説明

き裂長さ検出方法およびき裂長さ検出装置

【課題】 疲労センサ等におけるき裂長さを遠隔において高精度に検出することを可能にする。
【解決手段】 構造物の疲労損傷度を推定すべく、疲労センサ1におけるスリット2b付きの金属箔2を、当該スリット2bをはさむ両側位置で当該構造物に固着する。その金属箔2におけるスリット2bの延長線の側方には、複数個のひずみゲージSを事前に貼り付けておく。それらひずみゲージSの出力信号に基づいて、疲労センサ1のスリット2bからのき裂2cの長さを遠隔で検出する。

【発明の詳細な説明】
【技術分野】
【0001】
請求項に係る発明は、構造物の疲労損傷度をき裂の進展量によって計測する疲労センサまたは種々のき裂発生部材について、発生したき裂の長さを知るための、き裂長さ検出方法およびき裂長さ検出装置に関するものである。
【背景技術】
【0002】
構造物中の部材について疲労損傷度の測定に使用する疲労センサとして、図22に示すものが知られている。すなわち、あらかじめスリット2bが形成された金属箔2を、当該スリット2bをはさむ両側の接合部4にてベース箔3の表面上に固着することにより、疲労センサ1を構成する。このような疲労センサ1を、ベース箔3の底面(金属箔2のない側の面)に接着剤層を設けることにより、構造物の部材上に貼り付ける。こうして疲労センサ1を貼り付けると、当該部材に生じるひずみ振幅はベース箔3を介して金属箔2に伝達され、ひずみの繰り返しとともにスリット2bの先端からき裂が進展するので、き裂の長さから当該部材の疲労損傷度を推定できる。スリット2bを含む部分では金属箔に薄肉部2aを形成して、部材に生じたひずみによりスリット2bの付近に集中的にひずみを発生させ、部材の疲労損傷度を高感度・高精度に測定できるようにしている。なお、ベース箔3を使用せずに、スリット2bをはさむ金属箔2中の両側の固着部分によって直接に部材に貼り付けるよう疲労センサを構成することも可能である。
【0003】
疲労センサは、船舶や橋梁など大型の構造物または鉄道車両の軌条設備など多くの鋼構造物に適用され、疲労損傷状態や補修時期の推定を可能にする。それにより、計画的で合理的なメンテナンスおよび補修が行えるようになる。
【0004】
ただし、疲労センサのき裂の長さの変化を知るためには、当該センサの設置現場に直接出向いて、センサのき裂を目視しまたはレプリカ(型転写)する必要がある。船舶や橋梁など大型の構造物では、疲労センサは、高所など通常では接近できない場所に貼り付けられている場合もあるので、目視・型どりのためには、足場を設けたりクレーン車を使用したりしなければならないこともある。
【0005】
そうした負担を軽減することができる技術を示すものとして、下記の特許文献がある。いずれも、き裂の長さを電気信号に変換して送信することにより遠隔監視を可能にする方法を示している。き裂長さを電気信号にするためには、図23のように、スリット2bからのき裂2cの進展先に、き裂2cの進展方向と直角に電気抵抗線R(またはひずみゲージ)を複数個、並列に貼り付ける。き裂2cの進展によって電気抵抗線R等の一部または全部が切断されると、計測される電気抵抗値が変化するので、き裂2cの長さに応じた電気信号が得られる。
【特許文献1】特許第2952576号公報
【特許文献2】特許第2952594号公報
【特許文献3】特開2001−272319号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記特許文献に記載された技術による場合、つぎのような課題がある。
すなわち、図23のように多数の抵抗線R等が並列に接続されているとき、1本の断線による全体の電気抵抗の変化が小さいために、初期のき裂長さの計測が容易でない。たとえば抵抗線Rを8本または16本使用したとき、切れた抵抗線Rの数と全体の電気抵抗との関係は図24のようになり、最初の抵抗線の切断にともなう電気抵抗値の変化はきわめて小さい。
【0007】
抵抗線R等の数を減らすと最初の線の切断時にも電気抵抗値の変化は大きくなるが、その場合、抵抗線R等の間隔が広がるため、き裂2cの長さを段階的に粗くしか知ることができなくなる。つまり、き裂長さの微小な変化を検出することが不可能になる。
