説明

ばね成形機及びその制御用プログラム

【課題】従来より良品率を向上させることが可能なばね成形機及びその制御用プログラムの提供を目的とする。
【解決手段】本発明のばね成形機10は、フィードバック制御の補正ゲインを乗じる対象を、連続した一定複数個平均の偏差ΔLとしたので、各コイルばね91毎の実測コイル長のばらつきや突発的な異常値によるフィードバック制御への影響が抑えられる。これにより、従来より確実に補正ゲインとして適した値(Kc)を選定することができると共に、その選定後の補正ゲイン(Kc)でコイルばね91を量産したときも、突発的な異常による不良品多数発生等の従来の問題点が解消され、良品率が向上する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一定長の線材からコイルばねを順次成形し、それらの実測コイル長と目標コイル長との偏差に応じて、コイルばねに押し付けられるピッチツールの位置を補正して、実測コイル長を目標コイル長に近づけるようにフィードバック制御を行うばね成形機及びその制御用プログラムに関する。
【背景技術】
【0002】
従来、この種のばね成形機では、実測コイル長と目標コイル長との偏差に補正ゲインを乗じた乗算値を使用してピッチツールの位置の補正量を演算していた。そして、最適な補正ゲインを選定するために、補正ゲインの値を複数のゲイン候補値の中から何れか1つに順次切り替えて所定複数個ずつのコイルばねを成形し、最も良品率が良いゲイン候補値を補正ゲインの値に選定していた(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開昭64−2752号公報(請求項3、第5頁下段左欄、第5頁下段右欄〜第6頁上段左欄)
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、コイルばねを複数成形し、成形された順番を横軸、各順番のコイルばねの実測コイル長を縦軸にしたグラフを作成すると、そのグラフは緩やかに変化する言わば低調波に細かく変化する言わば高調波が重なり、さらに、小数ではあるが突発的な異常波(異常値)が含まれた形状になる。そのグラフの低調波は、コイルばねの材料となる線材の線径や捻れ量が線材の長手方向の位置によって徐々に変化していることが原因と推測され、高調波はコイルばねを製造する毎に逐一変化するコイル長のばらつき等が原因と推測され、さらに異常波は材料のキズ等が原因であると推測される。
【0005】
しかしながら、上述した従来のばね成形機では、コイル長のばらつき(上記高調波)を逐一フィードバックするので、コイル長のばらつき度合いの相違により、補正ゲインの最適値が異なる事態が生じ得た。また、コイル長が突発的に異常値(上記異常波)になると、その直後に成形されるコイルばねのコイル長も、異常値のフィードバックを受けて異常値になり得るので、突発的な異常の有無により、不良品の発生量が大きく相違する事態が生じ得た。即ち、上述した従来のばね成形機では、ゲイン選定工程における補正ゲインの選定結果が、コイル長のばらつき度合いの相違や突発的な異常値の有無の影響を受けて不適当な値に選定され、その結果、良品率を下げてしまう事態が生じ得た。また、どのような値に補正ゲインが選定されたとしても、コイル長のばらつきを逐一フィードバックするのでばらつきが増長されたり、コイル長の突発的な異常値の影響を大きく受けて、不良品が多数発生する事態が生じ得た。
【0006】
本発明は、上記事情に鑑みてなされたもので、従来より良品率を向上させることが可能なばね成形機及びその制御用プログラムの提供を目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するためになされた請求項1の発明に係るばね成形機は、一定長ずつ間欠的に送給される線材からコイルばねを順次成形すると共に、それらコイルばねの目標コイル長に対する実測コイル長の偏差を自動計測し、連続した一定複数個平均の偏差に補正ゲインを乗じた乗算値を使用して、成長途中のコイルばねに押し付けられるピッチツールの位置を補正することで実測コイル長を目標コイル長に近づけるようにフィードバック制御するばね成形機であって、補正ゲインの値を予め定められた複数のゲイン候補値の中から何れか1つに順次切り替えると共に、一定複数個平均の偏差を求めるための平均算出個数の値を予め設定された複数の平均個数候補値の中から何れか1つに順次切り替えてゲイン候補値と平均個数候補値との組み合わせを変更しかつ各組み合わせ毎に予め定められた所定複数個ずつのコイルばねを成形するデータ変動生産モードと、補正ゲインの値及び平均算出個数の値を固定してコイルばねを成形するデータ固定生産モードとに切り替え可能に構成されると共に、データ変動生産モードで作動し、ゲイン候補値と平均個数候補値との各組み合わせ毎に、所定複数個のコイルばねのコイル長に係る工程能力指数を演算する工程能力指数演算手段と、データ変動生産モードで作動し、工程能力指数が最も大きい組み合わせのゲイン候補値及び平均個数候補値を、データ固定生産モードで固定される補正ゲインの値及び平均算出個数の値に選定するデータ比較選定手段とを備えたところに特徴を有する。
【0008】
請求項2の発明は、請求項1に記載のばね成形機において、データ比較選定手段は、工程能力指数を演算する度に、工程能力指数が予め設定された基準指数以上であるか否かを判別し、その判別の結果、工程能力指数が基準指数以上であったときにデータ変動生産モードによるコイルばねの成形を中止しかつそのときのゲイン候補値及び平均個数候補値を、データ固定生産モードで固定される補正ゲインの値及び平均算出個数の値に選定するところに特徴を有する。
