−O−、−O−CO−アルキレン−CO−O−、−NH−CO−アルケニレン−、−O−CO−アルケニレン−。
【0181】
芳香族環及び連結基は置換基を有していてもよい。置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシ、カルボキシ、シアノ、アミノ、ニトロ、スルホ、カルバモイル、スルファモイル、ウレイド、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基及び非芳香族性複素環基が含まれる。
【0182】
アルキル基の炭素原子数は1〜8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、更に置換基(例、ヒドロキシ基、カルボキシ基、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む。)例には、メチル、エチル、n−ブチル、n−ヘキシル、2−ヒドロキシエチル、4−カルボキシブチル、2−メトキシエチル及び2−ジエチルアミノエチルが含まれる。アルケニル基の炭素原子数は、2〜8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、更に置換基を有していてもよい。アルケニル基の例には、ビニル、アリル及び1−ヘキセニルが含まれる。アルキニル基の炭素原子数は、2〜8であることが好ましい。環状アルキニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、更に置換基を有していてもよい。アルキニル基の例には、エチニル、1−ブチニル及び1−ヘキシニルが含まれる。
【0183】
脂肪族アシル基の炭素原子数は1〜10であることが好ましい。脂肪族アシル基の例には、アセチル、プロパノイル及びブタノイルが含まれる。脂肪族アシルオキシ基の炭素原子数は、1〜10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシが含まれる。アルコキシ基の炭素原子数は1〜8であることが好ましい。アルコキシ基は、更に置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ、エトキシ、ブトキシ及びメトキシエトキシが含まれる。アルコキシカルボニル基の炭素原子数は2〜10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル及びエトキシカルボニルが含まれる。アルコキシカルボニルアミノ基の炭素原子数は、2〜10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ及びエトキシカルボニルアミノが含まれる。
【0184】
アルキルチオ基の炭素原子数は1〜12であることが好ましい。アルキルチオ基の例には、メチルチオ、エチルチオ及びオクチルチオが含まれる。アルキルスルホニル基の炭素原子数は、1〜8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル及びエタンスルホニルが含まれる。脂肪族アミド基の炭素原子数は、1〜10であることが好ましい。脂肪族アミド基の例には、アセトアミドが含まれる。脂肪族スルホンアミド基の炭素原子数は、1〜8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド、ブタンスルホンアミド及びn−オクタンスルホンアミドが含まれる。脂肪族置換アミノ基の炭素原子数は、1〜10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ、ジエチルアミノ及び2−カルボキシエチルアミノが含まれる。脂肪族置換カルバモイル基の炭素原子数は2〜10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル及びジエチルカルバモイルが含まれる。脂肪族置換スルファモイル基の炭素原子数は、1〜8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル及びジエチルスルファモイルが含まれる。脂肪族置換ウレイド基の炭素原子数は、2〜10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイドが含まれる。非芳香族性複素環基の例には、ピペリジノ及びモルホリノが含まれる。
【0185】
リターデーション調整剤の分子量は、300以上800以下であることが好ましい。これは、使用時及び偏光板加工時における流出抑制の観点から、任意に分子構造の極性を選択することができる。
【0186】
1,3,5−トリアジン環を有する化合物は、中でも、下記一般式(R)で表される化合物が好ましい。
【0187】
【化17】

【0188】
一般式(R)において、Xは、単結合、−NR−、−O−又は−S−であり;Xは単結合、−NR−、−O−又は−S−であり;Xは単結合、−NR−、−O−又は−S−であり;R、R及びRはアルキル基、アルケニル基、アリール基又は複素環基であり;そして、R、R及びRは、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。一般式(R)で表される化合物は、メラミン化合物であることが特に好ましい。
【0189】
メラミン化合物では、一般式(R)において、X、X及びXが、それぞれ、−NR−、−NR−及び−NR−であるか、或いは、X、X及びXが単結合であり、かつ、R、R及びRが窒素原子に遊離原子価を持つ複素環基である。−X−R、−X−R及び−X−Rは、同一の置換基であることが好ましい。R、R及びRは、アリール基であることが特に好ましい。R、R及びRは、水素原子であることが特に好ましい。
【0190】
上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。
【0191】
アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることが更に好ましく、1〜8であることが更にまた好ましく、1〜6であることが最も好ましい。アルキル基は置換基を有していてもよい。
【0192】
置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることが更に好ましく、2〜8であることが更にまた好ましく、2〜6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。
【0193】
置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)又はアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。
【0194】
上記アリール基は、フェニル基又はナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。
【0195】
置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシ、シアノ、ニトロ、カルボキシ、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。
【0196】
アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。
【0197】
上記アルケニル基は、前述したアルケニル基と同義である。
【0198】
アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。
【0199】
上記アリール基の具体例としては、例えば、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニル又は4−ドデシルオキシフェニル等の各基が挙げられる。
【0200】
アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。
【0201】
、X又はXが−NR−、−O−又は−S−である場合の複素環基は、芳香族性を有することが好ましい。
【0202】
芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、6員環であることが最も好ましい。
【0203】
複素環中のヘテロ原子は、N、S又はO等の各原子であることが好ましく、N原子であることが特に好ましい。
【0204】
芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2−ピリジル又は4−ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
【0205】
、X又はXが単結合である場合の複素環基は、窒素原子に遊離原子価を持つ複素環基であることが好ましい。窒素原子に遊離原子価を持つ複素環基は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。
【0206】
また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。
【0207】
以下に、窒素原子に遊離原子価を持つ複素環基の具体例を示す。
【0208】
【化18】

【0209】
【化19】

【0210】
以下に、1,3,5−トリアジン環を有する化合物の具体例を示す。
【0211】
なお、以下に示す複数のRは同一の基を表す。
【0212】
【化20】

【0213】
(1)ブチル
(2)2−メトキシ−2−エトキシエチル
(3)5−ウンデセニル
(4)フェニル
(5)4−エトキシカルボニルフェニル
(6)4−ブトキシフェニル
(7)p−ビフェニリル
(8)4−ピリジル
(9)2−ナフチル
(10)2−メチルフェニル
(11)3,4−ジメトキシフェニル
(12)2−フリル
【0214】
【化21】

【0215】
【化22】

【0216】
(14)フェニル
(15)3−エトキシカルボニルフェニル
(16)3−ブトキシフェニル
(17)m−ビフェニリル
(18)3−フェニルチオフェニル
(19)3−クロロフェニル
(20)3−ベンゾイルフェニル
(21)3−アセトキシフェニル
(22)3−ベンゾイルオキシフェニル
(23)3−フェノキシカルボニルフェニル
(24)3−メトキシフェニル
(25)3−アニリノフェニル
(26)3−イソブチリルアミノフェニル
(27)3−フェノキシカルボニルアミノフェニル
(28)3−(3−エチルウレイド)フェニル
(29)3−(3,3−ジエチルウレイド)フェニル
(30)3−メチルフェニル
(31)3−フェノキシフェニル
(32)3−ヒドロキシフェニル
(33)4−エトキシカルボニルフェニル
(34)4−ブトキシフェニル
(35)p−ビフェニリル
(36)4−フェニルチオフェニル
(37)4−クロロフェニル
(38)4−ベンゾイルフェニル
(39)4−アセトキシフェニル
(40)4−ベンゾイルオキシフェニル
(41)4−フェノキシカルボニルフェニル
(42)4−メトキシフェニル
(43)4−アニリノフェニル
(44)4−イソブチリルアミノフェニル
(45)4−フェノキシカルボニルアミノフェニル
(46)4−(3−エチルウレイド)フェニル
(47)4−(3,3−ジエチルウレイド)フェニル
(48)4−メチルフェニル
(49)4−フェノキシフェニル
(50)4−ヒドロキシフェニル
(51)3,4−ジエトキシカルボニルフェニル
(52)3,4−ジブトキシフェニル
(53)3,4−ジフェニルフェニル
(54)3,4−ジフェニルチオフェニル
(55)3,4−ジクロロフェニル
(56)3,4−ジベンゾイルフェニル
(57)3,4−ジアセトキシフェニル
(58)3,4−ジベンゾイルオキシフェニル
(59)3,4−ジフェノキシカルボニルフェニル
(60)3,4−ジメトキシフェニル
(61)3,4−ジアニリノフェニル
(62)3,4−ジメチルフェニル
(63)3,4−ジフェノキシフェニル
(64)3,4−ジヒドロキシフェニル
(65)2−ナフチル
(66)3,4,5−トリエトキシカルボニルフェニル
(67)3,4,5−トリブトキシフェニル
(68)3,4,5−トリフェニルフェニル
(69)3,4,5−トリフェニルチオフェニル
(70)3,4,5−トリクロロフェニル
(71)3,4,5−トリベンゾイルフェニル
(72)3,4,5−トリアセトキシフェニル
(73)3,4,5−トリベンゾイルオキシフェニル
(74)3,4,5−トリフェノキシカルボニルフェニル
(75)3,4,5−トリメトキシフェニル
(76)3,4,5−トリアニリノフェニル
(77)3,4,5−トリメチルフェニル
(78)3,4,5−トリフェノキシフェニル
(79)3,4,5−トリヒドロキシフェニル
【0217】
【化23】

【0218】
(80)フェニル
(81)3−エトキシカルボニルフェニル
(82)3−ブトキシフェニル
(83)m−ビフェニリル
(84)3−フェニルチオフェニル
(85)3−クロロフェニル
(86)3−ベンゾイルフェニル
(87)3−アセトキシフェニル
(88)3−ベンゾイルオキシフェニル
(89)3−フェノキシカルボニルフェニル
(90)3−メトキシフェニル
(91)3−アニリノフェニル
(92)3−イソブチリルアミノフェニル
(93)3−フェノキシカルボニルアミノフェニル
(94)3−(3−エチルウレイド)フェニル
(95)3−(3,3−ジエチルウレイド)フェニル
(96)3−メチルフェニル
(97)3−フェノキシフェニル
(98)3−ヒドロキシフェニル
(99)4−エトキシカルボニルフェニル
(100)4−ブトキシフェニル
(101)p−ビフェニリル
(102)4−フェニルチオフェニル
(103)4−クロロフェニル
(104)4−ベンゾイルフェニル
(105)4−アセトキシフェニル
(106)4−ベンゾイルオキシフェニル
(107)4−フェノキシカルボニルフェニル
(108)4−メトキシフェニル
(109)4−アニリノフェニル
(110)4−イソブチリルアミノフェニル
(111)4−フェノキシカルボニルアミノフェニル
(112)4−(3−エチルウレイド)フェニル
(113)4−(3,3−ジエチルウレイド)フェニル
(114)4−メチルフェニル
(115)4−フェノキシフェニル
(116)4−ヒドロキシフェニル
(117)3,4−ジエトキシカルボニルフェニル
(118)3,4−ジブトキシフェニル
(119)3,4−ジフェニルフェニル
(120)3,4−ジフェニルチオフェニル
(121)3,4−ジクロロフェニル
(122)3,4−ジベンゾイルフェニル
(123)3,4−ジアセトキシフェニル
(124)3,4−ジベンゾイルオキシフェニル
(125)3,4−ジフェノキシカルボニルフェニル
(126)3,4−ジメトキシフェニル
(127)3,4−ジアニリノフェニル
(128)3,4−ジメチルフェニル
(129)3,4−ジフェノキシフェニル
(130)3,4−ジヒドロキシフェニル
(131)2−ナフチル
(132)3,4,5−トリエトキシカルボニルフェニル
(133)3,4,5−トリブトキシフェニル
(134)3,4,5−トリフェニルフェニル
(135)3,4,5−トリフェニルチオフェニル
(136)3,4,5−トリクロロフェニル
(137)3,4,5−トリベンゾイルフェニル
(138)3,4,5−トリアセトキシフェニル
(139)3,4,5−トリベンゾイルオキシフェニル
(140)3,4,5−トリフェノキシカルボニルフェニル
(141)3,4,5−トリメトキシフェニル
(142)3,4,5−トリアニリノフェニル
(143)3,4,5−トリメチルフェニル
(144)3,4,5−トリフェノキシフェニル
(145)3,4,5−トリヒドロキシフェニル
【0219】
【化24】

【0220】
(146)フェニル
(147)4−エトキシカルボニルフェニル
(148)4−ブトキシフェニル
(149)p−ビフェニリル
(150)4−フェニルチオフェニル
(151)4−クロロフェニル
(152)4−ベンゾイルフェニル
(153)4−アセトキシフェニル
(154)4−ベンゾイルオキシフェニル
(155)4−フェノキシカルボニルフェニル
(156)4−メトキシフェニル
(157)4−アニリノフェニル
(158)4−イソブチリルアミノフェニル
(159)4−フェノキシカルボニルアミノフェニル
(160)4−(3−エチルウレイド)フェニル
(161)4−(3,3−ジエチルウレイド)フェニル
(162)4−メチルフェニル
(163)4−フェノキシフェニル
(164)4−ヒドロキシフェニル
【0221】
【化25】

【0222】
(165)フェニル
(166)4−エトキシカルボニルフェニル
(167)4−ブトキシフェニル
(168)p−ビフェニリル
(169)4−フェニルチオフェニル
(170)4−クロロフェニル
(171)4−ベンゾイルフェニル
(172)4−アセトキシフェニル
(173)4−ベンゾイルオキシフェニル
(174)4−フェノキシカルボニルフェニル
(175)4−メトキシフェニル
(176)4−アニリノフェニル
(177)4−イソブチリルアミノフェニル
(178)4−フェノキシカルボニルアミノフェニル
(179)4−(3−エチルウレイド)フェニル
(180)4−(3,3−ジエチルウレイド)フェニル
(181)4−メチルフェニル
(182)4−フェノキシフェニル
(183)4−ヒドロキシフェニル
【0223】
【化26】

【0224】
(184)フェニル
(185)4−エトキシカルボニルフェニル
(186)4−ブトキシフェニル
(187)p−ビフェニリル
(188)4−フェニルチオフェニル
(189)4−クロロフェニル
(190)4−ベンゾイルフェニル
(191)4−アセトキシフェニル
(192)4−ベンゾイルオキシフェニル
(193)4−フェノキシカルボニルフェニル
(194)4−メトキシフェニル
(195)4−アニリノフェニル
(196)4−イソブチリルアミノフェニル
(197)4−フェノキシカルボニルアミノフェニル
(198)4−(3−エチルウレイド)フェニル
(199)4−(3,3−ジエチルウレイド)フェニル
(200)4−メチルフェニル
(201)4−フェノキシフェニル
(202)4−ヒドロキシフェニル
【0225】
【化27】

【0226】
(203)フェニル
(204)4−エトキシカルボニルフェニル
(205)4−ブトキシフェニル
(206)p−ビフェニリル
(207)4−フェニルチオフェニル
(208)4−クロロフェニル
(209)4−ベンゾイルフェニル
(210)4−アセトキシフェニル
(211)4−ベンゾイルオキシフェニル
(212)4−フェノキシカルボニルフェニル
(213)4−メトキシフェニル
(214)4−アニリノフェニル
(215)4−イソブチリルアミノフェニル
(216)4−フェノキシカルボニルアミノフェニル
(217)4−(3−エチルウレイド)フェニル
(218)4−(3,3−ジエチルウレイド)フェニル
(219)4−メチルフェニル
(220)4−フェノキシフェニル
(221)4−ヒドロキシフェニル
【0227】
【化28】