各抵抗線Rを直列に接続することも考えられるが、その場合には、一つの抵抗線Rが切断されると以後は抵抗が無限大となって、き裂長さを計測できなくなる。
【0008】
請求項の発明は、以上の課題を解決するためのもので、疲労センサ等におけるき裂長さを遠隔において高精度に検出することを可能にするものである。
【課題を解決するための手段】
【0009】
請求項に係る発明のき裂長さ検出方法は、荷重を受けてき裂を生じるき裂発生部材におけるき裂進展箇所の側方(たとえばき裂の進展先から左右いずれかまたは両方の脇に離れた部分)に複数個のひずみゲージを貼り付け、それらの出力信号に基づいてき裂の長さを測ることを特徴とする。き裂発生部材としては、船舶や橋梁等の鋼構造物を含む各種部材があげられる。
き裂発生部材が繰り返し荷重を受けると当該部材内でき裂が進展するが、それにともなってき裂の近傍のひずみ分布が変化する。発明者らの調査(後述)によると、このひずみ分布はき裂の長さで決まり、荷重の大きさによらず相似である。したがって、上記のようにき裂進展箇所の側方に複数個のひずみゲージを貼り付けてそれらの出力信号を解析すれば、き裂発生部材におけるき裂の長さを知ることができる。き裂の進展量が小さい初期の段階でもそれ以外の段階でも、き裂の近傍でのひずみ分布の変化は小さくないため、この方法では、初期段階を含めてき裂長さの検出を高精度に行うことが可能である。出力信号等を遠隔にて受け取ることとすれば、遠隔での検出が行える。
【0010】
上記の方法においては、複数個のひずみゲージが示すひずみの分布とき裂の長さとの間の荷重によらない関係(たとえば図8のようなもの)をあらかじめ把握しておき、各ひずみゲージの出力信号が示すひずみの分布からき裂の長さを測るようにするのがよい。荷重によらない上記の関係は、たとえば、複数個のひずみゲージのうち最も離して貼り付けた両端の2個が示すひずみの値が0と1とになるよう、各ひずみゲージの値を正規化することにより求めるとよい。
貼り付けた複数個のひずみゲージが示すひずみの分布とき裂の長さとの関係であって荷重によらないものをあらかじめ把握しておけば、各ひずみゲージより出力信号を受け取ると、それによるひずみの分布を当該関係に当てはめることによって簡単にき裂長さを知ることができる。このとき、ひずみの分布は、各ひずみゲージの出力信号を上記と同様の方法で正規化したものを当てはめるとよい。
【0011】
あるいは、上記の方法において、複数個のひずみゲージのうち特定の一つのひずみゲージの出力とき裂長さとの間の荷重によらない関係(たとえば図9のようなもの)をあらかじめ把握しておき、当該一つのひずみゲージの出力信号が示すひずみの大きさからき裂の長さを測るようにするのも好ましい。この場合も、荷重によらない上記の関係は、複数個のひずみゲージのうち最も離して貼り付けた両端の2個が示すひずみの値が0と1とになるよう、各ひずみゲージの値を正規化すること等により求めるとよい。
ひずみゲージが示すひずみの分布とき裂の長さとの間の関係(たとえば上記の図8のようなもの)を把握できると、特定のひずみゲージ(たとえばその図8で中央のケージ位置に設けたもの)が示す出力とき裂長さとの関係であって荷重によらないもの(たとえば図9のような関係)をも把握できる。当該特定のひずみゲージの出力のみを受け取ったうえこのような関係に当てはめることとすれば、さらに簡単にき裂長さを知ることが可能になる。受け取る特定のひずみゲージの出力は、上記と同様の方法で正規化したうえで上記関係に当てはめるのがよい。
【0012】
とくに、構造物(たとえば船舶や橋梁等の鋼構造物を含む各種構造物)の疲労損傷度を推定すべくスリット付きの金属箔を当該スリットをはさむ両側位置で当該構造物に固着し、その金属箔におけるスリットの延長線の側方(たとえばき裂の進展先から左右いずれかの脇に離れた部分)に、複数個のひずみゲージを貼り付けるのが好ましい。つまり、いわゆる疲労センサとして使用する上記の金属箔をき裂発生部材とし、これに複数個のひずみゲージを貼り付けるのである。