【0009】
請求項3の発明は、請求項1又は2に記載のばね成形機において、データ固定生産モードで作動し、予め定められた連続複数個のコイルばねのコイル長に係る工程能力指数を演算して、その工程能力指数が予め定められた監視基準指数より小さいか否かを判別する工程能力指数監視手段と、データ固定生産モードで工程能力指数監視手段により工程能力指数が監視基準指数より小さいと判別されたときにデータ変動生産モードに切り替えると共に、データ変動生産モードでデータ比較選定手段により補正ゲインの値及び平均算出個数の値に固定されるゲイン候補値及び平均個数候補値が決定されたときにデータ固定生産モードに切り替える自動切替手段とを備えたところに特徴を有する。
【0010】
請求項4の発明は、請求項1乃至3の何れか1の請求項に記載のばね成形機において、一定複数個平均の偏差をΔL、補正ゲインをKとしたときに、ΔY=K・ΔL・|ΔL|、で演算される補正量ΔYだけ、ピッチツールの位置を予め設定された基準ツール位置から移動するようにフィードバック制御を行う構成としたところに特徴を有する。
【0011】
請求項5の発明は、請求項1乃至4の何れか1の請求項に記載のばね成形機において、実測コイル長が許容誤差範囲から外れたコイルばねと、実測コイル長が許容誤差範囲内のコイルばねとを分別するワーク分別手段を備えたところに特徴を有する。
【0012】
請求項6の発明に係るばね成形機制御用プログラムは、一定長ずつ間欠的に送給される線材からコイルばねを順次成形しかつそれらコイルばねの目標コイル長に対する実測コイル長の偏差を自動計測し、連続した一定複数個平均の偏差に補正ゲインを乗じた乗算値を使用して、成長途中のコイルばねに押し付けられるピッチツールの位置を補正することで実測コイル長を目標コイル長に近づけるようにフィードバック制御するばね成形機の制御用コンピュータによって実行され、その制御用コンピュータを、補正ゲインの値を予め定められた複数のゲイン候補値の中から何れか1つに順次切り替えると共に、一定複数個平均の偏差を求めるための平均算出個数の値を予め設定された複数の平均個数候補値の中から何れか1つに順次切り替えてゲイン候補値と平均個数候補値との組み合わせを変更しかつ各組み合わせ毎に予め定められた所定複数個ずつのコイルばねをばね成形機に成形させるデータ変更制御手段、ゲイン候補値と平均個数候補値との各組み合わせ毎に、所定複数個のコイルばねのコイル長に係る工程能力指数を演算しかつ、工程能力指数が最も大きかった組み合わせのゲイン候補値及び平均個数候補値を選定するデータ変動制御手段、データ変動制御手段で選定されたゲイン候補値及び平均個数候補値を補正ゲインの値及び平均算出個数の値に固定した状態でコイルばねをばね成形機に成形させるデータ固定制御手段、として機能させるところに特徴を有する。
【0013】
請求項7の発明は、請求項6に記載のばね成形機制御用プログラムにおいて、データ変動制御手段は、工程能力指数を演算する度に、工程能力指数が予め設定された基準指数以上であるか否かを判別し、その判別の結果、工程能力指数が基準指数以上であったときにデータ変動制御手段によりコイルばねの成形を中止しかつそのときのゲイン候補値及び平均個数候補値を、データ固定制御手段により固定される補正ゲインの値及び平均算出個数の値に選定するところに特徴を有する。
【0014】
請求項8の発明は、請求項6又は7に記載のばね成形機制御用プログラムにおいて、データ固定制御手段が複数のコイルばねを順次成形している間に、予め定められた連続複数個のコイルばねのコイル長に係る工程能力指数を演算して、その工程能力指数が予め定められた監視基準指数より小さいか否かを判別する工程能力指数監視手段、工程能力指数監視手段により工程能力指数が監視基準指数より小さいと判別されたときにデータ固定制御手段を停止しかつデータ変動制御手段を起動し、その起動したデータ変動制御手段がゲイン候補値及び平均個数候補値を選定したときにデータ変動制御手段を停止してデータ固定制御手段を起動する自動切替手段、として制御用コンピュータを機能させるところに特徴を有する。
【0015】
請求項9の発明は、請求項6乃至8の何れか1の請求項に記載のばね成形機制御用プログラムにおいて、一定複数個平均の偏差に基づいてフィードバック制御を行ってピッチツールの位置を補正するための補正量を、一定複数個平均の偏差をΔL、補正ゲインをKとしたときに、ΔY=K・ΔL・|ΔL|、の式のΔYとして演算する補正量演算手段、として制御用コンピュータを機能させるところに特徴を有する。
【0016】
請求項10の発明は、請求項6乃至9の何れか1の請求項に記載のばね成形機制御用プログラムにおいて、実測コイル長が許容誤差範囲から外れたコイルばねと、実測コイル長が許容誤差範囲内のコイルばねとをばね成形機に分別させるワーク分別制御手段として制御用コンピュータを機能させるところに特徴を有する。
【発明の効果】
【0017】
[請求項1及び6の発明]
請求項1及び6の発明では、フィードバック制御の補正ゲインを乗じる対象を連続した一定複数個平均の偏差としたので、各コイルばね毎の実測コイル長のばらつきや突発的な異常値によるフィードバック制御への影響が抑えられる。これにより、従来より確実に補正ゲインとして適した値を選定することができると共に、その選定後の補正ゲインでコイルばねを量産したときも、突発的な異常による不良品多数発生等の従来の問題点が解消され、良品率が向上する。しかも、複数のゲイン候補値と複数の平均個数候補値の任意の組み合わせのうちから工程能力指数が最も大きくなる組み合わせのゲイン候補値及び平均個数候補値を補正ゲイン及び平均算出個数に選定するので、平均算出個数の値を補正ゲインの値に対して適した値にすることができる。