【0228】
(222)フェニル
(223)4−ブチルフェニル
(224)4−(2−メトキシ−2−エトキシエチル)フェニル
(225)4−(5−ノネニル)フェニル
(226)p−ビフェニリル
(227)4−エトキシカルボニルフェニル
(228)4−ブトキシフェニル
(229)4−メチルフェニル
(230)4−クロロフェニル
(231)4−フェニルチオフェニル
(232)4−ベンゾイルフェニル
(233)4−アセトキシフェニル
(234)4−ベンゾイルオキシフェニル
(235)4−フェノキシカルボニルフェニル
(236)4−メトキシフェニル
(237)4−アニリノフェニル
(238)4−イソブチリルアミノフェニル
(239)4−フェノキシカルボニルアミノフェニル
(240)4−(3−エチルウレイド)フェニル
(241)4−(3,3−ジエチルウレイド)フェニル
(242)4−フェノキシフェニル
(243)4−ヒドロキシフェニル
(244)3−ブチルフェニル
(245)3−(2−メトキシ−2−エトキシエチル)フェニル
(246)3−(5−ノネニル)フェニル
(247)m−ビフェニリル
(248)3−エトキシカルボニルフェニル
(249)3−ブトキシフェニル
(250)3−メチルフェニル
(251)3−クロロフェニル
(252)3−フェニルチオフェニル
(253)3−ベンゾイルフェニル
(254)3−アセトキシフェニル
(255)3−ベンゾイルオキシフェニル
(256)3−フェノキシカルボニルフェニル
(257)3−メトキシフェニル
(258)3−アニリノフェニル
(259)3−イソブチリルアミノフェニル
(260)3−フェノキシカルボニルアミノフェニル
(261)3−(3−エチルウレイド)フェニル
(262)3−(3,3−ジエチルウレイド)フェニル
(263)3−フェノキシフェニル
(264)3−ヒドロキシフェニル
(265)2−ブチルフェニル
(266)2−(2−メトキシ−2−エトキシエチル)フェニル
(267)2−(5−ノネニル)フェニル
(268)o−ビフェニリル
(269)2−エトキシカルボニルフェニル
(270)2−ブトキシフェニル
(271)2−メチルフェニル
(272)2−クロロフェニル
(273)2−フェニルチオフェニル
(274)2−ベンゾイルフェニル
(275)2−アセトキシフェニル
(276)2−ベンゾイルオキシフェニル
(277)2−フェノキシカルボニルフェニル
(278)2−メトキシフェニル
(279)2−アニリノフェニル
(280)2−イソブチリルアミノフェニル
(281)2−フェノキシカルボニルアミノフェニル
(282)2−(3−エチルウレイド)フェニル
(283)2−(3,3−ジエチルウレイド)フェニル
(284)2−フェノキシフェニル
(285)2−ヒドロキシフェニル
(286)3,4−ジブチルフェニル
(287)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(288)3,4−ジフェニルフェニル
(289)3,4−ジエトキシカルボニルフェニル
(290)3,4−ジドデシルオキシフェニル
(291)3,4−ジメチルフェニル
(292)3,4−ジクロロフェニル
(293)3,4−ジベンゾイルフェニル
(294)3,4−ジアセトキシフェニル
(295)3,4−ジメトキシフェニル
(296)3,4−ジ−N−メチルアミノフェニル
(297)3,4−ジイソブチリルアミノフェニル
(298)3,4−ジフェノキシフェニル
(299)3,4−ジヒドロキシフェニル
(300)3,5−ジブチルフェニル
(301)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
(302)3,5−ジフェニルフェニル
(303)3,5−ジエトキシカルボニルフェニル
(304)3,5−ジドデシルオキシフェニル
(305)3,5−ジメチルフェニル
(306)3,5−ジクロロフェニル
(307)3,5−ジベンゾイルフェニル
(308)3,5−ジアセトキシフェニル
(309)3,5−ジメトキシフェニル
(310)3,5−ジ−N−メチルアミノフェニル
(311)3,5−ジイソブチリルアミノフェニル
(312)3,5−ジフェノキシフェニル
(313)3,5−ジヒドロキシフェニル
(314)2,4−ジブチルフェニル
(315)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(316)2,4−ジフェニルフェニル
(317)2,4−ジエトキシカルボニルフェニル
(318)2,4−ジドデシルオキシフェニル
(319)2,4−ジメチルフェニル
(320)2,4−ジクロロフェニル
(321)2,4−ジベンゾイルフェニル
(322)2,4−ジアセトキシフェニル
(323)2,4−ジメトキシフェニル
(324)2,4−ジ−N−メチルアミノフェニル
(325)2,4−ジイソブチリルアミノフェニル
(326)2,4−ジフェノキシフェニル
(327)2,4−ジヒドロキシフェニル
(328)2,3−ジブチルフェニル
(329)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
(330)2,3−ジフェニルフェニル
(331)2,3−ジエトキシカルボニルフェニル
(332)2,3−ジドデシルオキシフェニル
(333)2,3−ジメチルフェニル
(334)2,3−ジクロロフェニル
(335)2,3−ジベンゾイルフェニル
(336)2,3−ジアセトキシフェニル
(337)2,3−ジメトキシフェニル
(338)2,3−ジ−N−メチルアミノフェニル
(339)2,3−ジイソブチリルアミノフェニル
(340)2,3−ジフェノキシフェニル
(341)2,3−ジヒドロキシフェニル
(342)2,6−ジブチルフェニル
(343)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
(344)2,6−ジフェニルフェニル
(345)2,6−ジエトキシカルボニルフェニル
(346)2,6−ジドデシルオキシフェニル
(347)2,6−ジメチルフェニル
(348)2,6−ジクロロフェニル
(349)2,6−ジベンゾイルフェニル
(350)2,6−ジアセトキシフェニル
(351)2,6−ジメトキシフェニル
(352)2,6−ジ−N−メチルアミノフェニル
(353)2,6−ジイソブチリルアミノフェニル
(354)2,6−ジフェノキシフェニル
(355)2,6−ジヒドロキシフェニル
(356)3,4,5−トリブチルフェニル
(357)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
(358)3,4,5−トリフェニルフェニル
(359)3,4,5−トリエトキシカルボニルフェニル
(360)3,4,5−トリドデシルオキシフェニル
(361)3,4,5−トリメチルフェニル
(362)3,4,5−トリクロロフェニル
(363)3,4,5−トリベンゾイルフェニル
(364)3,4,5−トリアセトキシフェニル
(365)3,4,5−トリメトキシフェニル
(366)3,4,5−トリ−N−メチルアミノフェニル
(367)3,4,5−トリイソブチリルアミノフェニル
(368)3,4,5−トリフェノキシフェニル
(369)3,4,5−トリヒドロキシフェニル
(370)2,4,6−トリブチルフェニル
(371)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
(372)2,4,6−トリフェニルフェニル
(373)2,4,6−トリエトキシカルボニルフェニル
(374)2,4,6−トリドデシルオキシフェニル
(375)2,4,6−トリメチルフェニル
(376)2,4,6−トリクロロフェニル
(377)2,4,6−トリベンゾイルフェニル
(378)2,4,6−トリアセトキシフェニル
(379)2,4,6−トリメトキシフェニル
(380)2,4,6−トリ−N−メチルアミノフェニル
(381)2,4,6−トリイソブチリルアミノフェニル
(382)2,4,6−トリフェノキシフェニル
(383)2,4,6−トリヒドロキシフェニル
(384)ペンタフルオロフェニル
(385)ペンタクロロフェニル
(386)ペンタメトキシフェニル
(387)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
(388)5−N−メチルスルファモイル−2−ナフチル
(389)6−N−フェニルスルファモイル−2−ナフチル
(390)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
(391)3−メトキシ−2−ナフチル
(392)1−エトキシ−2−ナフチル
(393)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
(394)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
(395)1−(4−メチルフェニル)−2−ナフチル
(396)6,8−ジ−N−メチルスルファモイル−2−ナフチル
(397)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
(398)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
(399)3−ベンゾイルオキシ−2−ナフチル
(400)5−アセチルアミノ−1−ナフチル
(401)2−メトキシ−1−ナフチル
(402)4−フェノキシ−1−ナフチル
(403)5−N−メチルスルファモイル−1−ナフチル
(404)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
(405)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
(406)7−テトラデシルオキシ−1−ナフチル
(407)4−(4−メチルフェノキシ)−1−ナフチル
(408)6−N−メチルスルファモイル−1−ナフチル
(409)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
(410)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
(411)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
(412)メチル
(413)エチル
(414)ブチル
(415)オクチル
(416)ドデシル
(417)2−ブトキシ−2−エトキシエチル
(418)ベンジル
(419)4−メトキシベンジル
【0229】
【化29】

【0230】
(424)メチル
(425)フェニル
(426)ブチル
【0231】
【化30】

【0232】
(430)メチル
(431)エチル
(432)ブチル
(433)オクチル
(434)ドデシル
(435)2−ブトキシ−2−エトキシエチル
(436)ベンジル
(437)4−メトキシベンジル
【0233】
【化31】

【0234】
【化32】

【0235】
本発明においては、1,3,5−トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(M)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。
【0236】
【化33】

【0237】
上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。
【0238】
上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(R)で説明した各基、それらの置換基と同義である。
【0239】
メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。
【0240】
メラミンポリマーの分子量は、2千〜40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。
【0241】
【化34】

【0242】
MP−1:R13、R14、R15、R16:CHOH
MP−2:R13、R14、R15、R16:CHOCH
MP−3:R13、R14、R15、R16:CHO−i−C
MP−4:R13、R14、R15、R16:CHO−n−C
MP−5:R13、R14、R15、R16:CHNHCOCH=CH
MP−6:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
MP−7:R13、R14、R15:CHOH;R16:CHOCH
MP−8:R13、R14、R16:CHOH;R15:CHOCH
MP−9:R13、R14:CHOH;R15、R16:CHOCH
MP−10:R13、R16:CHOH;R14、R15:CHOCH
MP−11:R13:CHOH;R14、R15、R16:CHOCH
MP−12:R13、R14、R16:CHOCH;R15:CHOH
MP−13:R13、R16:CHOCH;R14、R15:CHOH
MP−14:R13、R14、R15:CHOH;R16:CHO−i−C
MP−15:R13、R14、R16:CHOH;R15:CHO−i−C
MP−16:R13、R14:CHOH;R15、R16:CHO−i−C
MP−17:R13、R16:CHOH;R14、R15:CHO−i−C
MP−18:R13:CHOH;R14、R15、R16:CHO−i−C
MP−19:R13、R14、R16:CHO−i−C;R15:CHOH
MP−20:R13、R16:CHO−i−C;R14、R15:CHOH
MP−21:R13、R14、R15:CHOH;R16:CHO−n−C
MP−22:R13、R14、R16:CHOH;R15:CHO−n−C
MP−23:R13、R14:CHOH;R15、R16:CHO−n−C
MP−24:R13、R16:CHOH;R14、R15:CHO−n−C
MP−25:R13:CHOH;R14、R15、R16:CHO−n−C
MP−26:R13、R14、R16:CHO−n−C;R15:CHOH
MP−27:R13、R16:CHO−n−C;R14、R15:CHOH
MP−28:R13、R14:CHOH;R15:CHOCH;R16:CHO−n−C
MP−29:R13、R14:CHOH;R15:CHO−n−C;R16:CHOCH
MP−30:R13、R16:CHOH;R14:CHOCH;R15:CHO−n−C
MP−31:R13:CHOH;R14、R15:CHOCH;R16:CHO−n−C
MP−32:R13:CHOH;R14、R16:CHOCH;R15:CHO−n−C
MP−33:R13:CHOH;R14:CHOCH;R15、R16:CHO−n−C
MP−34:R13:CHOH;R14、R15:CHO−n−C;R16:CHOCH
MP−35:R13、R14:CHOCH;R15:CHOH;R16:CHO−n−C
MP−36:R13、R16:CHOCH;R14:CHOH;R15:CHO−n−C
MP−37:R13:CHOCH;R14、R15:CHOH;R16:CHO−n−C
MP−38:R13、R16:CHO−n−C;R14:CHOCH;R15:CHOH
MP−39:R13:CHOH;R14:CHOCH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−40:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−41:R13:CHOH;R14:CHO−n−C;R15:CHNHCOCH=CH;R16:CHOCH
MP−42:R13:CHOCH;R14:CHOH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−43:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−44:R13:CHO−n−C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
MP−45:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−46:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−47:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
MP−48:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−49:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−50:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
【0243】
【化35】

【0244】
MP−51:R13、R14、R15、R16:CHOH
MP−52:R13、R14、R15、R16:CHOCH
MP−53:R13、R14、R15、R16:CHO−i−C
MP−54:R13、R14、R15、R16:CHO−n−C
MP−55:R13、R14、R15、R16:CHNHCOCH=CH
MP−56:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
MP−57:R13、R14、R15:CHOH;R16:CHOCH
MP−58:R13、R14、R16:CHOH;R15:CHOCH
MP−59:R13、R14:CHOH;R15、R16:CHOCH
MP−60:R13、R16:CHOH;R14、R15:CHOCH
MP−61:R13:CHOH;R14、R15、R16:CHOCH
MP−62:R13、R14、R16:CHOCH;R15:CHOH
MP−63:R13、R16:CHOCH;R14、R15:CHOH
MP−64:R13、R14、R15:CHOH;R16:CHO−i−C
MP−65:R13、R14、R16:CHOH;R15:CHO−i−C
MP−66:R13、R14:CHOH;R15、R16:CHO−i−C
MP−67:R13、R16:CHOH;R14、R15:CHO−i−C
MP−68:R13:CHOH;R14、R15、R16:CHO−i−C
MP−69:R13、R14、R16:CHO−i−C;R15:CHOH
MP−70:R13、R16:CHO−i−C;R14、R15:CHOH
MP−71:R13、R14、R15:CHOH;R16:CHO−n−C
MP−72:R13、R14、R16:CHOH;R15:CHO−n−C
MP−73:R13、R14:CHOH;R15、R16:CHO−n−C
MP−74:R13、R16:CHOH;R14、R15:CHO−n−C
MP−75:R13:CHOH;R14、R15、R16:CHO−n−C
MP−76:R13、R14、R16:CHO−n−C;R15:CHOH
MP−77:R13、R16:CHO−n−C;R14、R15:CHOH
MP−78:R13、R14:CHOH;R15:CHOCH;R16:CHO−n−C
MP−79:R13、R14:CHOH;R15:CHO−n−C;R16:CHOCH
MP−80:R13、R16:CHOH;R14:CHOCH;R15:CHO−n−C
MP−81:R13:CHOH;R14、R15:CHOCH;R16:CHO−n−C
MP−82:R13:CHOH;R14、R16:CHOCH;R15:CHO−n−C
MP−83:R13:CHOH;R14:CHOCH;R15、R16:CHO−n−C
MP−84:R13:CHOH;R14、R15:CHO−n−C;R16:CHOCH
MP−85:R13、R14:CHOCH;R15:CHOH;R16:CHO−n−C
MP−86:R13、R16:CHOCH;R14:CHOH;R15:CHO−n−C
MP−87:R13:CHOCH;R14、R15:CHOH;R16:CHO−n−C
MP−88:R13、R16:CHO−n−C;R14:CHOCH;R15:CHOH
MP−89:R13:CHOH;R14:CHOCH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−90:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−91:R13:CHOH;R14:CHO−n−C;R15:CHNHCOCH=CH;R16:CHOCH
MP−92:R13:CHOCH;R14:CHOH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−93:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−94:R13:CHO−n−C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
MP−95:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−96:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−97:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
MP−98:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−99:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−100:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
【0245】
【化36】

【0246】
MP−101:R13、R14、R15、R16:CHOH
MP−102:R13、R14、R15、R16:CHOCH
MP−103:R13、R14、R15、R16:CHO−i−C
MP−104:R13、R14、R15、R16:CHO−n−C
MP−105:R13、R14、R15、R16:CHNHCOCH=CH
MP−106:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
MP−107:R13、R14、R15:CHOH;R16:CHOCH
MP−108:R13、R14、R16:CHOH;R15:CHOCH
MP−109:R13、R14:CHOH;R15、R16:CHOCH
MP−110:R13、R16:CHOH;R14、R15:CHOCH
MP−111:R13:CHOH;R14、R15、R16:CHOCH
MP−112:R13、R14、R16:CHOCH;R15:CHOH
MP−113:R13、R16:CHOCH;R14、R15:CHOH
MP−114:R13、R14、R15:CHOH;R16:CHO−i−C
MP−115:R13、R14、R16:CHOH;R15:CHO−i−C
MP−116:R13、R14:CHOH;R15、R16:CHO−i−C
MP−117:R13、R16:CHOH;R14、R15:CHO−i−C
MP−118:R13:CHOH;R14、R15、R16:CHO−i−C
MP−119:R13、R14、R16:CHO−i−C;R15:CHOH
MP−120:R13、R16:CHO−i−C;R14、R15:CHOH
MP−121:R13、R14、R15:CHOH;R16:CHO−n−C
MP−122:R13、R14、R16:CHOH;R15:CHO−n−C
MP−123:R13、R14:CHOH;R15、R16:CHO−n−C
MP−124:R13、R16:CHOH;R14、R15:CHO−n−C
MP−125:R13:CHOH;R14、R15、R16:CHO−n−C
MP−126:R13、R14、R16:CHO−n−C;R15:CHOH
MP−127:R13、R16:CHO−n−C;R14、R15:CHOH
MP−128:R13、R14:CHOH;R15:CHOCH;R16:CHO−n−C
MP−129:R13、R14:CHOH;R15:CHO−n−C;R16:CHOCH
MP−130:R13、R16:CHOH;R14:CHOCH;R15:CHO−n−C
MP−131:R13:CHOH;R14、R15:CHOCH;R16:CHO−n−C
MP−132:R13:CHOH;R14、R16:CHOCH;R15:CHO−n−C
MP−133:R13:CHOH;R14:CHOCH;R15、R16:CHO−n−C
MP−134:R13:CHOH;R14、R15:CHO−n−C;R16:CHOCH
MP−135:R13、R14:CHOCH;R15:CHOH;R16:CHO−n−C
MP−136:R13、R16:CHOCH;R14:CHOH;R15:CHO−n−C
MP−137:R13:CHOCH;R14、R15:CHOH;R16:CHO−n−C
MP−138:R13、R16:CHO−n−C;R14:CHOCH;R15:CHOH
MP−139:R13:CHOH;R14:CHOCH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−140:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−141:R13:CHOH;R14:CHO−n−C;R15:CHNHCOCH=CH;R16:CHOCH
MP−142:R13:CHOCH;R14:CHOH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−143:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−144:R13:CHO−n−C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
MP−145:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−146:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−147:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
MP−148:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−149:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−150:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
【0247】
【化37】