そのようにすれば、金属箔におけるき裂長さを高精度に検出でき、もって構造物の疲労損傷度を推定することが可能になる。上記の構造物をき裂発生部材として直接にひずみゲージを複数貼り付けるよりも、あらかじめ金属箔に複数のひずみゲージを貼り付けておき、その金属箔を構造物に固着することとする方が、き裂長さ検出を開始するまでに必要な作業がはるかに簡単になる、という利点もある。
【0013】
他のき裂長さ検出方法として、構造物の疲労損傷度を推定すべくスリット付きの金属箔を当該スリットをはさむ両側位置で当該構造物に固着し、その金属箔におけるスリットの延長線付近(つまりき裂の進展先付近)で、電圧を加えてその電流値を計測して出力し、その出力信号からき裂の長さを知ることもできる。
き裂の進展先付近で、たとえば図11・図12・図13の要領で電流を発生させて電流値を計測するとき、き裂が発生してその長さが変化すれば、金属箔の抵抗値はき裂長さとともに連続的に変化し、電流値も同様に連続的に変化する。そして電流値についての出力信号は遠隔へ伝えることが容易である。そのため、この方法によれば、出力信号である電流値から、き裂の長さを連続的に、しかも遠隔において容易に知ることができる。
【0014】
さらに他のき裂長さ検出方法として、構造物の疲労損傷度を推定すべくスリット付きの金属箔を当該スリットをはさむ両側位置で当該構造物に固着し、その金属箔におけるスリットの延長線付近で、金属箔の表面上に設けた透光体中に表面に沿って光を送り(たとえば図14・図15のようにし)、または金属箔の表面に厚さ方向に光を当てる(たとえば図16・図17・図18のようにする)とともに、当該透光体を経る光の透過、または金属箔の表面から反対側の面へ至る光の通過もしくは金属箔の表面での光の反射を計測して出力し、その出力信号からき裂の長さを知るのもよい。
き裂の進展先付近でき裂が発生してその長さが変化すれば、透光体を経る光の透過量、または金属箔の表面から反対側の面へ至る光の通過量もしくは金属箔の表面での光の反射量が変化する。光の透過量・通過量・反射量はいずれもき裂の長さに応じて線形かつ連続的に変化し、その信号を遠隔へ伝えるのも容易である。そのため、この方法によれば、疲労センサにおけるき裂長さを遠隔において高精度に検出することが可能になる。
【0015】
さらに他のき裂長さ検出方法として、構造物の疲労損傷度を推定すべくスリット付きの金属箔を当該スリットをはさむ両側位置で当該構造物に固着し、その金属箔におけるスリットの延長線付近に撮像手段を設置して撮影画像(当該スリットの延長線付近の画像)を出力させ、その出力信号からき裂の長さを知るのもよい。
この方法にしたがうたとえば図19に示す方法等によって、き裂長さの連続的な変化を示す伝送容易な出力信号が得られる。そのため、疲労センサにおけるき裂長さを遠隔において高精度に検出することが可能になる。
【0016】
上記のき裂長さ検出方法においては、出力信号を複数箇所(き裂の発生を検出しようとする複数の箇所)から1箇所の監視所へ伝送し、伝送された信号から、当該監視所において上記複数箇所の各き裂の長さを知ることとするのが好ましい。
そのようにすれば、複数箇所(き裂発生部材または金属箔)でのき裂の進展長さに関する情報を、1箇所の監視所において受信し認識することができる。図2は、この方法を模式的に表すものである。
【0017】
上記の伝送は、とくに、ブルーツースによるデイジーチェーン方式により、または光ファイバーを介し、またはPHS規格の方式により、またはインターネット経由で行うのが好ましい。このような伝送方式は、いずれも遠隔へ信号を伝えるのに適しているからである。
【0018】
請求項に係る発明のき裂長さ検出装置は、き裂発生部材におけるき裂進展箇所の側方に貼り付けられる複数個のひずみゲージと、前記ひずみゲージからひずみを検出するひずみ検出手段と、前記ひずみ検出手段により検出されたひずみの値を正規化する前処理手段と、ひずみとき裂長さとの関係を保存する記憶手段と、前記前処理手段において正規化されたひずみの値に応じたき裂長さを前記記憶手段から読み出す演算手段と――を含めて構成することを特徴とする。