【0018】
[請求項2及び7の発明]
請求項2及び7の発明では、工程能力指数が基準指数以上になった時点で、補正ゲインの値及び平均算出個数の値を固定してコイルばねを成形するので、試作的に補正ゲイン及び平均算出個数を変更して工程能力指数を基準指数より下げてしまう危険を回避することができる。
【0019】
[請求項3及び8の発明]
請求項3及び8の発明では、平均算出個数の値及び補正ゲインの値を一度固定してコイルばねを量産している間にも工程能力指数を監視し、工程能力指数が監視基準指数より小さいと判別されたときに補正ゲインの値と平均算出個数の値とを選定し直すので、長期間に亘って良品率を高く維持することができる。
【0020】
[請求項4及び9の発明]
請求項4及び9の発明では、フィードバックされるピッチツールの位置の補正量ΔYを、ΔY=K・ΔL・|ΔL|、の式の如く、偏差ΔLを二乗して補正ゲインKに乗じて求めているので、単に偏差ΔLと補正ゲインKとを乗じて補正量ΔYを求めた場合に比べて偏差ΔLが大きいときには、ピッチツールの位置を大きく補正して偏差ΔLを急速に減少させることができる一方、偏差ΔLが小さいときにはピッチツールの位置の補正量を抑えて、ピッチツールのハンチングを防ぐことができる。
【0021】
[請求項5及び10の発明]
請求項5及び10の発明では、実測コイル長が目標コイル長に対して許容誤差範囲内に収まった良品のコイルばねのみを集めて後工程に送ることができる。
【図面の簡単な説明】
【0022】
【図1】本発明の一実施形態に係るばね成形機の正面図
【図2】ばね成形機の一部を拡大した部分拡大正面図
【図3】ばね成形機の一部を拡大した部分拡大側面図
【図4】ばね成形機の制御上の構成を示した概念図
【図5】制御プログラムのフローチャート
【図6】サンプリング処理のフローチャート
【図7】量産処理のフローチャート
【図8】自動補正設定画面の概念図
【図9】本発明の変形例に係るサンプリング処理のフローチャート
【発明を実施するための形態】
【0023】
[第1実施形態]
以下、本発明に係る第1実施形態を図1〜図8に基づいて説明する。図1に示したばね成形機10は、鉛直に起立した基台11に、線材送給装置20、1対の上下直動機構30,30、1対の傾斜直動機構40,40等を組み付けてなる。線材送給装置20は、基台11の前面に配置されて、上下に並んだ1対のローラ21,21を備えている。線材送給装置20のうちローラ21,21同士の接合部分からは水平方向の一方側(図1の右側)に線材ガイド12(一般に、「クイル」と呼ばれている)が延ばされ、その線材ガイド12には、両ローラ21,21の共通した接線上に線材挿通孔(図示せず)が貫通形成されている。そして、ローラ21,21の間に線材90を挟持し、送給用サーボモータ22(図4参照)を駆動源にしてこれらローラ21,21を対称回転することで、線材90が図1における右側に送給されて線材ガイド12の先端から送り出される。なお、本実施形態のばね成形機10で成形する線材90は、断面が円形になっている。
【0024】
図2に示すように線材ガイド12に対して線材送給方向の前方には、基台11から心金13が突出している。心金13は、断面半円形の棒状をなし、その平坦な側面13Aが、線材ガイド12側を向いている。
【0025】
図1に示すように1対の傾斜直動機構40,40は、基台11の前面に固定された増設板41,41に取り付けられている。そして、一方の傾斜直動機構40は、心金13から線材送給装置20と反対側の斜め上方に延び、他方の傾斜直動機構40は、一方の傾斜直動機構40の下方に配置されて、心金13から離れるに従って斜め上方に向かうように延びている。各傾斜直動機構40には、それらが延びた方向に直動するスライダ43が備えられている。スライダ43のうち心金13から離れた側の端部にはリンク部材42の一端部が回動可能に連結され、そのリンク部材42の他端部が、回動円盤45の偏心軸45Jに回動可能に連結されている。回動円盤45は、増設板41に対して回動可能に軸支され、その回転中心から偏心した位置に偏心軸45Jが配置されている。そして、増設板41の裏面側に取り付けられた上下動用サーボモータ46によって回動円盤45が回転駆動され、これによりスライダ43が直動する。
【0026】
各傾斜直動機構40のスライダ43の心金13側には工具取付具43Aが取り付けられており、この工具取付具43Aには成形ツール16がそれぞれ固定されている。図2に示すように、一方の傾斜直動機構40に備えた成形ツール16は、心金13に対して斜め上方から突き合わされ、他方の傾斜直動機構40に備えた成形ツール16が、心金13に対して斜め下方から突き合わされている。また、これら成形ツール16,16の先端面には、図示しない丸溝が上下方向に延びている。そして、線材送給装置20から送給された線材90が各成形ツール16,16の丸溝に案内されて上方に向けられ、これにより線材90が心金13を取り囲むように円弧状に成形されてコイルばね91になり、図3に示すようにそのコイルばね91が基台11から離れる方向に成長していく。
【0027】
図1に示すように上下直動機構30,30は、心金13を間に挟んで上下に対称に配置されている。各上下直動機構30には、傾斜直動機構40のスライダ43と同様にスライダ31が備えられ、そのスライダ31が、リンク部材32を介して回動円盤34の偏心軸34Jに連結されている。そして、サーボモータ35にて回動円盤34を回転駆動することでスライダ31が直動する。