【0248】
MP−151:R13、R14、R15、R16:CHOH
MP−152:R13、R14、R15、R16:CHOCH
MP−153:R13、R14、R15、R16:CHO−i−C
MP−154:R13、R14、R15、R16:CHO−n−C
MP−155:R13、R14、R15、R16:CHNHCOCH=CH
MP−156:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
MP−157:R13、R14、R15:CHOH;R16:CHOCH
MP−158:R13、R14、R16:CHOH;R15:CHOCH
MP−159:R13、R14:CHOH;R15、R16:CHOCH
MP−160:R13、R16:CHOH;R14、R15:CHOCH
MP−161:R13:CHOH;R14、R15、R16:CHOCH
MP−162:R13、R14、R16:CHOCH;R15:CHOH
MP−163:R13、R16:CHOCH;R14、R15:CHOH
MP−164:R13、R14、R15:CHOH;R16:CHO−i−C
MP−165:R13、R14、R16:CHOH;R15:CHO−i−C
MP−166:R13、R14:CHOH;R15、R16:CHO−i−C
MP−167:R13、R16:CHOH;R14、R15:CHO−i−C
MP−168:R13:CHOH;R14、R15、R16:CHO−i−C
MP−169:R13、R14、R16:CHO−i−C;R15:CHOH
MP−170:R13、R16:CHO−i−C;R14、R15:CHOH
MP−171:R13、R14、R15:CHOH;R16:CHO−n−C
MP−172:R13、R14、R16:CHOH;R15:CHO−n−C
MP−173:R13、R14:CHOH;R15、R16:CHO−n−C
MP−174:R13、R16:CHOH;R14、R15:CHO−n−C
MP−175:R13:CHOH;R14、R15、R16:CHO−n−C
MP−176:R13、R14、R16:CHO−n−C;R15:CHOH
MP−177:R13、R16:CHO−n−C;R14、R15:CHOH
MP−178:R13、R14:CHOH;R15:CHOCH;R16:CHO−n−C
MP−179:R13、R14:CHOH;R15:CHO−n−C;R16:CHOCH
MP−180:R13、R16:CHOH;R14:CHOCH;R15:CHO−n−C
MP−181:R13:CHOH;R14、R15:CHOCH;R16:CHO−n−C
MP−182:R13:CHOH;R14、R16:CHOCH;R15:CHO−n−C
MP−183:R13:CHOH;R14:CHOCH;R15、R16:CHO−n−C
MP−184:R13:CHOH;R14、R15:CHO−n−C;R16:CHOCH
MP−185:R13、R14:CHOCH;R15:CHOH;R16:CHO−n−C
MP−186:R13、R16:CHOCH;R14:CHOH;R15:CHO−n−C
MP−187:R13:CHOCH;R14、R15:CHOH;R16:CHO−n−C
MP−188:R13、R16:CHO−n−C;R14:CHOCH;R15:CHOH
MP−189:R13:CHOH;R14:CHOCH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−190:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−191:R13:CHOH;R14:CHO−n−C;R15:CHNHCOCH=CH;R16:CHOCH
MP−192:R13:CHOCH;R14:CHOH;R15:CHO−n−C;R16:CHNHCOCH=CH
MP−193:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO−n−C
MP−194:R13:CHO−n−C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
MP−195:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−196:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−197:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
MP−198:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
MP−199:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
MP−200:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマー又はコポリマーを併用してもよい。
【0249】
また、二種類以上の1,3,5−トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。
【0250】
本発明では、安息香酸フェニルエステル化合物の少なくとも一種をリターデーション調整剤として用いることが好ましく、中でも下記一般式(6)で示される安息香酸フェニルエステル化合物をセルロースエステルに添加することが好ましい。
【0251】
【化38】

【0252】
(式中、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子又は置換基を表し、R、R、R、R及びRのうち少なくとも1つは電子供与性基を表す。Rは、水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表す。)
一般式(6)の式中、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子、又は置換基を表し、置換基は後述の置換基Tが適用できる。
【0253】
、R、R、R及びRのうち少なくとも1つは電子供与性基を表す。好ましくはR、R又はRのうちの1つが電子供与性基であり、Rが電子供与性基であることがより好ましい。
【0254】
電子供与性基とは、Hammetのσp値が0以下のものを表し、Chem.Rev.,91,165(1991)記載のHammetのσp値が0以下のものが好ましく適用でき、より好ましくは、−0.85〜0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)などが挙げられる。
【0255】
電子供与性基として好ましくは、アルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4である)である。
【0256】
として、好ましくは、水素原子又は電子供与性基であり、より好ましくはアルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、最も好ましくはメトキシ基である。
【0257】
として、好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
【0258】
として、好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。最も好ましくはn−プロポキシ基、エトキシ基、メトキシ基である。
【0259】
として、好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。
【0260】
として、好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
【0261】
、R、R及びR10として、好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン原子であり、より好ましくは、水素原子、ハロゲン原子であり、更に好ましくは水素原子である。
【0262】
は、水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表し、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が更に置換してもよい。
【0263】
として、好ましくは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数2〜12のアルコキシカルボニル基、シアノ基であり、より好ましくは炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数2〜12のアルコキシカルボニル基、シアノ基であり、更に好ましくは、炭素数1〜6のアルコキシ基、炭素数6〜12のアリール基、炭素数2〜6のアルコキシカルボニル基、シアノ基であり、特に好ましくは、炭素数1〜4のアルコキシ基、フェニル基、p−シアノフェニル基、p−メトキシフェニル基、炭素数2〜4のアルコキシカルボニル基、シアノ基である。
【0264】
一般式(6)で表される化合物のうち、より好ましい化合物は下記一般式(6−A)で表される化合物ある。
【0265】
【化39】

【0266】
一般式(6−A)中、R、R、R、R、R、R、R、R及びR10は、それぞれ一般式(6)におけるそれらと同義であり、また好ましい範囲も同様である。
【0267】
11は、炭素数1〜12のアルキル基を表す。R11で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよいが、好ましくは炭素数1〜12のアルキル基、より好ましくは炭素数1〜8アルキル基、更に好ましくは炭素数1〜6アルキル基、特に好ましくは炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基などが挙げられる)を表す。
【0268】
一般式(6)で表される化合物のうち、更に好ましい化合物は下記一般式(6−B)で表される化合物ある。
【0269】
【化40】

【0270】
一般式(6−B)中、R、R、R、R、R、R、R、R10は一般式(6)におけるそれらと同義であり、また好ましい範囲も同様である。
【0271】
11は、一般式(6−A)におけるそれと同義であり、また好ましい範囲も同様である。
【0272】
Xは、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基又はハロゲン原子を表す。
【0273】
、R、R、Rがすべて水素原子の場合には、Xとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
【0274】
、R、R、Rのうち少なくとも1つが置換基の場合には、Xとして好ましくはアルキニル基、アリール基、アルコキシカルボニル基、シアノ基、であり、より好ましくはアリール基(好ましくは炭素数6〜12)、シアノ基、アルコキシカルボニル基(好ましくは炭素数2〜12)であり、更に好ましくはアリール基(好ましくは炭素数6〜12のアリール基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニルである)、アルコキシカルボニル基(好ましくは炭素2〜12、より好ましくは炭素数2〜6、更に好ましくは炭素数2〜4、特に好ましくはメトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニルである)、シアノ基であり、特に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。
【0275】
一般式(6)で表される化合物のうち、更に好ましい化合物は下記一般式(6−C)で表される化合物ある。
【0276】
【化41】

【0277】
一般式(6−C)中、R、R、R、R、R11及びXは、一般式(6−B)におけるそれらと同義であり、また好ましい範囲も同様である。
【0278】
一般式(6)で表される化合物の中で、特に好ましい化合物は下記一般式(6−D)で表される化合物である。
【0279】
【化42】

【0280】
一般式(6−D)中、R、R及びRは、一般式(6−C)におけるそれらと同義であり、また好ましい範囲も同様である。R21、R22は、それぞれ独立に、炭素数1〜4のアルキル基を表す。X1は、炭素数6〜12のアリール基、炭素数2〜12のアルコキシカルボニル基、又はシアノ基を表す。
【0281】
21は、炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基である。
【0282】
22は、炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
【0283】
は、炭素数6〜12のアリール基、炭素2〜12アルコキシカルボニル基、又はシアノ基であり、好ましくは炭素数6〜10のアリール基、炭素数2〜6アルコキシカルボニル基、シアノ基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニル基、メトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニル、シアノ基であり、更に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。
【0284】
一般式(6)で表される化合物のうち、最も好ましい化合物は下記一般式(6−E)で表される化合物ある。
【0285】
【化43】

【0286】
一般式(6−E)中、R、R及びRは一般式(6−D)におけるそれらと同義であり、また好ましい範囲も同様である。但し、いずれか1つは−OR13で表される基である。ここで、R13は炭素数1〜4のアルキル基である。R21、R22、Xは一般式(6−D)におけるそれらと同義であり、また好ましい範囲も同様である。
【0287】
好ましくは、R及びRの少なくともいずれかが−OR13で表される基であり、より好ましくはRが−OR13で表される基であることである。
【0288】
13は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
【0289】
以下において、前述の置換基Tについて説明する。
【0290】
置換基Tとしては、例えば、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、ビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
【0291】
また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0292】
以下に一般式(6)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
【0293】
【化44】

【0294】
【化45】

【0295】
【化46】

【0296】
【化47】

【0297】
【化48】

【0298】
【化49】

【0299】
本発明に用いられる一般式(6)で表される化合物は、置換安息香酸とフェノール誘導体の一般的なエステル反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法、縮合剤或いは触媒を用いて置換安息香酸とフェノール誘導体を脱水縮合する方法など挙げられる。
【0300】
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
【0301】
反応溶媒としては、炭化水素系溶媒(好ましくはトルエン、キシレンが挙げられる。)、エーテル系溶媒(好ましくはジメチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられる。)、ケトン系溶媒、エステル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができる。これらの溶媒は単独でも数種を混合して用いてもよく、反応溶媒として好ましくはトルエン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドである。
【0302】
反応温度は、好ましくは0〜150℃、より好ましくは0〜100℃、更に好ましくは0〜90℃であり、特に好ましくは20℃〜90℃である。
【0303】
本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
【0304】
更に、本発明の位相差フィルムは、溶液の紫外線吸収スペクトルの最大吸収波長(λmax)が250nmより短波長である棒状化合物をリターデーション調整剤として含有することが好ましい。
【0305】
リターデーション調整剤の機能の観点では、棒状化合物は、少なくとも一つの芳香族環を有することが好ましく、少なくとも二つの芳香族環を有することが更に好ましい。棒状化合物は、直線的な分子構造を有することが好ましい。直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析又は分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト(例、WinMOPAC2000、富士通(株)製)を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造の角度が140度以上であることを意味する。棒状化合物は、液晶性を示すことが好ましい。棒状化合物は、加熱により液晶性を示す(サーモトロピック液晶性を有する)ことが更に好ましい。液晶相は、ネマティック相又はスメクティック相が好ましい。
【0306】
棒状化合物としては、下記一般式(7)で表されるトランス−1,4−シクロヘキサンジカルボン酸エステル化合物が好ましい。
【0307】
一般式(7):Ar−L−Ar
一般式(7)において、Ar及びArは、それぞれ独立に、芳香族基である。本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基を含む。アリール基及び置換アリール基の方が、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基よりも好ましい。芳香族性ヘテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましい。芳香族性ヘテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子又は硫黄原子が更に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、及び1,3,5−トリアジン環が含まれる。芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環及びピラジン環が好ましく、ベンゼン環が特に好ましい。
【0308】
置換アリール基及び置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシ、カルボキシ、シアノ、アミノ、アルキルアミノ基(例、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基(例、N−メチルカルバモイル、N−エチルカルバモイル、N,N−ジメチルカルバモイル)、スルファモイル、アルキルスルファモイル基(例、N−メチルスルファモイル、N−エチルスルファモイル、N,N−ジメチルスルファモイル)、ウレイド、アルキルウレイド基(例、N−メチルウレイド、N,N−ジメチルウレイド、N,N,N′−トリメチルウレイド)、アルキル基(例、メチル、エチル、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、s−ブチル、t−アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例、ビニル、アリル、ヘキセニル)、アルキニル基(例、エチニル、ブチニル)、アシル基(例、ホルミル、アセチル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例、アセトキシ、ブチリルオキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリールオキシ基(例、フェノキシ)、アルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例、フェノキシカルボニル)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ、ヘキシルオキシカルボニルアミノ)、アルキルチオ基(例、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例、フェニルチオ)、アルキルスルホニル基(例、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オクチルスルホニル)、アミド基(例、アセトアミド、ブチルアミド基、ヘキシルアミド、ラウリルアミド)及び非芳香族性複素環基(例、モルホリル、ピラジニル)が含まれる。
【0309】
置換アリール基及び置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ、カルボキシ、ヒドロキシ、アミノ、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基及びアルキル基が好ましい。アルキルアミノ基、アルコキシカルボニル基、アルコキシ基及びアルキルチオ基のアルキル部分とアルキル基とは、更に置換基を有していてもよい。アルキル部分及びアルキル基の置換基の例には、ハロゲン原子、ヒドロキシ、カルボキシ、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基及び非芳香族性複素環基が含まれる。アルキル部分及びアルキル基の置換基としては、ハロゲン原子、ヒドロキシ、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基及びアルコキシ基が好ましい。
【0310】
一般式(7)において、Lは、アルキレン基、アルケニレン基、アルキニレン基、二価の飽和ヘテロ環基、−O−、−CO−及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロヘキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。アルキレン基の炭素原子数は、1〜20であることが好ましく、1〜15であることがより好ましく、1〜10であることが更に好ましく、1〜8であることが更にまた好ましく、1〜6であることが最も好ましい。
【0311】
アルケニレン基及びアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することが更に好ましい。アルケニレン基及びアルキニレン基の炭素原子数は、2〜10であることが好ましく、2〜8であることがより好ましく、2〜6であることが更に好ましく、2〜4であることが更にまた好ましく、2(ビニレン又はエチニレン)であることが最も好ましい。二価の飽和ヘテロ環基は、3員〜9員のヘテロ環を有することが好ましい。ヘテロ環のヘテロ原子は、酸素原子、窒素原子、ホウ素原子、硫黄原子、ケイ素原子、リン原子又はゲルマニウム原子が好ましい。飽和ヘテロ環の例には、ピペリジン環、ピペラジン環、モルホリン環、ピロリジン環、イミダゾリジン環、テトラヒドロフラン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、テトラヒドロチオフェン環、1,3−チアゾリジン環、1,3−オキサゾリジン環、1,3−ジオキソラン環、1,3−ジチオラン環及び1,3,2−ジオキサボロランが含まれる。特に好ましい二価の飽和ヘテロ環基は、ピペラジン−1,4−ジイレン、1,3−ジオキサン−2,5−ジイレン及び1,3,2−ジオキサボロラン−2,5−ジイレンである。
【0312】
組み合わせからなる二価の連結基の例を示す。
【0313】
L−1:−O−CO−アルキレン基−CO−O−
L−2:−CO−O−アルキレン基−O−CO−
L−3:−O−CO−アルケニレン基−CO−O−
L−4:−CO−O−アルケニレン基−O−CO−
L−5:−O−CO−アルキニレン基−CO−O−
L−6:−CO−O−アルキニレン基−O−CO−
L−7:−O−CO−二価の飽和ヘテロ環基−CO−O−
L−8:−CO−O−二価の飽和ヘテロ環基−O−CO−
一般式(7)の分子構造において、Lを挟んで、ArとArとが形成する角度は、140度以上であることが好ましい。棒状化合物としては、下記一般式(8)で表される化合物が更に好ましい。
【0314】
一般式(8):Ar−L−X−L−Ar
一般式(8)において、Ar及びArは、それぞれ独立に、芳香族基である。芳香族基の定義及び例は、一般式(7)のAr及びArと同様である。
【0315】
一般式(8)において、L及びLは、それぞれ独立に、アルキレン基、−O−、−CO−及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することが更に好ましい。アルキレン基の炭素原子数は、1〜10であることが好ましく、1〜8であることがより好ましく、1〜6であることが更に好ましく、1〜4であることが更にまた好ましく、1又は2(メチレン又はエチレン)であることが最も好ましい。L及びLは、−O−CO−又は−CO−O−であることが特に好ましい。
【0316】
一般式(8)において、Xは、1,4−シクロヘキシレン、ビニレン又はエチニレンである。以下に、一般式(7)で表される化合物の具体例を示す。
【0317】
【化50】