たとえば、a)き裂発生部材におけるき裂進展箇所の側方に貼り付けられる複数個のひずみゲージ、b)それぞれのひずみゲージの出力信号を無線伝送する送信手段、c)当該出力信号を受信する受信手段、d)上記した複数個のひずみゲージのうち特定の一つのひずみゲージの出力とき裂長さとの間の荷重によらない関係を保存する記憶手段、および、e)当該一つのひずみゲージの出力を、記憶手段に保存された上記の関係に当てはめてき裂長さを求める演算手段――を有するようにするのもよい。
この装置にはつぎのような作用がある。すなわち、
・ 上記複数個のひずみゲージによる出力信号に基づいて、上述のように、き裂発生部材におけるき裂の長さを知ることができる。
・ 上記の発信手段および受信手段の作用により、上記のき裂長さを遠隔において知ることができる。
・ 上記記憶手段に保存された関係(特定の一つのひずみゲージの出力とき裂長さとの間の荷重によらない関係)を上記の演算手段が利用することを通じて、特定の一つのひずみゲージの出力のみから、きわめて簡単に上記のき裂長さを知ることができる。
【0019】
上記した複数個のひずみゲージが、疲労センサとして使用される金属箔――すなわち、構造物の疲労損傷度を推定すべくスリットを形成され当該スリットをはさむ両側の固着部で構造物の表面上に固着される金属箔――に対し、スリットの延長線の側方にあらかじめ貼り付けられているなら、さらに好ましい。
その場合、金属箔におけるき裂長さを検出することによって構造物の疲労損傷度を推定することができる。あらかじめ金属箔に複数のひずみゲージを貼り付けておき、その金属箔を構造物に固着するため、施工作業、すなわちき裂長さの検出を開始するまでの作業が容易になる、という利点もある。
【0020】
発明の疲労センサは、スリット付きの金属箔を当該スリットをはさむ両側位置でベース箔に固着し、その金属箔におけるスリットの延長線の側方に、複数個のひずみゲージを貼り付けたもの(たとえば図1に示すようなもの)である。
こうした疲労センサを構造物の表面に固着したうえ、必要な送信手段や受信手段、記憶手段、演算手段等とともに使用すると、上記した複数個のひずみゲージによる出力信号に基づいて、き裂発生部材におけるき裂の長さを知ることができる。そのき裂長さを遠隔において知るようにすることも可能である。
複数個のひずみゲージをすでに金属箔に貼り付けたものなので、この疲労センサ1個を構造物に固着すれば足り、ひずみゲージのぞれぞれを構造物に直接に貼り付けるという困難な作業が不要になる。また、上記の金属箔はスリットをはさむ両側位置でベース箔に固着しているので、ベース箔の底面全面を構造物に貼り付ければ足り、スリットをはさむ両側の固着位置間に所定の間隔をもたせるという精度を要する作業を、構造物の現場で行う必要がない。
【発明の効果】
【0021】
請求項に係る発明のき裂長さ検出方法によれば、き裂発生部材におけるき裂の長さを、き裂発生部材から離れた箇所において高精度に検出することができる。
スリット付きの金属箔を当該スリットをはさむ両側位置でベース箔に固着したもの(疲労センサ)のスリット付きの金属箔におけるスリットの延長線の側方に複数個のひずみゲージを貼り付けて当該スリットをはさむ両側位置で構造物に固着することと、金属箔におけるき裂の長さを検出して構造物の疲労損傷度を推定することが容易になる。複数個のひずみゲージを貼り付けるのではなく、金属箔におけるスリットの延長線付近にて電流を発生させたり、光を当てたり、撮像手段を用いたりすることによっても同様の検出および推定が可能である。
複数箇所でのき裂の進展に関する情報を、各箇所と離れた1箇所の監視所において把握することも可能である。
【0022】
請求項に係る発明のき裂長さ検出装置によれば、上記検出方法に基づいて、き裂発生部材におけるき裂の長さを遠隔の箇所において高精度に検出することができる。
【発明を実施するための最良の形態】
【0023】
図1〜図22に発明の実施についての形態を示す。
まず図1〜図10は、発明の第一の形態について示す図である。図1(a)・(b)は疲労センサ1の概要を示す平面図および側面図、また図2(a)・(b)は疲労センサ1の使用状態を示す概念図である。図3〜図9は、疲労センサ1に貼り付けた各ひずみゲージS(図1)の出力信号を解析した線図。そして図10は、この形態によって実施するき裂長さ検出方法を示すフロー図である。