【0028】
上側の上下直動機構30におけるスライダ31には工具取付金具31Aが固定され、工具取付金具31Aには切断ツール15が固定されている。切断ツール15は角柱状をなし、工具取付金具31Aから鉛直下方に延びている。そして、切断ツール15を降下すると心金13の平坦な側面13Aに隣接して擦れ違い、切断ツール15のエッジと心金13のエッジとの間で線材90が切断される。
【0029】
下側の上下直動機構30におけるスライダ31には工具取付金具31Aが固定され、工具取付金具31Aには、ピッチツール14が固定されている。図3に示すようにピッチツール14は楔状になっていて、その先端部のうち基台11と反対側には、鉛直方向に対して傾斜した傾斜面14Aが備えられ、この傾斜面14Aがコイルばね91を構成する線材90に対して巻回軸方向で基台11側から当接している。そして、ピッチツール14を上方に移動することで、コイルばね91を構成する線材90を基台11から離れる方向に押して、コイルばね91のピッチ及びコイル長を大きくすることができる。
【0030】
図3に示すように心金13の同軸延長線上から下方にオフセットした位置には、検長器17が設けられている。検長器17は、静電容量形のセンサであって、切断直前のコイルばね91の先端面までの距離の相違に応じた検出信号を出力し、その出力された検出信号が、図4に示すようにインターフェース回路17Aを介して次述する制御装置60のCPU61に取り込まれる。そして、CPU61は、その検出信号に基づいてコイルばね91のコイル長と目標コイル長との偏差を演算する。
【0031】
図4には、ばね成形機10を制御するための制御装置60が示されている。制御装置60の制御回路60CにはCPU61、ROM62、RAM63、フラッシュメモリ64が備えられている。そして、フラッシュメモリ64に、本発明の「ばね成形機制御用プログラム」に相当する制御プログラムPG1が記憶され、本発明に係る「制御用コンピュータ」に相当するCPU61がその制御プログラムPG1を実行することで線材送給装置20、上下直動機構30,30、傾斜直動機構40,40等が駆動されて線材90からコイルばね91が成形される。
【0032】
制御プログラムPG1を実行すると、図5に示すように、製造対象のコイルばねの緒言の入力が求められる(S10)。そのコイルばねの緒言は、線径d、コイル径D、巻数N、コイル長L、コイル長Lの公差eからなる。
【0033】
上記緒言の入力が完了すると、次に、マスターサンプルとしてのコイルばね91をばね成形機10に1つ成形させて(S11)、そのマスターサンプルとしてのコイルばね91に対して検長器17が出力した検出信号を基準検出信号に設定する(S12)。これにより、マスターサンプル以降に成形されるコイルばね91に対して検長器17は、基準検出信号との差分としての検出信号を出力することになる。つまり、マスターサンプルとしてのコイルばね91のコイル長を目標コイル長として、それ以降、成形されるコイルばね91のコイル長と目標コイル長との偏差を検長器17が検出してCPU61に付与することになる。
【0034】
なお、マスターサンプルとしてのコイルばね91の自由長、即ち、目標コイル長Laに上記公差eを加算した上側規格値Su(=La+e)と、目標コイル長Laから公差eを減算した下側規格値Sd(=La−e)との間の範囲が本発明に係る「許容誤差範囲」に相当し、さらに、それら上側規格値Suと下側規格値Sdを利用して後述する式(5)の如く工程能力指数Cpkが演算される。
【0035】
上記検長器17の設定(S12)が完了すると、CPU61は、同一緒言のコイルばねの製造データがフラッシュメモリ64に記憶されているか否かをチェックし(S13)、記憶されていた場合には(S13:YES)、その製造データに含まれている最適な補正ゲインKc及び最適な平均算出個数Mcを取り込み(S16)、量産処理(S70)を実行する。
【0036】
同一緒言のコイルばねの製造データが記憶されていない場合には(S13:NO)、上記した最適な補正ゲインKc及び最適な平均算出個数Mcをサンプリング処理(S30)にて決定する。そのための準備として、サンプリング処理(S30)の実行前に、補正ゲイン及び平均算出個数の候補値の入力が求められる(S14,S15)。具体的には、平均算出個数の候補値mを順次変更するための初期値M0と変更幅Maと変更回数Mbの入力が求められ(S14)、補正ゲインの候補値Kを順次変更するための初期値K0と変更幅Kaと変更回数Kbの入力が求められる(S15)。これらの数値を入力すると、ばね成形機10に備えたモニタ10M(図4参照)に入力結果が表示され、その表示画面の一例が図8に示されている。
【0037】
上記準備(S14,S15)が完了すると、サンプリング処理(S30)が実行される。すると、図6に示すように、平均算出個数の候補値mに初期値M0が設定され(S31)、補正ゲインの候補値Kに初期値K0が設定され(S32)、さらに、変数iに初期値「0」が設定される(S33)。そして、コイルばね91が1つ成形されて(S34)、変数iが1つインクリメントされると共に(S35)、そのコイルばね91のコイル長と目標コイル長との偏差ΔLiが計測されかつ記憶される(S36)。
【0038】