【0318】
【化51】

【0319】
【化52】

【0320】
【化53】

【0321】
【化54】

【0322】
具体例(1)〜(34)、(41)、(42)、(46)、(47)、(52)、(53)は、シクロヘキサン環の1位と4位とに二つの不斉炭素原子を有する。但し、具体例(1)、(4)〜(34)、(41)、(42)、(46)、(47)、(52)、(53)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1−trans)とシス型(1−cis)とを、以下に示す。
【0323】
【化55】

【0324】
前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、トランス型の方がシス型よりも好ましい。具体例(2)及び(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、L或いはラセミ体のいずれでもよい。具体例(43)〜(45)では、中心のビニレン結合にトランス型とシス型とがある。上記と同様の理由で、トランス型の方がシス型よりも好ましい。
【0325】
溶液の紫外線吸収スペクトルにおいて最大吸収波長(λmax)が250nmより短波長である棒状化合物を、二種類以上併用してもよい。棒状化合物は、文献記載の方法を参照して合成できる。文献としては、Mol.Cryst.Liq.Cryst.,53巻、229頁(1979年)、同89巻、93頁(1982年)、同145巻、111頁(1987年)、同170巻、43頁(1989年)、J.Am.Chem.Soc.,113巻、1349頁(1991年)、同118巻、5346頁(1996年)、同92巻、1582頁(1970年)、J.Org.Chem.,40巻、420頁(1975年)、Tetrahedron、48巻16号、3437頁(1992年)を挙げることができる。
【0326】
<ポリマー又はオリゴマー>
本発明の位相差フィルムは、セルロースエステルと、カルボキシ基、ヒドロキシ基、アミノ基、アミド基、及びスルホン酸基から選ばれる置換基を有しかつ重量平均分子量が500〜200,000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5〜50:50の範囲内であることが好ましい。
【0327】
以下において、本発明に用いられるポリマー又はオリゴマーについて説明する。
【0328】
前記カルボキシ基は−COO−の構造を有する基である。アミノ基は−NR、R、Rの構造を有する基であり、R、R、Rは各々水素原子、アルキル基、フェニル基等の置換基を表す。アミド基は−NHCO−の構造を有する基であり、アルキル基、フェニル基等の置換基が連結していても良い。
【0329】
本発明に用いられる前記ポリマー及びオリゴマーとしては、例えば下記のアクリル系ポリマー及びオリゴマー等が挙げられる。
【0330】
これらの化合物は、セルロースエステルに対し5〜50質量%の範囲内で使用し、また相溶性に優れるものが好ましく、フィルムにしたときの全可視域(400nm〜800nm)に渡り透過率が80%以上、好ましくは90%以上、さらに好ましくは92%以上が得られるようにする。
【0331】
<アクリル系ポリマー及びオリゴマー>
本発明に用いられるアクリル系ポリマー及びオリゴマーとしては、特に構造が限定されるものではないが、エチレン性不飽和モノマーを重合して得られた重量平均分子量が500以上200,000以下である重合体であることが好ましい。
【0332】
本発明に用いられるアクリル系ポリマー及びオリゴマーは、単一のモノマーから構成されていても複数種のモノマーから構成されていてもかまわない。モノマーはアクリル酸エステルもしくはメタクリル酸エステルから選択されることが好ましいが、作製するフィルムのリターデーション特性、波長分散特性、耐熱性に応じて適宜他のモノマー、例えば無水マレイン酸、スチレン等を含んでいてもかまわない。
【0333】
以下、本発明に用いられるアクリル系ポリマー及びオリゴマーをポリマーXとして説明する。
【0334】
<ポリマーX>
本発明に用いられるポリマーXは、分子内に芳香環と極性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、極性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量500以上200,000以下の下記一般式(1)で表されるポリマーであることが好ましい。更に30℃下にて固体であるか、もしくはガラス転移温度が35℃以上であることが好ましい。
【0335】
重量平均分子量は、500以上、200,000以下であるとセルロースエステルとの相溶性と透明性に優れる。
【0336】
一般式(1): −[Xa]−[Xb]
(m及びnは、モル組成比を表し、m+n=100である。)
本発明に用いられるポリマーXを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
【0337】
分子内に芳香環と極性基を有しないエチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−エトキシエチル)等、又は上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i−、n−)であることが好ましい。
【0338】
分子内に芳香環を有せず、極性基を有するエチレン性不飽和モノマーXbは、ヒドロキシ基(水酸基)を有するモノマー単位として、アクリル酸又はメタクリル酸エステルが好ましく、例えば、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリルや(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレートなどのヒドロキシ基含有モノマー;(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシ基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物基含有モノマー;アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。
【0339】
また、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミドやN−メチロール(メタ)アクリルアミド、N−メチロールプロパン(メタ)アクリルアミドなどの(N−置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸t−ブチルアミノエチルなどの(メタ)アクリル酸アルキルアミノアルキル系モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N−(メタ)アクリロイルオキシメチレンスクシンイミドやN−(メタ)アクリロイル−6−オキシヘキサメチレンスクシンイミド、N−(メタ)アクリロイル−8−オキシオクタメチレンスクシンイミド、N−アクリロイルモルホリンなどのスクシンイミド系モノマーなども改質目的のモノマー例としてあげられる。
【0340】
さらに、酢酸ビニル、プロピオン酸ビニル、N−ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N−ビニルカルボン酸アミド類、スチレン、α−メチルスチレン、N−ビニルカプロラクタムなどのビニル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや2−メトキシエチルアクリレートなどのアクリル酸エステル系モノマーなども使用することができる。
【0341】
本発明では、上記疎水性モノマーXaと極性モノマーXbを用いて共重合によりポリマーXを合成する。また上記に記載した疎水性モノマー、又は極性モノマーをモノマーXcとして三元共重合体とすることもできる。
【0342】
疎水性モノマーXaと極性モノマーXbの合成時の使用比率は99:1〜50:50の範囲が好ましく、更に好ましくは95:5〜60:40の範囲である。疎水性モノマーXaの使用比率が多いとセルロースエステルとの相溶性が低下するが、位相差値の環境湿度に対する変動を低減させる効果が高い。極性モノマーXbの使用比率が多いとセルロースエステルとの相溶性が良化するが位相差値の環境湿度に対する変動が大きくなる。また、極性モノマーXbの使用比率が上記範囲を超えると製膜時にヘイズが出る為好ましくない。
【0343】
このようなポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量をあまり大きくしない方法で、できるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、更に特開2000−128911号又は同2000−344823号公報にあるような一つのチオール基と2級のヒドロキシ基(水酸基)とを有する化合物、或いは、当該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも本発明において好ましく用いられる。
【0344】
本発明に用いられるポリマーXの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。また、重合温度は通常室温から130℃、好ましくは50℃から100℃で行われるが、この温度又は重合反応時間を調整することで可能である。
【0345】
重量平均分子量の測定方法は前記分子量測定方法によることができる。
【0346】
ポリマーXの添加量は、フィルムに所望の性能を持たせるために適宜調製される。光弾性係数、位相差値の環境湿度に対する変動を低減させるためには添加し、位相差性能を大きくするためには少量添加すればよいが、少な過ぎると位相差フィルムとして液晶テレビに用いた場合、画面のコーナー部の色が変わるコーナームラや、さらには位相差値が製造当初設定した値から変化してしまうことによる視野角の変動、色味の変化が生じてしまい、多過ぎると必要な位相差性能が得られないため、5質量%以上50質量%以下が好ましい。
【0347】
<ラクトン環構造を有するアクリル系重合体>
アクリル系重合体は、(メタ)アクリル酸エステルを主成分として含有する単量体組成物を重合した樹脂であれば特には限定されない。また、二種類以上のアクリル系重合体を主成分とするものでもよい。
【0348】
上記(メタ)アクリル酸エステルとしては、例えば、下記一般式(I)
【0349】
【化56】

【0350】
(式中、R及びRは、それぞれ独立に、水素原子又は炭素数1〜20の有機残基を示す。)
で表される構造を有する化合物(単量体)、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などが挙げられ、これらは一種のみ用いてもよいし、二種以上を併用してもよい。これらの中でも特に、耐熱性、透明性が優れる点から、上記一般式(I)で表される構造を有する化合物、メタクリル酸メチルがより好ましい。また、正の複屈折性(正の位相差)を大きくする点で、(メタ)アクリル酸ベンジルが好ましい。
【0351】
なお、(メタ)アクリル酸ベンジル単量体構造単位を導入する場合には、アクリル系重合体における(メタ)アクリル酸ベンジル単量体構造単位の好ましい含有量は、5〜50質量%であり、より好ましくは10〜40質量%であり、更に好ましくは15〜30質量%である。
【0352】
一般式(I)で表される構造を有する化合物としては、例えば、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸ターシャリーブチルなどが挙げられる。これらの中でも、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルが好ましく、耐熱性向上効果が高い点で、2−(ヒドロキシメチル)アクリル酸メチルが特に好ましい。一般式(I)で表される化合物は、一種のみ用いてもよいし、二種以上を併用してもよい。
【0353】
上記アクリル系重合体は、上述した(メタ)アクリル酸エステルを重合した構造以外の構造を有していてもよい。(メタ)アクリル酸エステルを重合した構造以外の構造としては、特には限定されないが、ヒドロキシ基(水酸基)含有単量体、不飽和カルボン酸、下記一般式(II)
【0354】
【化57】

【0355】
(式中、Rは水素原子又はメチル基を表し、Xは水素原子、炭素数1〜20のアルキル基、アリール基、−OAc基、−CN基、−CO−R基、又は−C−O−R基を表し、Ac基はアセチル基を表し、R及びRは水素原子又は炭素数1〜20の有機残基を表す。)
で表される単量体から選ばれる少なくとも一種を重合して構築される重合体構造単位(繰り返し構造単位)が好ましい。
【0356】
ヒドロキシ基(水酸基)含有単量体としては、一般式(I)で表される単量体以外のヒドロキシ基(水酸基)含有単量体であれば特に限定されないが、例えば、メタリルアルコール、アリルアルコール、2−ヒドロキシメチル−1−ブテンなどのアリルアルコール、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、2−(ヒドロキシエチル)アクリル酸メチルなどの2−(ヒドロキシアルキル)アクリル酸エステル;2−(ヒドロキシエチル)アクリル酸などの2−(ヒドロキシアルキル)アクリル酸;などが挙げられ、これらは一種のみ用いても良いし、二種以上を併用してもよい。
【0357】
不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、α−置換アクリル酸、α−置換メタクリル酸などが挙げられ、これらは一種のみ用いてもよいし、二種以上を併用してもよい。これらの中でも特に、本発明の効果を十分に発揮させる点で、アクリル酸、メタクリル酸が好ましい。
【0358】
一般式(II)で表される化合物としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどが挙げられ、これらは一種のみ用いてもよいし、二種以上を併用してもよい。これらの中でも特に、本発明の効果を十分に発揮させる点で、スチレン、α−メチルスチレンが好ましい。
【0359】
重合方法は特に限定されず、公知の重合方法を用いることができる。使用する単量体(単量体組成物)の種類、使用比率等に応じて、適宜適した方法を採用すればよい。
【0360】
本発明に用いられるアクリル系重合体は、ガラス転移温度(Tg)が、好ましくは110℃〜200℃、より好ましくは115℃〜200℃、さらに好ましくは120℃〜200℃、特に好ましくは125℃〜190℃、最も好ましくは130℃〜180℃である。
【0361】
耐熱性を挙げる点で、フェニルマレイミド、シクロヘキシルマレイミド、メチルマレイミドなどのN−置換マレイミドを共重合してもよいし、分子鎖中(重合体の主骨格中、又は主鎖中ともいう。)にラクトン環構造、グルタル酸無水物構造、グルタルイミド構造などを導入してもよい。中でも、フィルムの着色(黄変)し難さの点で、窒素原子を含まない単量体が好ましく、また、正の複屈折性(正の位相差)を発現させやすい点で、主鎖にラクトン環構造を持つものが好ましい。主鎖中のラクトン環構造に関しては、4〜8員環でもよいが、構造の安定性から5〜6員環の方がより好ましく、6員環が更に好ましい。また、主鎖中のラクトン環構造が6員環である場合、一般式(III)や特開2004−168882号公報で表される構造などが挙げられるが、主鎖にラクトン環構造を導入する前の重合体を合成する上において重合収率が高い点や、ラクトン環構造の含有割合の高い重合体を高い重合収率で得易い点や、メタクリル酸メチルなどの(メタ)アクリル酸エステルとの共重合性が良い点で、一般式(III)で表される構造であることが好ましい。
【0362】
上記アクリル系重合体が、上記一般式(I)で表される構造を有する化合物を含有する単量体を重合した樹脂である場合、上記アクリル系重合体はラクトン環構造を有していることがより好ましい(以下、ラクトン環構造を有するアクリル系重合体を「ラクトン環含有重合体」と記す)。以下、ラクトン環含有重合体について説明する。
【0363】
本発明の位相差フィルムは、ラクトン環構造を有する化合物を用いることも好ましい。
【0364】
ラクトン環構造としては、例えば、下記一般式(III)
【0365】
【化58】