【0024】
図1に示す疲労センサ1は、中ほどの薄肉部2aにスリット2bが形成された金属箔2を、当該スリット2bをはさむ両側の接合部4においてベース箔3の表面上に固着したものである。ベース箔3の底面の全体を接着剤等により構造物の表面に貼り付けることにより、構造物に生じるひずみの繰り返しとともにスリット2bの先端からき裂2cを進展させる。そのき裂2cの進展度合から、当該構造物の疲労損傷度の推定を可能にする。
【0025】
この疲労センサ1においては、き裂2cの進展箇所2dの側方(図示の例では薄肉部2aを外れたき裂進展箇所の右側)に、き裂進展方向に沿って複数個(図示の例では5個)のひずみゲージS(S1〜S5)を一列に並べて貼り付けている。各ひずみゲージSの向きは、き裂2cの進展方向と直角(図1における左右方向)に定めている。図1〜図10の例は、これらひずみゲージSの出力を遠隔において受信したうえ、その出力(ひずみ)の分布の変化からき裂2cの長さを検出しようとするものである。
【0026】
疲労センサ1は図2(a)のように構造物5の表面に貼り付け、各ひずみゲージSをコントロールボックス11に接続する。コントロールボックス11はたとえば太陽電池12を電源とし、各ひずみゲージSの出力信号をデジタル信号に変換するものとする。コントロールボックス11は子機として疲労センサ1ごとに設置し、各コントロールボックス11には図2(b)のようにID番号を付している。疲労センサ1における各ひずみゲージSの信号は、コントロールボックス11が単一周波数の電波によりアンテナ13を介して送信し、遠隔の監視所に親機として設けた受信機14がID認識によって個々のセンサ1のき裂進展情報を受信する。受信した信号は、記憶演算表示機15が解析し表示する。
【0027】
図1・図2に示す機器を含む装置が疲労センサ1のき裂2cの長さを検出するのは、以下に述べる原理による。
【0028】
1.き裂周りのひずみ分布
一般にき裂先端付近ではひずみが集中して、降伏ひずみを超える大きなひずみが生じるが、そこから少し離れると、ひずみの大きさは降伏ひずみ以下となり、金属箔に働く荷重の大きさに応じた平均的な値となる。一方、き裂の進展にともなって、き裂の周辺には荷重が流れなくなり、ひずみは生じなくなって、ひずみの分布形が変わる。ただし、このようなひずみ分布の変化は、疲労センサが適用されるような通常の荷重の大きさの範囲では弾性現象であり、荷重の大きさに関わらず、き裂の進展に対応した相似な分布形になると考えられる。
【0029】
2.ひずみの計測
図1に示すように5個のひずみゲージSを貼った状態で試験片(構造物5等)に繰り返し荷重を加え、き裂2cの長さと各ゲージSの出力とを記録した。それによると、図3のようにき裂が進展し、その長さが長くなる。
【0030】
3.き裂の進展とひずみの関係
各ひずみゲージSの出力は、初めはどのゲージS(S1・S3・S5)も400μ程度と一様な値であるが、き裂2cの進展にともなって、まず最初にき裂の後方となるゲージS1のひずみの値が低下し、その後、順次ひずみゲージS3・S5の値が低下する。
これを各き裂長さの段階でのひずみ分布として示すと、図4のように初め水平な直線状であったひずみ(図4の△印。正弦波状に変化する荷重のピーク荷重に対するひずみ)の分布が、き裂長さの増加にともなってゲージ位置の小さい(スリット2bを設けた側に近い)方からひずみの値が減少し、S字状の曲線を描いて変化することがわかる(図4の◆印、△印、*印)。
なお、金属箔2には初期の引張の内力を与えており、この内力がある状態でひずみのゼロ点調整をしているため、き裂の進展によってこの内力が開放されると、ひずみゲージは内力相当分の圧縮のひずみの値を出力する。
【0031】
4.ひずみ分布の正規化
一方、これまでは繰り返し荷重を加える際のピークの荷重(3200kgf)でのひずみの値を示したが、図5のように荷重の大きさによってひずみの値は変わる。ただしひずみ分布での最大の値(図5では右端)は、ほぼ荷重の大きさに比例しており、線形な弾性現象であることがわかる。