次いで、変数iが平均算出個数の候補値m以上であるか否かが判別され(S37)、変数iが平均算出個数の候補値mに達するまで、上記したコイルばね91を1つ成形して変数iをインクリメントし、偏差ΔLiを計測しかつ記憶する処理を繰り返す(S37のNOのループ)。そして、変数iが平均算出個数の候補値mに達したときに(S37:YES)、最新の平均算出個数の候補値mの個数分のコイルばね91の偏差ΔLx(x=i〜(i−m+1))の平均を演算する(S38)。そして、その平均の偏差ΔLと、補正ゲインの候補値Kとを使用して、下記式(1)から補正量ΔYを演算し(S39)、その補正量ΔY分だけ、ピッチツール14の位置を補正する(S40)。
【0039】
ΔY=ΔL・|ΔL|・K ・・・・・・・(1)
【0040】
具体的には、最初に設定入力されたコイルの緒言によりピッチツール14の基準位置が決定され、その基準位置のピッチツール14を補正量ΔYだけ心金13から離れる側、即ち、成形途中のコイルばね91から離れる側に移動する。これにより、例えば、コイルばね91のコイル長が目標コイル長Laより大きかった場合には、ピッチツール14の位置が心金13から離れる側に補正され、その結果、次に成形するコイルばね91のコイルピッチ及びコイル長が小さくなる側に補正される。逆に、コイルばね91を成形した結果、そのコイル長が目標コイル長Laより小さかった場合には、ピッチツール14の位置が心金13に近づく側に補正され、その結果、次に成形するコイルばね91のコイルピッチ及びコイル長が大きくなる側に補正される。
【0041】
ピッチツール14の位置が補正されたら(S40)、次いで、変数iが予め制御プログラムPG1に設定されている規定サンプル数C1に達したか否かを判別し(S41)、変数iが規定サンプル個数C1に達するまで、上記したコイルばね91を成形してピッチツール14の位置を補正する等の一連の処理を繰り返す(S41のNOのループ)。そして、変数iが規定サンプル個数C1に達したら(S41:YES)、それまで計測してきた規定サンプル個数C1分のコイルばね91の偏差ΔLx(x=1〜C1)のデータから工程能力指数Cpkを下記[数1]の式(2)〜(5)より演算して記憶する(S42)。
【0042】
【数1】

【0043】
次いで、補正ゲインの候補値Kを変更幅Kaだけインクリメントし(S43)、その補正ゲインの候補値Kが上限値を超えたか否かを判別する(S44)。なお、補正ゲインの候補値Kの上限値は、上述の如く当初設定された初期値K0に変更幅Kaと変更回数Kbとの積を加えた値として算出することができる。そして、補正ゲインの候補値Kが上限値を超えるまで、順次、インクリメントされる新たな補正ゲインの候補値Kを使用して上記した規定サンプル数C1のコイルばね91を成形して工程能力指数Cpkを演算する処理を繰り返す(S44のNOのループ)。
【0044】
また、補正ゲインの候補値Kが上限値を超えた場合には(S44:YES)、平均算出個数の候補値mを変更幅Maだけインクリメントし(S45)、その平均算出個数の候補値mが上限値を超えたか否かを判別する(S46)。この平均算出個数の候補値mの上限値も同様に、上述の如く当初設定された初期値M0に変更幅Maと変更回数Mbとの積を加えた値として算出することができる。そして、平均算出個数の候補値mが上限値を超えるまで、順次、インクリメントされる新たな各平均算出個数の候補値mの下、補正ゲインの候補値Kが初期値K0から上限値まで変更幅Kaずつ順次変更したときのコイルばね91が規定サンプル数C1ずつ成形されて工程能力指数Cpkが演算されかつ記憶される(S46のNOのループ)。これにより、補正ゲインの候補値Kと平均算出個数の候補値mの全ての組み合わせについて、規定サンプル数C1分のコイルばね91のコイル長に対する工程能力指数Cpkが演算される。
【0045】
そして、平均算出個数の候補値mが上限値を超え、補正ゲインと平均算出個数の候補値K,mの全ての組み合わせに対する工程能力指数Cpkが揃ったところで(S46:YES)、それらの中から最も大きな工程能力指数Cpkの補正ゲインの候補値Kと平均算出個数の候補値mを、最適な補正ゲインKcと最適な平均算出個数Mcに選定し(S47)、このサンプリング処理(S30)から抜ける。なお、ここで、ステップS42からステップS47までを実行するときのCPU61が本発明に係る「データ変動制御手段」として機能する。それらステップS42〜S47のうちステップS42を実行するときのCPU61が本発明に係る「工程能力指数演算手段」として機能し、ステップS47を実行するときのCPU61が本発明に係る「データ比較選定手段」として機能する。
【0046】
図5に示すように、サンプリング処理(S30)を抜けると、量産処理(S70)が実行される。量産処理(S70)が実行されると、図7に示すように、コイルばね91の目標生産数C2と、監視規定サンプル数C3と、監視基準指数P1の入力が求められる(S71)。そこで、これらを入力すると、変数iが初期値「0」に設定されてから(S72)、コイルばね91が1つ成形されて(S73)、変数iが1つインクリメントされる(S74)。そして、そのコイルばね91のコイル長と目標コイル長との偏差ΔLiが検長器17にて計測されて記憶される(S75)。
【0047】
次いで、上記偏差ΔLiの絶対値が公差eより大きいか否か、即ち、コイルばね91が不良品であるか否かがチェックされる(S76)。ここで、偏差ΔLiの絶対値が公差eより大きい場合には(S76:YES)、コイルばね91は不良品であると判断されて図示しないワーク排除機構によってコイルばね91が廃棄ボックスへと廃棄される(S85)。そして、変数iが最適な平均算出個数Mc以上であるか否かが判別される(S77)。上記廃棄処理(S85)により、実測コイル長が目標コイル長に対して許容誤差範囲内に収まった良品のコイルばね91のみを集めて後工程に送ることができる。なお、サンプリング処理(S30)においても上記廃棄処理等(S76、S85)を行えば、良品のコイルばね91を集めて後工程に送ることができる。