【0366】
(式中、R、R、Rは、それぞれ独立に、水素原子又は炭素数1〜20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。)
で表される構造が挙げられる。
【0367】
なお、上記一般式(III)における有機残基は、炭素数が1〜20の範囲内であれば、特には限定されないが、例えば、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、−OAc基、−CN基などが挙げられる。
【0368】
上記アクリル系重合体中の上記ラクトン環構造の含有割合は、好ましくは5〜90質量%の範囲内、より好ましくは20〜90質量%の範囲内、さらに好ましくは30〜90質量%の範囲内、さらに好ましくは35〜90質量%の範囲内、特に好ましくは40〜80質量%の範囲内、最も好ましくは45〜75質量%の範囲内である。上記ラクトン環構造の含有割合が90質量%よりも多いと、成形加工性に乏しくなる。また、得られたフィルムの可撓性が低下する傾向があり、好ましくない。上記ラクトン環構造の含有割合が5質量%よりも少ないと、フィルムに成形したときに必要な位相差を得ることが難しく、また耐熱性、耐溶剤性、表面硬度が不十分になることがあり、好ましくない。
【0369】
ラクトン環含有重合体において、一般式(III)で表されるラクトン環構造以外の構造の含有割合は、(メタ)アクリル酸エステルを重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは10〜95質量%の範囲内、より好ましくは10〜80質量%の範囲内、さらに好ましくは10〜65質量%の範囲内、特に好ましくは20〜60質量%の範囲内、最も好ましくは25〜55質量%の範囲内である。ヒドロキシ基(水酸基)含有単量体を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30質量%の範囲内、より好ましくは0〜20質量%の範囲内、さらに好ましくは0〜15質量%の範囲内、特に好ましくは0〜10質量%の範囲内である。不飽和カルボン酸を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30質量%の範囲内、より好ましくは0〜20質量%の範囲内、さらに好ましくは0〜15質量%の範囲内、特に好ましくは0〜10質量%の範囲内である。
【0370】
一般式(III)で表される単量体を重合して構築される重合体構造単位(繰り返し構造単位)の場合、好ましくは0〜30質量%の範囲内、より好ましくは0〜20質量%の範囲内、さらに好ましくは0〜15質量%の範囲内、特に好ましくは0〜10質量%の範囲内である。
【0371】
ラクトン環含有重合体の製造方法については、特に限定はされないが、好ましくは、重合工程によって分子鎖中にヒドロキシ基(水酸基)とエステル基とを有する重合体を得た後に、得られた重合体を加熱処理することによりラクトン環構造を重合体に導入するラクトン環化縮合工程を行うことによってラクトン環含有重合体を得ることができる。
【0372】
(マット剤)
本発明では、マット剤として微粒子を位相差フィルム中に含有させることができ、これによって、位相差フィルムが長尺状フィルムの場合、搬送や巻き取りをしやすくすることができる。
【0373】
マット剤の粒径は、10nm〜0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
【0374】
微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本発明に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。
【0375】
二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5〜16nmがより好ましく、5〜12nmが更に好ましい。1次粒子の平均径が小さい方が、ヘイズが低く好ましい。見かけ比重は90〜200g/L以上が好ましく、100〜200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
【0376】
本発明におけるマット剤の添加量は、位相差フィルム1m当たり0.01〜1.0gが好ましく、0.03〜0.3gがより好ましく、0.08〜0.16gが更に好ましい。
【0377】
(その他の添加剤)
この他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
【0378】
<原反フィルムの製造>
本願においては、斜め延伸前のフィルムを「原反フィルム」と呼称する。また、長尺状フィルムの搬送方向に対して斜め方向に面内遅相軸を有するように斜め方向に延伸した長尺状フィルムを「位相差フィルム」と呼称する。
【0379】
本発明に係る原反フィルムは、溶液流延法、溶融流延法のいずれの方法で製造されてもよい。以下溶液流延法について説明する。フィルム原料としては、前述の熱可塑性樹脂を用いることができるが、以下では、代表的例として、セルロースエステルを主成分とする位相差フィルムの製造方法について説明をする。
【0380】
本発明に係る原反フィルムの製造は、セルロースエステル及び前記可塑剤などの添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸する工程、更に乾燥する工程、必要であれば得られたフィルムを更に熱処理する工程、冷却後巻き取る工程により行われる。本発明に係る原反フィルムは固形分中に好ましくはセルロースエステルを60〜95質量%含有するものであることが好ましい。
【0381】
ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。
【0382】
セルロースエステルを溶解しセルロースエステル溶液又はドープ形成に有用な有機溶媒としては、塩素系有機溶媒と非塩素系有機溶媒がある。塩素系の有機溶媒としてメチレンクロライド(塩化メチレン)を挙げることができ、セルロースエステル、特にセルローストリアセテートの溶解に適している。昨今の環境問題から非塩素系有機溶媒の使用が検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−ヘキサフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン等を挙げることができる。これらの有機溶媒をセルローストリアセテートに対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、冷却溶解方法、高圧溶解方法等の溶解方法を用いることにより不溶解物を少なくすることができるので好ましい。セルローストリアセテート以外のセルロースエステルに対しては、メチレンクロライドを用いることはできるが、酢酸メチル、酢酸エチル、アセトンが好ましく使用される。特に酢酸メチルが好ましい。本発明において、上記セルロースエステルに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶媒を主(有機)溶媒又は主たる(有機)溶媒という。
【0383】
本発明に用いられるドープには、上記有機溶媒の他に、1〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。これらはドープを金属支持体に流延後溶媒が蒸発をし始めアルコールの比率が多くなるとドープ膜(ウェブ)がゲル化し、ウェブを丈夫にし金属支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノールを挙げることができる。これらのうちドープの安定性に優れ、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。これらの有機溶媒は単独ではセルロースエステルに対して溶解性を有していないので貧溶媒という。
【0384】
ドープ中のセルロースエステルの濃度は15〜30質量%、ドープ粘度は100〜500Pa・sの範囲に調製されることが良好なフィルム面品質を得る上で好ましい。
【0385】
上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
【0386】
加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
【0387】
溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70℃〜105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
【0388】
若しくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。
【0389】
次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材が更に好ましい。
【0390】
濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
【0391】
輝点異物とは、二枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0〜10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
【0392】
ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることが更に好ましい。
【0393】
濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
【0394】
ここで、ドープの流延について説明する。
【0395】
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
【0396】
セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%又は60〜130質量%であり、特に好ましくは、20〜30質量%又は70〜120質量%である。また、当該金属支持体上の剥離位置における温度を−50〜40℃とするのが好ましく、10〜40℃がより好ましく、15〜30℃とするのが最も好ましい。
【0397】
本発明においては、残留溶媒量は下記式で定義される。
【0398】
残留溶媒量(質量%)={(M−N)/N}×100
なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
【0399】
また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量が0.5質量%以下となるまで乾燥される。
【0400】
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
【0401】
前記金属支持体から剥離する際に、剥離張力及びその後の搬送張力によってウェブは縦方向に延伸する為、本発明においては流延支持体からウェブを剥離する際は剥離及び搬送張力をできるだけ下げた状態で行うことが好ましい。具体的には、例えば50〜170N/m以下にすることが効果的である。その際、20℃以下の冷風を当て、ウェブを急速に固定化することが好ましい。
【0402】
次いで、上記乾燥したフィルムを本発明に係る原反フィルム(原反フィルム)として、前述の本発明に係る斜め延伸テンターにより所望の角度に延伸を行い位相差フィルムとすることができる。
【0403】
(表面加工層)
本発明の位相差フィルムは、その表面にハードコート層が設けられていることを特徴とする。
【0404】
また、本発明においては、表面加工層として、帯電防止層、バックコート層、反射防止層、易滑性層、接着層、防眩層、バリアー層等の機能性層を設けることができる。
【0405】
<ハードコート層>
本発明の位相差フィルムは、その表面にハードコート層が設けられていることを特徴とする。当該ハードコート層は、クリアハードコート層又は防眩性ハードコート層のいずれかであることが好ましい。
【0406】
本発明の実施態様としては、本発明の効果発現の観点から、当該ハードコート層が、活性エネルギー線硬化性樹脂を含有する樹脂を用いて形成された態様のハードコート層であることが好ましい。さらに、当該ハードコート層が、三個又は四個のアクリロイル(acryloyl)基を有するアクリル酸エステル(acrylate)を含有する塗布液を用いて形成されたものであることが好ましい。
【0407】
当該ハードコート層が塗布液を用いて形成されたものである場合、当該塗布液が含有する溶媒量が、10質量%未満であることが好ましい。また、当該塗布液が含有する溶媒が、エタノール又はメタノールであることが好ましい。一方、前記塗布液が、水及び有機溶媒を含有していないことも好ましい。
【0408】
本発明に用いられるハードコート層は、少なくとも位相差フィルムの一方の面に設けられる。本発明においては、当該ハードコート層上に、少なくとも低屈折率層を含む反射防止層が設けられることも好ましい。特に、車載カーナビゲーション用の場合では、より視認性を向上させる為に、防眩性ハードコート層の上に反射防止層が設けられることが好ましい。
【0409】
本発明に用いられるハードコート層が防眩性である場合は、表面に微細な凹凸形状を有するが、当該微細凹凸形状は、ハードコート層に微粒子を含有させることで形成し、下記のような平均粒径0.01〜4μmの微粒子をハードコート層中に含有させることで形成できる。また、後述するように、当該防眩性ハードコート層上に設けられた反射防止層の最表面の表面粗さとして、JIS B 0601で規定される中心線平均粗さ(Ra)が0.08〜0.5μmの範囲に調整されることが好ましい。
【0410】
クリアハードコート層の場合は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層であり、Raが0.002〜0.05μmであることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えば、WYKO社製非接触表面微細形状計測装置WYKO NT−2000を用いて測定することができる。
【0411】
本発明に用いられる防眩性ハードコート層中に含有される粒子としては、例えば、無機又は有機の微粒子が用いられる。
【0412】
無機微粒子としては酸化ケイ素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができる。
【0413】
また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂微粒子、アクリルスチレン系樹脂微粒子、ポリメチルメタクリレート樹脂微粒子、シリコーン系樹脂微粒子、ポリスチレン系樹脂微粒子、ポリカーボネート樹脂微粒子、ベンゾグアナミン系樹脂微粒子、メラミン系樹脂微粒子、ポリオレフィン系樹脂微粒子、ポリエステル系樹脂微粒子、ポリアミド系樹脂微粒子、ポリイミド系樹脂微粒子、又はポリ弗化エチレン系樹脂微粒子等を挙げることができる。
【0414】
本発明では特に、酸化ケイ素微粒子又はポリスチレン系樹脂微粒子であることが好ましい。
【0415】
上記記載の無機又は有機の微粒子は、防眩性ハードコート層の作製に用いられる樹脂等を含む塗布組成物に加えて用いることが好ましい。
【0416】
本発明に用いられる防眩性ハードコート層に防眩性を付与するためには、無機又は有機微粒子の含有量は、防眩性ハードコート層作製用の樹脂100質量部に対して、0.1質量部〜30質量部が好ましく、更に好ましくは、0.1質量部〜20質量部となるように配合することである。より好ましい防眩効果を付与するには、平均粒径0.1μm〜1μmの微粒子を防眩性ハードコート層作製用の樹脂100質量部に対して1質量部〜15質量部を用いるのが好ましい。又、異なる平均粒径の微粒子を二種以上用いることも好ましい。
【0417】
また、本発明に用いられる防眩性ハードコート層には、帯電防止剤を含有させることも好ましく、帯電防止剤としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が10Ω・cm以下であるような導電性材料が好ましい。
【0418】
前記帯電防止剤としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。
【0419】
金属酸化物の例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等、或いはこれらの複合酸化物が好ましく、特にZnO、In、TiO及びSnOが好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiOに対してはNb、Ta等の添加、またSnOに対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。
【0420】
また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は10Ω・cm以下、特に10Ω・cm以下である。
【0421】
十分な耐久性、耐衝撃性を付与する観点から、クリアハードコート層又は防眩性ハードコート層の膜厚は0.5〜15μmの範囲が好ましく、更に好ましくは、1.0〜7μmである。
【0422】
(活性エネルギー線硬化樹脂)
本発明に用いられるハードコート層は、紫外線等活性エネルギー線照射により硬化する活性エネルギー線硬化樹脂を含有することが好ましい。
【0423】
活性エネルギー線硬化樹脂とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂である。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性エネルギー線照射によって硬化する樹脂でもよい。
【0424】
紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等を挙げることができる。
【0425】
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下、アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する。)、2−ヒドロキシプロピルアクリレート等のヒドロキシ基(水酸基)を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号公報に記載の、ユニディック17−806(DIC(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
【0426】
紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端のヒドロキシ基(水酸基)やカルボキシ基に2−ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59−151112号)。
【0427】
紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端のヒドロキシ基(水酸基)にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。
【0428】
紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
【0429】
紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型エポキシ樹脂の例として、有用に用いられるエポキシ系活性エネルギー線反応性化合物を示す。
【0430】
(a)ビスフェノールAのグリシジルエーテル(この化合物はエピクロルヒドリンとビスフェノールAとの反応により、重合度の異なる混合物として得られる)
(b)ビスフェノールA等のフェノール性OHを二個有する化合物に、エピクロルヒドリン、エチレンオキサイド及び/又はプロピレンオキサイドを反応させ末端にグリシジルエーテル基を有する化合物
(c)4,4′−メチレンビスフェノールのグリシジルエーテル
(d)ノボラック樹脂又はレゾール樹脂のフェノールフォルムアルデヒド樹脂のエポキシ化合物
(e)脂環式エポキシドを有する化合物、例えば、ビス(3,4−エポキシシクロヘキシルメチル)オキザレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(3,4−エポキシ−6−シクロヘキシルメチル)アジペート、ビス(3,4−エポキシシクロヘキシルメチルピメレート)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチルシクロヘキシルメチル−3′,4′−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチル−シクロヘキシルメチル−3′,4′−エポキシ−1′−メチルシクロヘキサンカルボキシレート、3,4−エポキシ−6−メチル−シクロヘキシルメチル−3′,4′−エポキシ−6′−メチル−1′−シクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5′,5′−スピロ−3″,4″−エポキシ)シクロヘキサン−メタ−ジオキサン
(f)2塩基酸のジグリシジルエーテル、例えば、ジグリシジルオキザレート、ジグリシジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルフタレート
(g)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、コポリ(エチレングリコール−プロピレングリコール)ジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル
(h)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステル、ポリエステルジグリシジルエステル
(i)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グルコーストリグリシジルエーテル
(j)2−フルオロアルキル−1,2−ジオールのジグリシジルエーテルとしては、前記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物に挙げた化合物例と同様のもの
(k)含フッ素アルカン末端ジオールグリシジルエーテルとしては、上記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物等を挙げることができる。
【0431】
上記エポキシ化合物の分子量は、平均分子量として2000以下で、好ましくは1000以下である。
【0432】
上記のエポキシ化合物を活性エネルギー線により硬化する場合、より硬度を上げるためには、(h)又は(i)の多官能のエポキシ基を有する化合物を混合して用いると効果的である。
【0433】
エポキシ系活性エネルギー線反応性化合物をカチオン重合させる光重合開始剤又は光増感剤は、活性エネルギー線照射によりカチオン重合開始物質を放出することが可能な化合物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイス酸を放出するオニウム塩の一群の複塩である。
【0434】
活性エネルギー線反応性化合物エポキシ樹脂は、ラジカル重合によるのではなく、カチオン重合により重合、架橋構造又は網目構造を形成する。ラジカル重合と異なり反応系中の酸素に影響を受けないため好ましい活性エネルギー線反応性樹脂である。
【0435】
本発明に有用な活性エネルギー線反応性エポキシ樹脂は、活性エネルギー線照射によりカチオン重合を開始させる物質を放出する光重合開始剤又は光増感剤により重合する。光重合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するオニウム塩の複塩の一群が特に好ましい。
【0436】
かかる代表的なものは下記一般式(a)で表される化合物である。
【0437】
一般式(a):〔(R(R(R(RZ〕w+〔MeXw−
式中、カチオンはオニウムであり、ZはS、Se、Te、P、As、Sb、Bi、O、ハロゲン(例えばI、Br、Cl)、又はN=N(ジアゾ)であり、R、R、R、Rは同一であっても異なっていてもよい有機の基である。a、b、c、dはそれぞれ0〜3の整数であって、a+b+c+dはZの価数に等しい。Meはハロゲン化物錯体の中心原子である金属又は半金属(metalloid)であり、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xはハロゲンであり、wはハロゲン化錯体イオンの正味の電荷であり、vはハロゲン化錯体イオン中のハロゲン原子の数である。
【0438】
上記一般式(a)の陰イオン〔MeXw−の具体例としては、テトラフルオロボレート(BF)、テトラフルオロホスフェート(PF)、テトラフルオロアンチモネート(SbF)、テトラフルオロアルセネート(AsF)、テトラクロロアンチモネート(SbCl)等を挙げることができる。
【0439】
また、その他の陰イオンとしては過塩素酸イオン(ClO)、トリフルオロメチル亜硫酸イオン(CFSO)、フルオロスルホン酸イオン(FSO)、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることができる。
【0440】
このようなオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが有効であり、中でも特開昭50−151996号、同50−158680号等に記載の芳香族ハロニウム塩、特開昭50−151997号、同52−30899号、同59−55420号、同55−125105号等に記載のVIA族芳香族オニウム塩、特開昭56−8428号、同56−149402号、同57−192429号等に記載のオキソスルホキソニウム塩、特公昭49−17040号等に記載の芳香族ジアゾニウム塩、米国特許第4,139,655号等に記載のチオピリリューム塩等が好ましい。また、アルミニウム錯体や光分解性けい素化合物系重合開始剤等を挙げることができる。上記カチオン重合開始剤と、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等の光増感剤を併用することができる。
【0441】
また、エポキシアクリレート基を有する活性エネルギー線反応性化合物の場合は、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の光増感剤を用いることができる。この活性エネルギー線反応性化合物に用いられる光増感剤や光開始剤は、紫外線反応性化合物100質量部に対して0.1〜15質量部で光反応を開始するには十分であり、好ましくは1〜10質量部である。この増感剤は近紫外線領域から可視光線領域に吸収極大のあるものが好ましい。
【0442】
本発明に有用な活性エネルギー線硬化樹脂組成物において、重合開始剤は、一般的には、活性エネルギー線硬化性エポキシ樹脂(プレポリマー)100質量部に対して0.1〜15質量部の使用が好ましく、更に好ましくは、1〜10質量部の範囲の添加が好ましい。
【0443】
また、エポキシ樹脂を上記ウレタンアクリレート型樹脂、ポリエーテルアクリレート型樹脂等と併用することもでき、この場合、活性エネルギー線ラジカル重合開始剤と活性エネルギー線カチオン重合開始剤を併用することが好ましい。
【0444】
また、本発明に用いられるハードコート層には、オキセタン化合物を用いることもできる。用いられるオキセタン化合物は、酸素又は硫黄を含む3員環のオキセタン環を有する化合物である。中でも酸素を含むオキセタン環を有する化合物が好ましい。オキセタン環は、ハロゲン原子、ハロアルキル基、アリールアルキル基、アルコキシル基、アリルオキシ基、アセトキシ基で置換されていてもよい。具体的には、3,3−ビス(クロルメチル)オキセタン、3,3−ビス(ヨードメチル)オキセタン、3,3−ビス(メトキシメチル)オキセタン、3,3−ビス(フェノキシメチル)オキセタン、3−メチル−3クロルメチルオキセタン、3,3−ビス(アセトキシメチル)オキセタン、3,3−ビス(フルオロメチル)オキセタン、3,3−ビス(ブロモメチル)オキセタン、3,3−ジメチルオキセタン等が挙げられる。なお、本発明では、モノマー、オリゴマー、ポリマーのいずれであってもよい。
【0445】
本発明の実施態様としては、本発明の効果発現の観点から、ハードコート層が、活性エネルギー線硬化性樹脂を含有する樹脂を用いて形成された態様のハードコート層であることが好ましい。さらに、当該ハードコート層が、三個又は四個のアクリロイル(acryloyl)基を有するアクリル酸エステル(acrylate)を含有する塗布液を用いて形成されたものであることが好ましい。
【0446】
本発明に用いられるハードコート層が活性エネルギー線硬化型樹脂を含む場合、活性エネルギー線の照射方法としては、支持体上に、防眩性ハードコート層、反射防止層(中〜高屈折率層及び低屈折率層)等の塗設後に活性エネルギー線を照射してもよいが、ハードコート層塗設時に活性エネルギー線を照射することが好ましい。
【0447】
本発明に使用する活性エネルギー線は、紫外線、電子線、γ線等で、化合物を活性化させるエネルギー源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20mJ/cm以上が好ましく、更に好ましくは、50〜10000mJ/cmであり、特に好ましくは、50〜2000mJ/cmである。