このひずみ分布を、両端のゲージS1・S5の値を基準に、両端で0,1となるように各ひずみゲージSの値を正規化すると、図6・図7に示すように荷重の値に関わらず、正規化したひずみの分布形状はほぼ一定であることがわかる。このことからも荷重の大きさに関わらない、線形な弾性現象であることがわかる。
実際の疲労センサ1を用いた計測では、荷重の大きさは不明であるので、荷重の大きさに関わらずき裂進展長さを推定できることが重要である。
【0032】
5.ひずみ分布とき裂長さの関係
各ひずみゲージSの出力をこのように正規化することにより、き裂長さで決まるひずみ分布形となる。これをき裂長さごとに求めると図8となり、き裂の進展により、正規化したひずみの分布形は大きく変わることがわかる。
したがって、あらかじめ疲労センサ1の種類ごとに、き裂長さと正規化したひずみの分布形の関係を繰返し荷重試験などにより求めておけば、正規化したひずみの分布形によりき裂長さを知ることが可能となる。
【0033】
6.中央のひずみの値とき裂長さの関係
この疲労センサ1の例では、正規化したひずみゲージSの値のうち中央のゲージS3でのひずみの値を、各き裂長さでプロットすると図9となり、き裂長さの増加にともなってほぼ線形に減少することがわかる。
したがって、ゲージS3の正規化されたひずみの値からき裂長さを求めることも可能である。
なお、疲労センサ1には5個のひずみゲージSを貼り付けたが、図8・図9からわかるように、両端のゲージS1・S5と中央のゲージS3との合計3個だけひずみゲージSを貼り付けることによっても、ひずみの値を正規化して上述のようにき裂長さを求めることができる。また、この疲労センサ1については、き裂長さが検出できれば、各き裂長さに対する荷重ごとのひずみ分布(たとえば図5)を用いて、正規化した最大ひずみから荷重の大きさを推定することも可能である。
【0034】
図1・図2の機器を使用して疲労センサ1のき裂2cの長さを検出する手順は、図10のフロー図に示している。
まず疲労センサ1を製作する段階では、図1のとおり疲労センサ1に複数個のひずみゲージSを貼り付け、疲労センサ1の同一種類ごとに、正規化したひずみ分布とき裂長さとの関係を求めておく(ステップs1)。
【0035】
取り付けの段階では、構造物5上の監視すべき点に疲労センサ1を貼り付ける(ステップs2)とともに、送信手段(コントロールボックス11等)および受信手段(受信機14等)を配置してONにする(ステップs3)。
【0036】
計測段階では、構造物5に繰り返し荷重が作用する(ステップs4)のにともない、各ひずみゲージSから出力される信号を送信手段・受信手段が発信および受信する(ステップs5)。
【0037】
解析段階では、受信した信号をもとに記憶演算表示機15が、各ひずみゲージSの出力を正規化(ステップs6)したうえ、中央のひずみゲージS3によるひずみ(正規化したもの)を求める(ステップs7)。さらにその正規化したひずみの値を、ステップs1で求めて記憶しておいた関係に当てはめて演算をし、き裂2cの長さを推定する(ステップs8)。
【0038】
そうして求めたき裂長さを記憶演算表示機15が表示し(ステップs9)、規定の値を超えておれば警告として作業員に示す(ステップs10)。警告があった場合等には、作業員が構造物5に接近し、目視または型どりによって実際のき裂長さを確認することとする。
【0039】
図11〜図22のそれぞれには、疲労センサ1におけるき裂長さ検出用信号を出力するための、上記とは別の実施形態を示している。
図11は、金属箔2を含む疲労センサ1に対し、スリット2bの延長線付近(つまりき裂2cの進展箇所2dを含む部分)に電圧を加えて電流を流し、計測する電流値の変化をもとに、き裂長さを(たとえば遠隔で。以下同様)検出する方法を示している。図中の符号A1は交流電源であり、符号A2は電圧測定器である。
図12は、疲労センサ1におけるき裂2cの進展箇所2d付近の電気抵抗を抵抗計Bによって計測し、その出力信号からき裂長さを検出する例である。
また図13は、疲労センサ1におけるき裂進展箇所2dにおいて、磁気センサCにて渦電流を計測し、その出力信号からき裂長さを検出する例である。