【0048】
偏差ΔLiの絶対値が公差eより大きくない場合には(S76:NO)、上記廃棄処理(S85)等は行われずに、変数iが最適な平均算出個数Mc以上であるか否かが判別される(S77)。そして、変数iが最適な平均算出個数Mcに達するまで、上記したコイルばね91の成形等の処理が繰り返される(S77のNOのループ)。
【0049】
変数iが最適な平均算出個数Mcに達すると(S77:YES)、最新の平均算出個数Mc分のコイルばね91の偏差ΔLx(x=i〜(i−Mc+1))の平均を演算する(S78)。そして、その平均の偏差ΔLと、最適な補正ゲインKcとを使用して、サンプリング処理(S30)と同様に、上記式(1)と同様の式から補正量ΔYを演算し(S79)、その補正量ΔY分だけ、ピッチツール14の位置を補正する(S80)。
【0050】
次いで、変数iが監視規定サンプル数C3に達したか否かを判別し(S81)、変数iが監視規定サンプル数C3に達するまで、上記したコイルばね91を成形して変数iをインクリメントし、偏差ΔLiを計測して記憶してから、補正量ΔYを求めてピッチツール14の位置を補正するまでの一連の処理を繰り返す(S81のNOのループ)。
【0051】
変数iが監視規定サンプル数C3に達した場合には(S81:YES)、最新の監視規定サンプル数C3分のコイルばね91の偏差ΔLx(x=i〜(i−C3+1))のデータから、上記[数1]の式(2)〜(5)と同様の式を用いて、工程能力指数Cpkを演算する(S82)。そして、その工程能力指数Cpkが監視基準指数P1以上であるか否かを判別し(S83)、工程能力指数Cpkが監視基準指数P1以上ではなかった場合には(S83:NO)、サンプリング処理(S30)に戻る。
【0052】
工程能力指数Cpkが監視基準指数P1以上であった場合には(S83:YES)、変数iが目標生産数C2に達するまで、コイルばね91の成形から工程能力指数Cpkと監視基準指数P1との比較処理を繰り返し(S84のNOのループ)、変数iが目標生産数C2に達したら制御プログラムPG1が終了し、ばね成形機10が停止する。
【0053】
本実施形態のばね成形機10及び制御プログラムPG1の構成に関する説明は以上である。本実施形態では、上記したサンプリング処理(S30)をCPU61が実行することで、ばね成形機10が本発明に係る「データ変動生産モード」になり、このときCPU61が本発明に係る「データ変更制御手段」として機能する。また、量産処理(S70)をCPU61が実行することで、ばね成形機10が本発明に係る「データ固定生産モード」になり、このときCPU61が本発明に係る「データ固定制御手段」として機能する。
【0054】
次に、本実施形態のばね成形機10及び制御プログラムPG1の作用効果について説明する。上述したように本実施形態のばね成形機10では、フィードバック制御の補正ゲインを乗じる対象を、連続した一定複数個平均の偏差ΔLとしたので、各コイルばね91毎の実測コイル長のばらつきや突発的な異常値によるフィードバック制御への影響が抑えられる。これにより、従来より確実に補正ゲインとして適した値(Kc)を選定することができると共に、その選定後の補正ゲイン(Kc)でコイルばね91を量産したときも、突発的な異常による不良品多数発生等の従来の問題点が解消され、良品率が向上する。しかも、補正ゲインの候補値Kと平均算出個数の候補値mの全ての組み合わせのなかから、工程能力指数Cpkが最も大きくなる組み合わせの候補値K,mを補正ゲイン及び平均算出個数に選定するので、平均算出個数の値(Mc)を補正ゲインの値(Kc)に対して適した値にすることができる。
【0055】
また、本実施形態のばね成形機10では、平均算出個数の値及び補正ゲインの値を一度固定して量産処理(S70)にてコイルばね91を量産している間にも、本発明に係る「工程能力指数監視手段」に相当するステップS83の処理にて工程能力指数Cpkを監視し、その工程能力指数Cpkが監視基準指数P1より小さいと判別されたときには、サンプリング処理(S30)に戻って補正ゲインの値と平均算出個数の値とを選定し直すので、長期間に亘って良品率を高く維持することができる。
【0056】
さらには、本実施形態のばね成形機10では、ピッチツール14の位置を補正するための補正量ΔYを、前記式(1)で示したように、偏差ΔLを二乗して補正ゲインKに乗じて求めているので、単に偏差ΔLと補正ゲインKとを乗じて補正量ΔYを求めた場合に比べて、偏差ΔLが大きいときには、ピッチツール14の位置を大きく補正して偏差ΔLを急速に減少させることができる一方、偏差ΔLが小さいときにはピッチツール14の位置の補正量を抑えてピッチツール14のハンチングを防ぐことができる。
【0057】
[第2実施形態]
本実施形態は、図9に示されており、前記第1実施形態とはサンプリング処理(S130)の構成のみが異なる。具体的には、第1実施形態のサンプリング処理(S30)では、補正ゲインと平均算出個数の候補値K,mの全ての組み合わせの工程能力指数Cpkを演算してから、それらのうち最も工程能力指数Cpkが大きくなる候補値K,mの組み合わせを選定していたが(S47)、本実施形態のサンプリング処理(S130)では、図9に示すように、補正ゲインと平均算出個数の候補値K,mの組み合わせを設定する毎に工程能力指数Cpkが予め設定された基準指数P2以上であるか否かを判別し(S50)、その判別の結果、工程能力指数Cpkが基準指数P2以上であったときには(S50:YES)、そのときの候補値K,mを、最適な補正ゲインKc及び最適な平均算出個数Mcに選定し(S51)、サンプリング処理(S130)から抜ける構成になっている。その他の構成に関しては、第1実施形態と同じである。