【0448】
紫外線照射は、ハードコート層と後述する反射防止層を構成する複数の層(中屈折率層、高屈折率層、低屈折率層)それぞれに対して1層設ける毎に照射してもよいし、積層後照射してもよい。或いはこれらを組み合わせて照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。
【0449】
また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線を挙げることができる。
【0450】
本発明に使用する上記活性エネルギー線反応性化合物を光重合又は光架橋反応を開始させるには、上記活性エネルギー線反応性化合物のみでも開始するが、重合の誘導期が長かったり、重合開始が遅かったりするため、光増感剤や光開始剤を用いることが好ましく、それにより重合を早めることができる。
【0451】
本発明に用いられるハードコート層が活性エネルギー線硬化樹脂を含有する場合、活性エネルギー線の照射時においては、光反応開始剤、光増感剤を用いることができる。
【0452】
具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系樹脂の合成に光反応剤を使用する際に、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤及び/又は光増感剤の使用量は、組成物の1〜10質量%が好ましく、特に好ましくは2.5〜6質量%である。
【0453】
また、活性エネルギー線硬化樹脂として、紫外線硬化性樹脂を用いる場合、前記紫外線硬化性樹脂の光硬化を妨げない程度に、後述する紫外線吸収剤を紫外線硬化性樹脂組成物に含ませてもよい。
【0454】
ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−tert−3−メチルフェノール)、4,4′−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−tert−ブチルベンジルホスフェート等を挙げることができる。
【0455】
紫外線硬化性樹脂としては、例えば、アデカオプトマーKR、BYシリーズのKR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、(株)ADEKA製)、コーエイハードのA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、DIC(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H−601(三洋化成工業(株)製)、SP−1509、SP−1507(以上、昭和高分子(株)製)、RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成(株)製)、又はその他の市販のものから適宜選択して利用することができる。
【0456】
活性エネルギー線硬化樹脂を含む塗布組成物は、固形分濃度は10〜95質量%であることが好ましく、塗布方法により適当な濃度が選ばれる。
【0457】
本発明に用いられるハードコート層、及び反射防止層は界面活性剤を含有することも好ましく、界面活性剤としては、シリコーン系又はフッ素系界面活性剤が好ましい。
【0458】
シリコーン系界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。
【0459】
非イオン面活性剤は、水溶液中でイオンに解離する基を有しない系面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類のヒドロキシ基(水酸基)、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性ヒドロキシ基(水酸基)の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。本発明に係わる非イオン界面活性剤は疎水基としてジメチルポリシロキサンを有することに特徴がある。
【0460】
疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、防眩性ハードコート層や低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。他の界面活性剤を用いることでは得られない効果である。
【0461】
これらの非イオン活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L−77、L−720、L−7001、L−7002、L−7604、Y−7006、FZ−2101、FZ−2104、FZ−2105、FZ−2110、FZ−2118、FZ−2120、FZ−2122、FZ−2123、FZ−2130、FZ−2154、FZ−2161、FZ−2162、FZ−2163、FZ−2164、FZ−2166、FZ−2191等が挙げられる。
【0462】
また、SUPERSILWET SS−2801、SS−2802、SS−2803、SS−2804、SS−2805等が挙げられる。
【0463】
また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン系の界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を一つの活性剤分子が、複数の箇所で、これを覆うように吸着することができるためと考えられる。
【0464】
これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ−2203、FZ−2207、FZ−2208等が挙げられる。
【0465】
フッ素系界面活性剤としては、疎水基がパーフルオロカーボンチェインをもつ界面活性剤を用いることができる。種類としては、フルオロアルキルカルボン酸、N−パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−(フルオロアルキルオキシ)−1−アルキルスルホン酸ナトリウム、3−(ω−フルオロアルカノイル−N−エチルアミノ)−1−プロパンスルホン酸ナトリウム、N−(3−パーフルオロオクタンスルホンアミド)プロピル−N,N−ジメチル−N−カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルカルボン酸、パーフルオロオクタンスルホン酸ジエタノールアミド、パーフルオロアルキルスルホン酸塩、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル−N−エチルスルホニルグリシン塩、リン酸ビス(N−パーフルオロオクチルスルホニル−N−エチルアミノエチル)等が挙げられる。本発明では非イオン界面活性剤が好ましい。
【0466】
これらのフッ素系界面活性剤はメガファック、エフトップ、サーフロン、フタージェント、ユニダイン、フローラード、ゾニール等の商品名で市販されている。
【0467】
好ましい添加量はハードコート層、及び反射防止層の塗布液に含まれる固形分当たり0.01〜3.0%であり、より好ましくは0.02〜1.0%である。
【0468】
他の界面活性剤を併用して用いることもでき、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等を併用してもよい。
【0469】
本発明に係るハードコート層を塗設する際の溶媒としては、ハードコート層塗設のために従来使用されている種々の溶媒を用いることができる。本発明において、特に好ましい溶媒は、エタノール又はメタノールである。
【0470】
溶媒量は10質量%未満であることが好ましい。更に好ましくは、5〜8質量%の範囲であるが、あるいは上記溶媒を全く使用しない、無溶媒であることも好ましい。
【0471】
アクリル基が5個以上のモノマーをハードコート層として用いると、斜め延伸した位相差フィルムの面上のスジをさらに強調させてしまう。また、アセトンやPGME(プロピレングリコールモノメチルエーテル)、酢酸エチルなどの非極性溶媒を用いると、斜め延伸した位相差フィルムに残る、斜め方向の残留応力を強めて、フィルム面上にスジを誘発させる。又はドコート層を設けたフィルムに湿熱耐久試験を行ったときに、アクリル基5個以上のモノマー、あるいは上記の様な非極性溶媒を用いると、面内位相差Roの変動値(最大値−最小値)の値が幅手で10nmよりも大きい値になる。このことは、作製したフィルムを表示装置に具備したときに、表示品質を著しく劣化させることになる。
【0472】
ハードコート層組成物塗布液の塗布方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押出コーター、エアードクターコーター、スプレーコート、インクジェット法等公知の方法を用いることができる。塗布量はウエット膜厚で5〜30μmが適当で、好ましくは10〜20μmである。塗布速度は10〜200m/分が好ましい。
【0473】
ハードコート層組成物は塗布乾燥された後、紫外線や電子線等の活性エネルギー線を照射され硬化処理されることが好ましいが、前記活性エネルギー線の照射時間は0.5秒〜5分が好ましく、紫外線硬化性樹脂の硬化効率、作業効率等から更に好ましくは、3秒〜2分である。
【0474】
<反射防止層>
本発明に用いられる反射防止層は、低屈折率層のみの単層構成でもよいが、多層の屈折率層を設けることも好ましい。位相差フィルム上にハードコート層を有し、その表面上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層できる。反射防止層は、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成したり、特に好ましくは、三層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる三層を、中屈折率層(支持体又は防眩性ハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましい。
【0475】
又は、二層以上の高屈折率層と二層以上の低屈折率層とを交互に積層した四層以上の層構成の反射防止層も好ましく用いられる。
【0476】
本発明に用いられる反射防止層の好ましい層構成の例を下記に示す。ここで/は積層配置されていることを示している。
【0477】
位相差フィルム/クリアハードコート層/低屈折率層
位相差フィルム/クリアハードコート層/高屈折率層/低屈折率層
位相差フィルム/クリアハードコート層/中屈折率層/高屈折率層/低屈折率層
位相差フィルム/防眩性ハードコート層/低屈折率層
位相差フィルム/防眩性ハードコート層/高屈折率層/低屈折率層
位相差フィルム/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層
汚れや指紋のふき取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることもできる。防汚層としては、含フッ素有機化合物が好ましく用いられる。
【0478】
光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。また、上記層構成では、適宜中間層を設けてもよく、例えば導電性ポリマー微粒子(例えば架橋カチオン微粒子)又は金属酸化物微粒子(例えば、SnO、ITO等)を含む帯電防止層等は好ましい。
【0479】
〈低屈折率層〉
本発明に用いられる低屈折率層では以下の中空球状シリカ系微粒子が好適に用いられる。
【0480】
(中空球状シリカ系微粒子)
中空球状微粒子は、(I)多孔質粒子と当該多孔質粒子表面に設けられた被覆層とからなる複合粒子、又は(II)内部に空洞を有し、かつ内容物が溶媒、気体又は多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子又は(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
【0481】
なお、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体又は多孔質物質等の内容物で充填されている。このような中空球状微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空球状微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの中空球状微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
【0482】
複合粒子の被覆層の厚さ又は空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
【0483】
複合粒子の被覆層又は空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との一種又は二種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MO)で表したときのモル比MO/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MO/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MO/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。
【0484】
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
【0485】
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
【0486】
このような中空球状微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空球状微粒子は製造される。
【0487】
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、又は、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
【0488】
シリカ原料としては、アルカリ金属、アンモニウム又は有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩又は有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
【0489】
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、当該オキソ酸のアルカリ金属塩又はアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
【0490】
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiO又はZrO等の無機酸化物又はこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、当該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
【0491】
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、又は、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
【0492】
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MO)に換算し、MO/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MO/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。
【0493】
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、又は、陽イオン交換樹脂と接触させてイオン交換除去する。
【0494】
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
【0495】
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液又は加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
【0496】
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
【0497】
また、空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、当該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、当該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
【0498】
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0499】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0500】
多孔質粒子前駆体の分散媒が、水単独、又は有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
【0501】
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物又はケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物又はケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
【0502】
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0503】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0504】
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、又は有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
【0505】
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物又はケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物又はケイ酸液は添加される。
【0506】
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体又は多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
【0507】
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
【0508】
このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。本発明に用いられる低屈折率層の屈折率は、1.30〜1.50であることが好ましく、1.35〜1.44であることが更に好ましい。
【0509】
本発明では市販の上記SiO微粒子を用いることができる。市販の粒子の具体例としては、触媒化成工業社製P−4等が挙げられる。
【0510】
外殻層を有し、内部が多孔質又は空洞である中空球状シリカ系微粒子Aの低屈折率層塗布液中の含量(質量)は、10〜80質量%が好ましく、更に好ましくは20〜60質量%である。
【0511】
(テトラアルコキシシラン化合物又はその加水分解物)
本発明に用いられる低屈折率層には、ゾルゲル素材としてテトラアルコキシシラン化合物又はその加水分解物が含有されることが好ましい。
【0512】
本発明に用いられる低屈折率層用の素材として、前記無機珪素酸化物以外に有機基を有する珪素酸化物を用いることも好ましい。これらは一般にゾルゲル素材と呼ばれるが、金属アルコレート、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。特にテトラアルコキシシラン及びその加水分解物が好ましい。
【0513】
また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
【0514】
上記テトラアルコキシシランを加水分解する際には、前記無機微粒子を混合することが膜強度を高める上で好ましい。
【0515】
本発明に用いられる低屈折率層は前記珪素酸化物と下記シランカップリング剤を含むことが好ましい。
【0516】
具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
【0517】
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
【0518】
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
【0519】
シランカップリング剤の具体例としては、信越化学工業株式会社製KBM−303、KBM−403、KBM−402、KBM−403、KBM−1403、KBM−502、KBM−503、KBE−502、KBE−503、KBM−603、KBE−603、KBM−903、KBE−903、KBE−9103、KBM−802、KBM−803等が挙げられる。
【0520】
二種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
【0521】
カップリング剤による表面処理の具体的方法は、下記に示す。
【0522】
これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の珪素酸化物粒子及び有機基を有する珪素酸化物の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えてもよい。
【0523】
また、低屈折率層は、5〜50質量%の量のポリマーを含むこともできる。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマー又は(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つ又は全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、又は(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
【0524】
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、又は物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiOからなる場合は、前述のシランカップリング剤による表面処理が特に有効に実施できる。
【0525】
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、又はこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
【0526】
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖又は側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステル又はポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸又はポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸又はメタクリル酸とのエステルが挙げられる。
【0527】
シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
【0528】
後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
【0529】
(3)バインダー
バインダーポリマーは、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。二以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。二以上のエチレン性不飽和基を有するモノマーの代わり又はそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシ基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
【0530】
バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
【0531】
また、本発明に用いられる低屈折率層が、熱又は電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう。)の架橋からなる低屈折率層であってもよい。
【0532】
架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシ基やヒドロキシ基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう一つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが、特開平10−25388号公報及び同10−147739号公報に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシ、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
【0533】
また、上記モノマーに加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば、末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
【0534】
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合については、含フッ素ビニルモノマーは、好ましくは20〜70モル%、より好ましくは40〜70モル%の割合である。架橋性基付与のためのモノマーが好ましくは、1〜20モル%、より好ましくは5〜20モル%の割合である。さらに、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
【0535】
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。
【0536】
架橋前の含フッ素樹脂は、市販されており使用することができる。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
【0537】
架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
【0538】
本発明に用いられる低屈折率層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することができる。また、二以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
【0539】
本発明に用いられる低屈折率層の膜厚は50〜200nmであることが好ましく、60〜150nmであることがより好ましい。
【0540】
〈高屈折率層及び中屈折率層〉
本発明においては、反射率の低減のために、ハードコート層と低屈折率層との間に、高屈折率層を設けることが好ましい。又はドコート層と高屈折率層との間に中屈折率層を設けることは、更に好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜100nmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。
【0541】
本発明に用いられる中、高屈折率層は下記一般式(9)で表される有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55〜2.5の層であることが好ましい。
【0542】
一般式(9):Ti(OR
式中、Rとしては炭素数1〜8の脂肪族炭化水素基がよいが、好ましくは炭素数1〜4の脂肪族炭化水素基である。また、有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物は、アルコキシド基が加水分解を受けて−Ti−O−Ti−のように反応して架橋構造を作り、硬化した層を形成する。
【0543】
本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH、Ti(OC、Ti(O−n−C、Ti(O−i−C、Ti(O−n−C、Ti(O−n−Cの2〜10量体、Ti(O−i−Cの2〜10量体、Ti(O−n−Cの2〜10量体等が好ましい例として挙げられる。これらは単独で、又は二種以上組み合わせて用いることができる。中でもTi(O−n−C、Ti(O−i−C、Ti(O−n−C、Ti(O−n−Cの2〜10量体、Ti(O−n−Cの2〜10量体が特に好ましい。