【0040】
図14は、疲労センサ1における薄肉部2a(つまりき裂進展箇所2d)に光ファイバを多数貼り付けて並列に接続した例を示している。スリット2bからのき裂の進展にともなって光ファイバが断線すると、それらを通過する光量が減少することから、き裂長さを知ることができる。
図15は、疲労センサ1の一方の平面にガラス薄膜Eを形成したうえその面に沿って光を送り、き裂の進展にともなって変化する薄膜Eの透過光量を計測することで、き裂長さを知る方法を示している。
【0041】
疲労センサ1の金属箔2の一方の面に光を当て、反対側の面に至る光量または反射する光量を計測してき裂長さを知ることも可能である。図16は、金属箔2(薄肉部)の図中下側に発光ダイオードF1を設けるとともに、上側にフォト・トランジスタF2を配置した例で、き裂が進展するとフォト・トランジスタF2の出力が変化する。
図17は、疲労センサ1のき裂2cの進展箇所に赤外線を照射し、反射する波長の分布の変化を測定することによりき裂長さを検出する例である。図中の符号G1は赤外線光源であり、符号G2は赤外線カメラである。
図18では、疲労センサ1のき裂2cの進展箇所に薄膜状にガラスを塗布し、その面に照射した光の反射の変化を利用してき裂長さを検出する。符号H1は発光ダイオード、負号H2はラインセンサである。
【0042】
画像によってき裂長さを知ることもできる。図19は、疲労センサ1のき裂2cの進展箇所を人工網膜LSI(符号I)で観察し、その出力信号からき裂長さを検出する例である。デジタルマイクロスコープ(図示省略)等を使用するのもよい。
図20のようにき裂2cの進展箇所付近に目盛りJを付しておくと、上記のように画像によって(または直接の目視によって)き裂長さを知る場合に有益である。
【0043】
疲労センサ1に設けたひずみゲージや抵抗計または種々のセンサからの出力信号は、図2のように電波で伝送してもよいが、他の伝送手段によってもよい。たとえば図21のように、Bluetoothによるデイジーチェーン方式で伝達することもできる。図中の符号21はA/D変換器、22はBluetooth、23は受信側の情報収集装置である。
【図面の簡単な説明】
【0044】
【図1】発明の第一の形態について示す図であって、疲労センサ1の概要を示す平面図(図1(a))および側面図(同(b))である。
【図2】図2(a)・(b)は疲労センサ1の使用状態を示す概念図である。
【図3】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、各ひずみゲージSが示す最大ひずみとき裂長さの履歴を示している。
【図4】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、ひずみ分布を示している。
【図5】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、各荷重でのひずみ分布を示している。
【図6】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、各荷重での正規化したひずみ分布を示している。
【図7】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、各荷重での正規化したひずみ分布を示している。
【図8】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、正規化した最大ひずみ分布を示している。
【図9】図1の疲労センサ1に貼り付けた各ひずみゲージSの出力信号を解析した線図で、ゲージS3の正規化した最大ひずみとき裂長さの関係を示している。
【図10】図1・図2に示す装置によって実施するき裂長さ検出方法を示すフロー図である。
【図11】疲労センサ1におけるき裂長さ検出用信号を出力するための、図1とは別の形態を示す概念図である。