【0058】
上記したように本実施形態では、工程能力指数Cpkが基準指数P2以上になる補正ゲインと平均算出個数の組み合わせを見つけた時点で、それ以降は補正ゲイン及び平均算出個数を変更せずにサンプリング処理(S130)から量産処理(S70)に移行するので、試作的に補正ゲイン及び平均算出個数を変更して工程能力指数を基準指数より下げてしまう危険を回避することができる。
【0059】
[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、上記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
【0060】
(1)前記第1及び第2の実施形態では、コイル長に対して上側規格値Suと下側規格値Sdの両方が設定されている場合を例示したが、上側規格値Suのみが設定されている場合又は下側規格値Sdのみが設定されている場合に本発明を適用してもよい。なお、上側規格値Suのみが設定されている場合には、工程能力指数Cpuは下記式(6)で演算され、下側規格値Sdのみが設定されている場合には、工程能力指数Cpdは下記式(7)で演算される。
【0061】
【数2】

【0062】
(2)前記実施形態では、コイルばね91のコイル長を調整するためにピッチツール14をコイルばね91の巻回軸方向と直交する方向に往復動させていたが、コイルばね91の巻回軸方向に往復動させてもよい。
【0063】
(3)前記第1及び第2の実施形態では、本発明に係る「連続した一定複数個平均の偏差」を演算する場合に、偏差を検出する度に、平均算出対象となる一定複数個分の偏差のデータを1つずつ繰り上げて、各偏差のデータが一定複数個より以前(過去)のデータになるまで平均算出対象として使用する、所謂、「移動平均の偏差」を演算していたが、一定複数個分の偏差のデータが溜まる度に、それら溜まった偏差のデータを平均算出対象とし、一度、平均算出対象として使用したデータは再度使用しない、所謂、「間欠平均の偏差」として演算してもよい。
【0064】
(4)また、一定複数個分の偏差のデータの「中央値」を「連続した一定複数個平均の偏差」として演算してもよい。具体的には、一定複数個分の偏差のデータに大きさの順位付けを行って、一定複数個が奇数の場合には、その中央の順位のデータ、一定複数個が偶数の場合には、その中央の2つのデータの平均を「連続した一定複数個平均の偏差」として演算してもよい。この中央値を演算する場合も、前記した「移動平均」と「間欠平均」との相違のように、各偏差のデータが一定複数個より以前(過去)のデータになるまで算出対象として使用してもよいし、一定複数個の偏差のデータが溜まる度に、それら溜まったデータを算出対象とし、一度使用したデータは再度使用しないようにしてもよい。
【0065】
(5)前記実施形態では、検長器17の基準検出信号を、逐一マスターサンプルを成形することで設定していたが、予め複数種類のマスターサンプルについて検長器17の基準検出信号のデータをフラッシュメモリ64に記憶させておき、そのデータを取り込むようにしてもよい。
【符号の説明】
【0066】
10 ばね成形機
14 ピッチツール
17 検長器
61 CPU(制御用コンピュータ)
64 フラッシュメモリ
90 線材
91 コイルばね
Cpk,Cpu,Cpd 工程能力指数
P1 監視基準指数
P2 基準指数
PG1 制御プログラム
Sd 下側規格値
Su 上側規格値
e 公差
ΔY 補正量

【特許請求の範囲】
【請求項1】
一定長ずつ間欠的に送給される線材からコイルばねを順次成形すると共に、それらコイルばねの目標コイル長に対する実測コイル長の偏差を自動計測し、連続した一定複数個平均の偏差に補正ゲインを乗じた乗算値を使用して、成長途中の前記コイルばねに押し付けられるピッチツールの位置を補正することで前記実測コイル長を前記目標コイル長に近づけるようにフィードバック制御するばね成形機であって、
前記補正ゲインの値を予め定められた複数のゲイン候補値の中から何れか1つに順次切り替えると共に、前記一定複数個平均の偏差を求めるための平均算出個数の値を予め設定された複数の平均個数候補値の中から何れか1つに順次切り替えて前記ゲイン候補値と前記平均個数候補値との組み合わせを変更しかつ各組み合わせ毎に予め定められた所定複数個ずつの前記コイルばねを成形するデータ変動生産モードと、前記補正ゲインの値及び前記平均算出個数の値を固定して前記コイルばねを成形するデータ固定生産モードとに切り替え可能に構成されると共に、
前記データ変動生産モードで作動し、前記ゲイン候補値と前記平均個数候補値との各組み合わせ毎に、前記所定複数個の前記コイルばねのコイル長に係る工程能力指数を演算する工程能力指数演算手段と、
前記データ変動生産モードで作動し、前記工程能力指数が最も大きい前記組み合わせの前記ゲイン候補値及び前記平均個数候補値を、前記データ固定生産モードで固定される前記補正ゲインの値及び前記平均算出個数の値に選定するデータ比較選定手段とを備えたことを特徴とするばね成形機。
【請求項2】
前記データ比較選定手段は、前記工程能力指数を演算する度に、前記工程能力指数が予め設定された基準指数以上であるか否かを判別し、その判別の結果、前記工程能力指数が前記基準指数以上であったときに前記データ変動生産モードによる前記コイルばねの成形を中止しかつそのときの前記ゲイン候補値及び前記平均個数候補値を、前記データ固定生産モードで固定される前記補正ゲインの値及び前記平均算出個数の値に選定することを特徴とする請求項1に記載のばね成形機。