【0544】
本発明に用いられる中、高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記有機チタン化合物を添加することが好ましい。水を後から添加した場合は、加水分解/重合が均一に進行せず、白濁が発生したり、膜強度が低下する。水と有機溶媒は添加された後、良く混合させるために攪拌し混合溶解されていることが好ましい。
【0545】
また、別法として有機チタン化合物と有機溶媒を混合させておき、この混合溶液を、上記水と有機溶媒の混合攪拌された溶液中に添加することも好ましい態様である。
【0546】
また、水の量は、加水分解、重合の進行等の観点から、有機チタン化合物1モルに対して、0.25〜3モルの範囲であることが好ましい。従って、水の量は上記範囲で調整する必要がある。
【0547】
また、水の含有率は、塗布液の経時安定性の観点から、塗布液総量に対して10質量%未満であることが好ましい。
【0548】
本発明に用いられる有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。これらの有機溶媒の使用量は、前述したように、水の含有率が塗布液総量に対して10質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。
【0549】
本発明に用いられる有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物は、塗布液に含まれる固形分中の50〜98質量%を占めていることが望ましい。固形分比率は50〜90質量%がより好ましく、55〜90質量%が更に好ましい。この他、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。
【0550】
本発明に用いられる高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含み、更にバインダーポリマーを含むことが好ましい。
【0551】
上記塗布液調製法で加水分解/重合した有機チタン化合物と金属酸化物粒子を組み合わせると、金属酸化物粒子と加水分解/重合した有機チタン化合物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得ることができる。
【0552】
高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。金属酸化物粒子の1次粒子の重量平均径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の重量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m/gであることが好ましく、20〜200m/gであることが更に好ましく、30〜150m/gであることが最も好ましい。
【0553】
金属酸化物粒子の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物であり、具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。
【0554】
金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物又は有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、前記シランカップリング剤が最も好ましい。
【0555】
二種類以上のカップリング剤を併用してもよく、前記シランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
【0556】
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、又はこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
【0557】
これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることができる。
【0558】
本発明では二種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。二種類以上の金属酸化物粒子を高屈折率層及び中屈折率層に併用してもよい。
【0559】
高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜65体積%であることが好ましく、より好ましくは10〜60体積%であり、更に好ましくは20〜55体積%である。
【0560】
上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
【0561】
また金属酸化物粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
【0562】
本発明に用いられる高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、「ポリオレフィン」と総称する。)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
【0563】
アニオン性基の例としては、カルボン酸基(カルボキシ)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。
【0564】
アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基又は4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基又は4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。なお、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
【0565】
上記アミノ基又は4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基又は4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基又は4級アンモニウム基は、2級アミノ基、3級アミノ基又は4級アンモニウム基であることが好ましく、3級アミノ基又は4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基又は4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基又は4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基又は4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。
【0566】
架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時又は塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基又は4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基又は4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時又は塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。
【0567】
本発明に用いられるモノマーとしては、二個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基又は4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基又は4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。
【0568】
ポリマーの重合反応は、光重合反応又は熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、防眩性ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。
【0569】
重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(又はオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
【0570】
中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式又は芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。
【0571】
反射防止層の各層又はその塗布液には、前述した成分(金属酸化物粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。
【0572】
本発明に用いられる中〜高屈折率層及び低屈折率層の塗設後、金属アルコキシドを含む組成物の加水分解又は硬化を促進するため、活性エネルギー線を照射することが好ましい。より好ましくは、各層を塗設するごとに活性エネルギー線を照射することである。
【0573】
本発明に使用する活性エネルギー線は、紫外線、電子線、γ線等で、化合物を活性させるエネルギー源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10,000mJ/cmが好ましく、更に好ましくは、100〜2,000mJ/cmであり、特に好ましくは、400〜2,000mJ/cmである。
【0574】
紫外線を用いる場合、多層の反射防止層を1層ずつ照射してもよいし、積層後照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。
【0575】
また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線を挙げることができる。
【0576】
(反射防止層の膜厚)
反射防止層を構成する各屈折率層の膜厚としては、各々1〜200nmの範囲が好ましく、更に好ましくは、5〜150nmであるが、各層の屈折率に応じて、各々適切な膜厚を選択することが好ましい。
【0577】
(反射防止層の反射率)
本発明に用いられる反射防止層は、450〜650nmにおける平均反射率が1%以下であることが好ましく、特に好ましくは0.5%以下である。また、この範囲における最低反射率は0.0〜0.3%にあることが特に好ましい。
【0578】
反射防止層の屈折率と膜厚は、分光反射率の測定より計算して算出することができる。また、作製した低反射フィルムの反射光学特性は、分光光度計を用い、5度正反射の条件にて反射率を測定することができる。この測定法において、反射防止層が塗布されていない側の基板面を粗面化した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏面での光の反射を防止して、反射率が測定される。
【0579】
測定に際しては、透過率550nmにおける透過率を分光光度計を用いて空気を参照として測定を行う。
【0580】
<偏光板>
本発明においては、長尺状位相差フィルム(延伸フィルム)を、長尺状の偏光子の少なくとも一方の面に積層して形成される長尺状偏光板とすることが好ましい。
【0581】
また、本発明の位相差フィルム(延伸フィルム)は、下記特徴と有するλ/4板であることが好ましい。
【0582】
(λ/4板)
λ/4板とは、ある特定の波長の直線偏光を円偏光に(又は、円偏光を直線偏光に)変換する機能を有するものをいう。λ/4板は、所定の光の波長(通常、可視光領域)に対して、層の面内の位相差値Roが約1/4となるように設計されている。波長550nmで測定したリターデーション値Ro(550)が100〜160nmの範囲であることが好ましく、120〜150nmであることがより好ましい。
【0583】
また、λ/4板は、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4のリターデーションを有する位相差板であることが好ましい。
【0584】
「可視光の波長の範囲において概ね1/4のリターデーション」とは、波長400から700nmにおいて長波長ほどリターデーションが大きく、波長450nmで測定した下記式(i)で表されるリターデーション値であるRo(450)と波長590nmで測定したリターデーション値であるRo(590)が、1<Ro(590)/Ro(450)≦1.6を満たすことが好ましい。さらにλ/4板として有効に機能するためには、Ro(450)が100〜125nmの範囲内であり、波長550nmで測定したリターデーション値Ro(550)が125〜142nmの範囲内であり、Ro(590)が130〜152nmの範囲内の位相差フィルムであることがより好ましい。
【0585】
式(i):Ro=(n−n)×d
式(ii):Rt={(n+n)/2−n}×d
式中、n、nは、23℃・55%RH、450nm、550nm、590nmの各々における屈折率n(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、n(フィルム面内で遅相軸に直交する方向の屈折率)であり、dはフィルムの厚さ(nm)である。
【0586】
Ro、Rtは自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA−21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、各波長での複屈折率測定によりRoを算出する。
【0587】
λ/4板の遅相軸と後述する偏光子の透過軸との角度が実質的に45°になるように積層すると円偏光板が得られる。「実質的に45°」とは、40〜50°であることを意味する。λ/4板の面内の遅相軸と偏光子の透過軸との角度は、41〜49°であることが好ましく、42〜48°であることがより好ましく、43〜47°であることが更に好ましく、44〜46°であることが最も好ましい。
【0588】
本発明の偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、本発明の位相差フィルム(延伸フィルム)であるλ/4板/偏光子/位相差フィルムの構成で貼合して製造することができる。
【0589】
なお、立体映像表示装置である液晶表示装置に本発明の偏光板を使用する場合、上記λ/4板は視認側に貼合する。
【0590】
前記位相差フィルムは、ポリマーフィルムであることが好ましく、製造が容易であること、光学的に均一性であること、光学的に透明性であることが好ましい。これらの性質を有していれば何れでもよく、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリビニルアセタール系樹脂フィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を挙げることができるが、これらに限定されるわけではない。
【0591】
セルロースエステル系フィルムの場合は、前述の位相差フィルム(延伸フィルム)で用いられるセルロースアセテート、可塑剤、紫外線吸収剤、酸化防止剤、リターデーション調整剤、マット剤、劣化防止剤、剥離助剤、界面活性剤等を好ましく用いることができる。
【0592】
偏光子に対して前記λ/4板を貼合した面と反対側の面に貼合される位相差フィルムは、上記式で定義されるリターデーション値Ro、Rtが各々20〜150nm、70〜400nmである位相差フィルム、又は0nm≦Ro≦2nm、かつ−15nm≦Rt≦15nmであることが好ましい。
【0593】
上記位相差フィルムとして、例えば、負の一軸性を有する化合物であるディスコティック液晶性化合物を支持体上に担持させる方法(例えば、特開平7−325221号公報参照。)、正の光学異方性を有するネマティック型高分子液晶性化合物を深さ方向に液晶分子のプレチルト角が変化するハイブリッド配向をさせたものを支持体上に担持させる方法(例えば、特開平10−186356号公報参照。)、正の光学異方性を有するネマティック型液晶性化合物を支持体上に二層構成にして各々の層の配向方向を略90°とすることにより擬似的に負の一軸性類似の光学特性を付与させる方法(例えば、特開平8−15681号公報参照。)等による光学異方性層を支持体上に設けた位相差フィルム、又は、従来のTACフィルムの代わりにセルロース誘導体フィルムを延伸により位相差を発現させ、これをケン化処理してPVA偏光子をラミネートすることにより位相差フィルムの機能を併せ持つ位相差フィルム(例えば、特開2003−270442号公報参照。)、セルロースエステルフィルムにリターデーション調整剤を添加し、位相差フィルムを得る方法(例えば、特開2000−275434号公報及び特開2003−344655号公報参照。)等による光学補償フィルムが挙げられるが、これらに限定されるものではない。
【0594】
例えば、市販のセルロースエステルフィルムとして、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC16UR、KC4UE、KC8UE、KC4FR−1、KC4FR−2(以上コニカミノルタオプト(株)製)なども好ましく用いられる。
【0595】
偏光子の膜厚は、5〜40μm、好ましくは5〜30μmであり、特に好ましくは5〜20μmである。
【0596】
偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理した本発明に係る延伸フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には、前記位相差フィルムを貼合することが好ましい。
【0597】
偏光板は、更に当該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
【0598】
<液晶表示装置>
本発明においては、長尺状位相差フィルム(延伸フィルム)を断栽して形成された枚葉状フィルム、前記長尺状偏光板を断栽して形成された枚葉状偏光板が具備されている態様の液晶表示装置とすることができる。例えば、本発明に係る偏光板を液晶セルの視認側の面に貼合した液晶表示装置とすることによって、本発明の液晶表示装置を作製することができる。
【0599】
本発明に係る偏光板は反射型、透過型、半透過型LCD或いは、スーパーツイステッドネマティック(STN)モード、ツイステッドネマティック(TN)モード、インプレーンスイッチング(IPS)モード、垂直配向(VA)モード、ベンドネマチック(OCB:Optically Aligned Birefringence)モード及びハイブリッド配向(HAN:Hybrid Aligned Nematic)モードの液晶表示装置に好ましく用いられる。
【0600】
本発明においては、特に、当該液晶表示装置は、立体画像表示装置であることが好ましい。すなわち、本発明の位相差フィルム(延伸フィルム)であるλ/4板は、立体画像表示装置において、種々の態様において用いることができる。例えば、液晶表示装置と液晶シャッタメガネとからなる立体画像表示装置であって、当該液晶シャッタメガネが、(1)λ/4板、液晶セル、及び偏光子がこの順に設けられている(図6)、又は(2)λ/4板、偏光子、液晶セル、及び偏光子がこの順に設けられている(図7)液晶シャッタメガネであることを特徴とする態様の立体画像表示装置において用いることができる。
【0601】
なお、いずれの態様の場合も、液晶表示装置の前側偏光板は、λ/4板、偏光子、及び位相差フィルム、セル、及び偏光子がこの順に設けられている構成になっている。
【0602】
本発明においては、上記の態様・構成により、立体(3D)画像観賞時に首を傾けた際のクロストーク若しくは輝度低下及び色味変化を低減でき、使用環境に対して優れた視認性を保つことが可能で、使用環境に対してより耐久性が高い立体画像表示装置とすることができる。
【実施例】
【0603】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0604】
(アクリル系ポリマーの合成)
攪拌機、二個の滴下ロート、ガス導入管及び温度計の付いたガラスフラスコに、メチルメタクリレート28g、N−ビニルピロリドン12g、連鎖移動剤のメルカプトプロピオン酸2g及びトルエン30gを仕込み、90℃に昇温した。その後、一方の滴下ロートから、メチルメタクリレート42gとN−ビニルピロリドン18gの混合液60gを3時間かけて滴下すると共に、同時にもう一方のロートからトルエン14gに溶解したアゾビスイソブチロニトリル0.4gを3時間かけて滴下した。その後さらに、トルエン56gに溶解したアゾビスイソブチロニトリル0.6gを2時間かけて滴下した後、さらに2時間反応を継続させ、ポリマーを得た。得られたポリマーは常温で固体であった。次いで連鎖移動剤のメルカプトプロピオン酸の添加量、アゾビスイソブチロニトリルの添加速度を変更して分子量の異なるポリマーを作製した。当該ポリマーの重量平均分子量は下記測定法により10000であった。
【0605】
(重量平均分子量)
重合体の重量平均分子量は、前記説明したGPCのポリスチレン換算により求めた。
【0606】
<製造例1>
<ロール状の長尺状フィルムAの作製>
下記のように、セルロースエステルと各種添加剤を用いて溶融流延によりロール状の長尺状フィルムAを作製した。
【0607】
セルロースエステル(CAP:アセチル基置換度1.5、プロピオニル基0.9、総置換度2.4;数平均分子量Mn=57,500、重量平均分子量Mw=190,000、Mw/Mn=3.30)
70質量部
上記で作製したアクリル系ポリマー 27.5質量部
IRGANOX−1010(BASFジャパン社製) 0.5質量部
GSY−P101(堺化学工業社製) 0.25質量部
SumilizerGS(住友化学社製) 0.25質量部
TINUVIN928(BASFジャパン社製) 1.5質量部
セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、添加剤を混合した。以上の混合物を、二軸式押出し機を用いて230℃で溶融混合しペレット化した。なお、このペレットのガラス転移温度Tgは135℃であった。
【0608】
このペレットを用いて窒素雰囲気下、250℃にて溶融して溶融フィルム製造装置における流延ダイから第1冷却ロール上に押し出し、第1冷却ロールとタッチロールとの間にフィルムを挟圧して成形した。また押出し機中間部のホッパー開口部から、滑り剤としてシリカ粒子アエロジル200V(日本アエロジル社製)を、0.5質量部となるよう添加した。
【0609】
流延ダイのギャップの幅が、フィルムの幅方向端部から30mm以内では、0.5mm、その他の場所では1mmとなるようにヒートボルトを調整した。タッチロールの内部に冷却水として80℃の水を流した。
【0610】
流延ダイから押し出された樹脂が、第1冷却ロールに接触する位置から第1冷却ロールとタッチロールとのニップの第1冷却ロール回転方向上流端の位置までの、第1冷却ローラの周面に沿った長さを20mmに設定した。その後、タッチロールを第1冷却ロールから離間させ、第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度を測定した。
【0611】
本実施例において、第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度は、ニップ上流端よりも更に1mm上流側の位置で、温度計(安立計器株式会社製HA−200E)により測定した。
【0612】
本実施例では測定の結果、温度Tは141℃であった。タッチロールの第1冷却ロールに対する線圧は14.7N/cmとした。更に、テンターに導入し、巾方向に160℃で1.05倍延伸した後、巾方向に3%緩和しながら30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落とし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、巻き取り張力220N/m、テーパー40%で巻芯に巻き取った。
【0613】
なお、フィルムは、厚さが50μmとなるように、押し出し量及び引き取り速度を調整し、仕上がりのフィルム幅は、2000mm幅になるようにスリットしロール状の長尺状フィルムAを作製した。
【0614】
得られた長尺状フィルムAの長手方向の厚さムラは0.15μm、幅手方向の厚さムラは0.15μmであった。Roは5nm、Roバラツキは1nm、厚さ方向リターデーションRtは3nmであった。
【0615】
<実施例1>
ロール状の長尺状フィルムAを、図5の装置のスライド可能な繰出装置にセットし、予熱ゾーンに搬送する。
【0616】
予熱、延伸、冷却ゾーンにおけるフィルム移動速度は、20m/分とした。また、予熱ゾーンの温度を145℃、冷却ゾーンの温度を130℃とした。
【0617】
また、フィルムの幅方向に渡って温度制御をするための加熱装置を使用して延伸を行った。
【0618】
予熱ゾーンと第1延伸ゾーンの区間において二対のニップロールで長尺原反フィルムに張力を掛けながら、第1延伸ゾーンにおいて搬送方向に1.7倍の延伸をした。なお、前記二対のニップロール間のフィルムの長さを前記長尺原反フィルムの幅手方向の長さで除して得られる値(ニップロール間フィルム長さ/幅手方向フィルム長さ)は、6であった。
【0619】
また、第2延伸ゾーンにおいて、幅手方向に保持した(延伸倍率1.0倍)。
【0620】
得られた長尺状の位相差フィルム1は、フィルム長手方向に対しスジ故障も面故障もないものであった。得られた位相差フィルム(延伸フィルム)1の光学特性(面内リターデーションRo、厚さ方向リターデーションRt等)を表1及び表2に示す。
【0621】
<実施例2〜11>
表1及び表2のように第1、第2延伸ゾーンの延伸倍率及び延伸温度、フィルム延伸寸法比を変えた以外は実施例1と同様に位相差フィルム2〜11を作製した。
【0622】
<実施例12>
<製造例2>
製造例1において、セルロースエステルをセルロースアセテートプロピオネート:(DAC:アセチル基置換度2.4、総置換度2.4;数平均分子量Mn=59,500、重量平均分子量Mw=190,000、Mw/Mn=3.19)のセルロースアセテートに変更した以外は製造例1と同様にロール状の長尺状フィルムBを得た。
【0623】
実施例1において、ロール状の長尺状フィルムを長尺状フィルムBに変えた以外は同様に長尺状フィルムB及び位相差フィルム12を作製した。得られた実施例12の位相差フィルム12は、表1及び表2に示すとおり、フィルム長手方向に対しスジ故障も面故障もないものであった。
【0624】
<比較例1>
第2延伸ゾーンの延伸倍率を1.3に変更すること以外は実施例1と同様にして、位相差フィルム13を作製した。得られた位相差フィルム13はスジ故障や面故障はないが、λ/4位相差フィルムとして使えない位相差値であった。
【0625】
<比較例2>
第2延伸ゾーンを無くして、延伸ゾーンは第1延伸ゾーンのみに変更すること以外は、実施例1と同様にして位相差フィルム14を作製した。得られた位相差フィルム14は、スジ故障が見られ、またλ/4位相差フィルムとして使えない位相差値であった。
【0626】
<比較例3>
フィルム延伸寸法比を0.25に変更すること以外は、実施例1と同様にして位相差フィルム15を作製した。得られた位相差フィルム15はRoの幅手均一性が悪かった。
【0627】
<比較例4>
フィルム延伸寸法比を23に変更すること以外は、実施例1と同様にして位相差フィルム16を作製した。得られた位相差フィルム16はニップロールによる面故障や搬送方向に沿ったスジが見られた。
【0628】
<評価条件>
フィルムの面内方向リターデーションRo、及び厚さ方向リターデーションRtの測定/評価は、位相差測定装置(王子計測社製、KOBRA−WXK)を用いて、フィルム流れ方向5m毎に幅方向にフィルムの50mmの間隔でRoの測定を行い、全データの平均値を面内方向リターデーションRoとした。
【0629】
また、フィルム厚さ方向リターデーションRtは下記式を用いて算出した。
【0630】
式(i):Ro=(n−n)×d
式(ii):Rt={(n+n)/2−n}×d
式中、nとnは、それぞれ、23℃・55%RH、590nmにおける屈折率n(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、n(フィルム面内で遅相軸に直交する方向の屈折率)であり、dはフィルムの厚さ(nm)である。
【0631】
<スジの評価方法>
作製した試料の5000mの内、巻き取り終了から5mの部分を取り出し、スジの有無を目視で以下の測定条件で測定した。
スジの評価ランク
◎:スジの発生が全くない
○:スジがわずかにある
△:スジがある
×:スジが非常に多数ある
<Ro幅手均一性の評価方法>
Ro幅手均一性とは、フィルムの面内リターデーションRoを位相差測定装置(王子計測社製、KOBRA−WXK)を用いて、フィルムの幅手方向に10mmの間隔でRoを測定したときの、フィルムの幅手の中心のRoに対する全幅データのバラつきを評価するものである。具体的に記述すると、以下のような評価を行う。
○:幅手中心のRoに対して±5nm未満の領域が全幅の90%以上
×:幅手中心のRoに対して±5nm未満の領域が全幅の90%未満
以上の評価結果をまとめて表1及び表2に示す。
【0632】
【表1】