【図12】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図13】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図14】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図15】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図16】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図17】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図18】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図19】疲労センサ1におけるき裂長さ検出用信号を出力するための、さらに別の形態を示す概念図である。
【図20】疲労センサ1におけるき裂長さ検出用信号を得るための、さらに別の形態を示す概念図である。
【図21】疲労センサ1におけるき裂長さ検出用信号を伝送するための、図2とは別の形態を示す概念図である。
【図22】一般的な疲労センサ1を示す平面図(図22(a))および側面図(同(b))である。
【図23】従来のき裂長さ検出方法を示す概念図である。
【図24】図23の方法による場合の、き裂の進展にともなう抵抗値の変化を示す線図である。
【符号の説明】
【0045】
1 疲労センサ
2 金属箔
3 ベース箔
5 構造物
S(S1・S2・…・S5) ひずみゲージ

【特許請求の範囲】
【請求項1】
荷重を受けてき裂を生じるき裂発生部材におけるき裂進展箇所の側方に複数個のひずみゲージを貼り付け、それらの出力信号に基づいてき裂の長さを測るき裂長さ検出方法。
【請求項2】
上記した複数個のひずみゲージが示すひずみの分布とき裂の長さとの間の荷重によらない関係をあらかじめ把握しておき、上記の各ひずみゲージの出力信号が示すひずみの分布からき裂の長さを測る請求項1に記載のき裂長さ検出方法。
【請求項3】
上記した複数個のひずみゲージのうち特定の一つのひずみゲージの出力とき裂長さとの間の荷重によらない関係をあらかじめ把握しておき、当該一つのひずみゲージの出力信号が示すひずみの大きさからき裂の長さを測る請求項1に記載のき裂長さ検出方法。
【請求項4】
構造物の疲労損傷度を推定すべくスリット付きの金属箔を当該スリットをはさむ両側位置で当該構造物に固着し、その金属箔におけるスリットの延長線の側方に、複数個のひずみゲージを貼り付けてなる請求項1〜3のいずれかに記載のき裂長さ検出方法。
【請求項5】
き裂発生部材におけるき裂進展箇所の側方に貼り付けられる複数個のひずみゲージと、
前記ひずみゲージからひずみを検出するひずみ検出手段と、
前記ひずみ検出手段により検出されたひずみの値を正規化する前処理手段と、
ひずみとき裂長さとの関係を保存する記憶手段と、
前記前処理手段において正規化されたひずみの値に応じたき裂長さを前記記憶手段から読み出す演算手段と
から構成されてなるき裂長さ検出装置。
【請求項6】
上記複数個のひずみゲージが、構造物の疲労損傷度を推定すべくスリットを形成され当該スリットをはさむ両側の固着部で構造物の表面上に固着される金属箔に対し、スリットの延長線の側方にあらかじめ貼り付けられている請求項5に記載のき裂長さ検出装置。
【請求項7】
構造物の疲労損傷度を推定するための疲労センサであって、スリット付きの金属箔が当該スリットをはさむ両側位置でベース箔に固着され、その金属箔におけるスリットの延長線の側方に、複数個のひずみゲージが貼り付けられているき裂長さ検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2008−164515(P2008−164515A)
【公開日】平成20年7月17日(2008.7.17)
【国際特許分類】
【出願番号】特願2006−356306(P2006−356306)
【出願日】平成18年12月28日(2006.12.28)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.Bluetooth
【出願人】(000000974)川崎重工業株式会社 (1,710)
【Fターム(参考)】