【請求項3】
前記データ固定生産モードで作動し、予め定められた連続複数個の前記コイルばねのコイル長に係る工程能力指数を演算して、その工程能力指数が予め定められた監視基準指数より小さいか否かを判別する工程能力指数監視手段と、
前記データ固定生産モードで前記工程能力指数監視手段により前記工程能力指数が前記監視基準指数より小さいと判別されたときに前記データ変動生産モードに切り替えると共に、前記データ変動生産モードで前記データ比較選定手段により前記補正ゲインの値及び前記平均算出個数の値に固定される前記ゲイン候補値及び前記平均個数候補値が選定されたときに前記データ固定生産モードに切り替える自動切替手段とを備えたことを特徴とする請求項1又は2に記載のばね成形機。
【請求項4】
前記一定複数個平均の偏差をΔL、前記補正ゲインをKとしたときに、
ΔY=K・ΔL・|ΔL|
、で演算される補正量ΔYだけ、前記ピッチツールの位置を予め設定された基準ツール位置から移動するように前記フィードバック制御を行う構成としたことを特徴とする請求項1乃至3の何れか1の請求項に記載のばね成形機。
【請求項5】
前記実測コイル長が許容誤差範囲から外れたコイルばねと、前記実測コイル長が前記許容誤差範囲内のコイルばねとを分別するワーク分別手段を備えたことを特徴とする請求項1乃至4の何れか1の請求項に記載のばね成形機。
【請求項6】
一定長ずつ間欠的に送給される線材からコイルばねを順次成形しかつそれらコイルばねの目標コイル長に対する実測コイル長の偏差を自動計測し、連続した一定複数個平均の偏差に補正ゲインを乗じた乗算値を使用して、成長途中の前記コイルばねに押し付けられるピッチツールの位置を補正することで前記実測コイル長を前記目標コイル長に近づけるようにフィードバック制御するばね成形機の制御用コンピュータによって実行され、その制御用コンピュータを、
前記補正ゲインの値を予め定められた複数のゲイン候補値の中から何れか1つに順次切り替えると共に、前記一定複数個平均の偏差を求めるための平均算出個数の値を予め設定された複数の平均個数候補値の中から何れか1つに順次切り替えて前記ゲイン候補値と前記平均個数候補値との組み合わせを変更しかつ各組み合わせ毎に予め定められた所定複数個ずつの前記コイルばねをばね成形機に成形させるデータ変更制御手段、
前記ゲイン候補値と前記平均個数候補値との各組み合わせ毎に、前記所定複数個の前記コイルばねのコイル長に係る工程能力指数を演算しかつ、前記工程能力指数が最も大きかった前記組み合わせの前記ゲイン候補値及び前記平均個数候補値を選定するデータ変動制御手段、
前記データ変動制御手段で選定された前記ゲイン候補値及び前記平均個数候補値を前記補正ゲインの値及び前記平均算出個数の値に固定した状態で前記コイルばねをばね成形機に成形させるデータ固定制御手段、として機能させることを特徴とするばね成形機制御用プログラム。
【請求項7】
前記データ変動制御手段は、前記工程能力指数を演算する度に、前記工程能力指数が予め設定された基準指数以上であるか否かを判別し、その判別の結果、前記工程能力指数が前記基準指数以上であったときに前記データ変動制御手段により前記コイルばねの成形を中止しかつそのときの前記ゲイン候補値及び前記平均個数候補値を、前記データ固定制御手段により固定される前記補正ゲインの値及び前記平均算出個数の値に選定することを特徴とする請求項6に記載のばね成形機制御用プログラム。
【請求項8】
前記データ固定制御手段が複数のコイルばねを順次成形している間に、予め定められた連続複数個の前記コイルばねのコイル長に係る工程能力指数を演算して、その工程能力指数が予め定められた監視基準指数より小さいか否かを判別する工程能力指数監視手段、
前記工程能力指数監視手段により前記工程能力指数が前記監視基準指数より小さいと判別されたときに前記データ固定制御手段を停止しかつ前記データ変動制御手段を起動し、その起動したデータ変動制御手段が前記ゲイン候補値及び前記平均個数候補値を選定したときに前記データ変動制御手段を停止して前記データ固定制御手段を起動する自動切替手段、として前記制御用コンピュータを機能させることを特徴とする請求項6又は7に記載のばね成形機制御用プログラム。
【請求項9】
前記一定複数個平均の偏差に基づいて前記フィードバック制御を行って前記ピッチツールの位置を補正するための補正量を、前記一定複数個平均の偏差をΔL、前記補正ゲインをKとしたときに、
ΔY=K・ΔL・|ΔL|
、の式の前記ΔYとして演算する補正量演算手段、として前記制御用コンピュータを機能させることを特徴とする請求項6乃至8の何れか1の請求項に記載のばね成形機制御用プログラム。
【請求項10】
前記実測コイル長が許容誤差範囲から外れたコイルばねと、前記実測コイル長が前記許容誤差範囲内のコイルばねとをばね成形機に分別させるワーク分別制御手段として前記制御用コンピュータを機能させることを特徴とする請求項6乃至9の何れか1の請求項に記載のばね成形機制御用プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−189361(P2011−189361A)
【公開日】平成23年9月29日(2011.9.29)
【国際特許分類】
【出願番号】特願2010−56362(P2010−56362)
【出願日】平成22年3月12日(2010.3.12)
【出願人】(000116976)旭精機工業株式会社 (56)
【Fターム(参考)】