【0633】
【表2】

【0634】
表1及び表2に示す結果から明らかなように、本発明の位相差フィルムは、スジ故障の発生がなく、かつ幅手中心のRoに対して幅手方向のRoのバラつきが抑制されていることが分かる。
【0635】
(立体画像表示装置への適応性の検討)
後述する立体画像表示装置への適応性の評価実験に資するため、上記で作製した実施例1のフィルムと比較例3のフィルムのそれぞれにハードコート層を設け、そのハードコート層の上に更に下記反射防止層を設け、位相差フィルムAarと位相差フィルムBarを得た。
【0636】
〈ハードコート層の塗布〉
下記ハードコート層塗布液1をダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して硬化後の膜厚が6μmになるようにクリアハードコート層を設けた。
【0637】
(ハードコート層用塗布液1)
エタノール 100質量部
ペンタエリスリトールトリアクリレート 100質量部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、BASFジャパン社製) 5質量部
2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノ−1−オン
(イルガキュア907、BASFジャパン社製) 3質量部
BYK−331(シリコーン界面活性剤、ビックケミー・ジャパン(株)製)
5質量部
<反射防止層の塗布>
(中屈折率層の塗布)
ハードコート層表面上に、下記中屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して、硬化後の膜厚が110nmとなるように中屈折率層を設けた。屈折率は1.60であった。
【0638】
〈中屈折率層塗布液〉
〈粒子分散液Aの作製〉
メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業(株)製アンチモン酸亜鉛ゾル、商品名:セルナックスCX−Z610M−F2)6.0kgにイソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、粒子分散液Aを調整した。
【0639】
PGME(プロピレングリコールモノメチルエーテル) 40質量部
イソプロピルアルコール 25質量部
メチルエチルケトン 25質量部
ペンタエリスリトールトリアクリレート 0.9質量部
ペンタエリスリトールテトラアクリレート 1.0質量部
ウレタンアクリレート(商品名:U−4HA 新中村化学工業社製) 0.6質量部
粒子分散液A 20質量部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、BASFジャパン社製) 0.4質量部
2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノプロパン
−1−オン(イルガキュア907、BASFジャパン社製) 0.2質量部
10%FZ−2207、プロピレングリコールモノメチルエーテル溶液
(日本ユニカー社製) 0.4質量部
(低屈折率層の塗布)
上記中屈折率層上に、下記の低屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して膜厚が92nmになるように低屈折率層を設け、反射防止層を作製した。屈折率は1.38であった。
【0640】
(低屈折率層塗布液)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン230g(商品名:KBE04、信越化学工業社製)とエタノール440gを混合し、これに2%酢酸水溶液120gを添加した後に、室温(25℃)にて26時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
【0641】
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
テトラエトキシシラン加水分解物A 120質量部
γ−メタクリロキシプロピルトリメトキシシラン
(商品名:KBM503、信越化学工業社製) 3.0質量部
イソプロピルアルコール分散中空シリカゾル(固形分20%、触媒化成工業社製シリカ
ゾル、商品名:ELCOM V−8209) 40質量部
アルミニウムエチルアセトアセテート・ジイソプロピレート
(川研ファインケミカル社製) 3.0質量部
10%FZ−2207、プロピレングリコールモノメチルエーテル溶液
(日本ユニカー社製) 3.0質量部
<位相差フィルム101の作製>
〈微粒子分散液1〉
微粒子(アエロジル R972V 日本アエロジル(株)製) 11質量部
エタノール 89質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
【0642】
〈微粒子添加液1〉
メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
【0643】
メチレンクロライド 99質量部
微粒子分散液1 5質量部
下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
【0644】
〈主ドープ液の組成〉
メチレンクロライド 340質量部
エタノール 64質量部
アセチル基置換度が2.4のセルロースアセテート(DAC:アセチル基置換度2.4
、総置換度2.4;数平均分子量Mn=59,500、重量平均分子量Mw=190,
000、Mw/Mn=3.19) 100質量部
糖エステル化合物(化2;1−22) 10.0質量部
ポリエステルA 2.5質量部
紫外線吸収剤(チヌビン928(BASFジャパン(株)製)) 2.3質量部
微粒子添加液1 1質量部
上記組成物を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
【0645】
ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
【0646】
その後170℃に設定されたテンターにより幅手方向に1.4倍の延伸を行い、次いで130℃に設定された乾燥ゾーンで30分間搬送させて乾燥を行い、両端部のトリミングを行い、かつ端部に幅1cm、高さ8μmのナーリングを有する膜厚40μmの位相差フィルム101を作製し、幅2000mm、5000mで巻き取った。
【0647】
位相差フィルム101の面内リターデーション値Ro(590)、厚さ方向リターデーションRt(590)は、各々50nm、130nmであった。
【0648】
<偏光板A及びBの作製>
厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
【0649】
これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
【0650】
次いで、下記工程1〜5に従って偏光子と前記フィルムAar又はフィルムBarと、裏面側には位相差フィルム101を、長手方向を合わせるようにロール・to・ロールで貼り合わせて偏光板A、Bを作製した。
【0651】
工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化したフィルムAar又はフィルムBarを得た。
【0652】
工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。
【0653】
工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した位相差フィルムAar又は位相差フィルムBarの上にのせて配置した。
【0654】
工程4:工程3で積層した位相差フィルムAar又は位相差フィルムBarと偏光子と位相差フィルム101を圧力20〜30N/cm、搬送スピードは約2m/分で貼合した。
【0655】
工程5:80℃の乾燥機中に工程4で作製した偏光子と位相差フィルムAar又は位相差フィルムBarと位相差フィルム101とを貼り合わせた試料を2分間乾燥し、それぞれ、位相差フィルムAar又は位相差フィルムBarに対応する偏光板A、Bを作製した。
【0656】
<液晶表示装置の作製>
視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
【0657】
SONY製60型ディスプレイBRAVIA LX900の予め貼合されていた前面板を剥がして、パネル前面の偏光板と前面板の間にあった充填剤を除去し、予め貼合されていたパネル前側の偏光板を剥がして、上記作製した偏光板A、Bをそれぞれ液晶セルのガラス面の前面に貼合した。
【0658】
その際、その偏光板の貼合の向きは、本発明の位相差フィルム(延伸フィルム)の面が、視認側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、それぞれ、偏光板A、Bに対応する液晶表示装置A、Bを各々作製した。
【0659】
(3Dメガネ)
SONY製3DメガネTDG−BR100のパネル側にフィルムAarを貼合した。
【0660】
作製した液晶表示装置について3D映像視聴時のスジを観測した。
【0661】
<3D映像視聴時のスジの評価>
23℃・55%RHの環境で、各々の液晶表示装置のバックライトを点灯させた直後、3Dメガネをかけて、3D映像を視聴し、スジを下記基準で評価した。
○:表示ムラがまったくない
×:表示ムラが見える
以上の評価結果を表3に示す。
【0662】
【表3】

【0663】
表3に示す結果から明らかなように、本発明の位相差フィルム(延伸フィルム)を用いた液晶表示装置においては、表示ムラがまったく見られず優れていることが分かる。
【符号の説明】
【0664】
CC 制御回路
LCD 液晶ディスプレイ
G 立体画像視認用眼鏡(メガネ)
S1 右眼用液晶シャッタ
S2 左眼用液晶シャッタ
L 直線偏光の光
LC 液晶層
LI 左眼用画像
RI 右眼用画像
P1、P2 偏光板
A 液晶シャッタメガネ
A1、A4 偏光子
A2 液晶セル
A3 λ/4板
B 液晶表示装置(例えばテレビジョン(TV))
C 偏光板
C1 λ/4板
C2 偏光子
C3 位相差フィルム
C4 偏光子保護フィルム
D 液晶セル
E 偏光板
F バックライト
a 吸収軸
b 遅相軸
1 熱処理ゾーン
2 予熱ゾーン
3 第1延伸ゾーン
4 第2延伸ゾーン
5 冷却ゾーン
6 MD延伸
7 TD延伸
8 ニップロール
9 幅手端部把持手段

【特許請求の範囲】
【請求項1】
長尺原反フィルムをロールから繰りだし搬送させながら予熱ゾーン、第1延伸ゾーン、第2延伸ゾーン及び冷却ゾーンを通過させる工程を有するλ/4位相差フィルムの製造方法であって、下記要件(1)〜(3)を満たすことを特徴とするλ/4位相差フィルムの製造方法。
(1)前記予熱ゾーンと第1延伸ゾーンの区間において二対のニップロールで長尺原反フィルムに張力を掛けながら、第1延伸ゾーンにおいて搬送方向に1.6〜2.0倍の範囲内で延伸する。
(2)前記二対のニップロール間のフィルムの長さを前記長尺原反フィルムの幅手方向の長さで除して得られる値(ニップロール間フィルム長さ/幅手方向フィルム長さ)が、2.5〜20の範囲内にある。
(3)第2延伸ゾーンにおいて、幅手方向に保持又は1.2倍以下の範囲内で延伸する。
【請求項2】
前記搬送方向の延伸時の環境温度が、160〜200℃の範囲内であることを特徴とする請求項1に記載のλ/4位相差フィルムの製造方法。
【請求項3】
前記λ/4位相差フィルムが、アセチル基置換度が2.0〜2.6の範囲内にあるセルロースエステルを含有していることを特徴とする請求項1又は請求項2に記載のλ/4位相差フィルムの製造方法。
【請求項4】
請求項1から請求項3までのいずれか一項に記載のλ/4位相差フィルムの製造方法により製造されたλ/4位相差フィルムを、長尺状の偏光子の少なくとも一方の面に積層して形成されたことを特徴とする長尺状偏光板。
【請求項5】
請求項1から請求項3までのいずれか一項に記載のλ/4位相差フィルムの製造方法により製造されたλ/4位相差フィルムを断栽して形成された枚葉状フィルム、又は請求項4に記載の長尺状偏光板を断栽して形成された枚葉状偏光板が具備されていることを特徴とする液晶表示装置。
【請求項6】
前記液晶表示装置が、立体画像表示装置であることを特徴とする請求項5に記載の液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−230282(P2012−230282A)
【公開日】平成24年11月22日(2012.11.22)
【国際特許分類】
【出願番号】特願2011−99129(P2011−99129)
【出願日】平成23年4月27日(2011.4.27)
【出願人】(303000408)コニカミノルタアドバンストレイヤー株式会社 (3,255)
【Fターム(参考)】