説明

イオン分離回収システムおよびイオン分離回収方法

【課題】電気泳動処理の際に処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能を有するイオン分離回収システムおよびイオン分離回収方法を提供すること。
【解決手段】イオン分離回収システム1は、第1電極13と第2電極14との間に電圧が印加される電極対12を備え、処理対象溶液80を電気泳動処理して第1溶液81と第2溶液82とに分離して排出する電気泳動イオン分離回収装置10と、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体についてイオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定する測定部50と、系内流通液体の流量制御および液温制御、電極対12の印加電圧制御、ならびに電極対12の電極間隔制御から選ばれた1種以上の制御を行う制御部60とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、隔膜を用いずに電気泳動でイオンを分離するイオン分離回収システムおよびイオン分離回収方法に関する。
【背景技術】
【0002】
従来、処理対象溶液中に含まれる陰イオンおよび陽イオンを分離、回収する電気泳動イオン分離回収装置が知られている。この電気泳動イオン分離回収装置は、隔膜を用いずに電気泳動を用いて溶液中の陰イオンおよび陽イオンを陽極および陰極の近傍に局在化させ、この局在化させた陰イオンを含む溶液と局在化させた陽イオンを含む溶液とを分離して取り出すことにより、イオンを分離するものである。本発明では、イオンを分離して取り出す装置そのものを電気泳動イオン分離回収装置といい、電気泳動イオン分離回収装置に加え、電源等の周辺機器を含むものをイオン分離回収システムという。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−90299号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
イオン分離回収システムでは、電気泳動イオン分離回収装置における、陰イオンを含む溶液と陽イオンを含む溶液との間の分離性能が重要である。しかし、この分離性能は陽極および陰極の電極間に存在する液体の状態によって異なる。
【0005】
たとえば、溶媒として水を用いてナトリウムイオンや塩化物イオン等のイオンを分離する場合、イオン濃度や水温の変化により導電率が変化し、この導電率の変化によりイオンの分離性能が変化する。水温の変化と導電率の変化との関係を、図面を参照して説明する。
【0006】
図4は、水温と水の導電率との関係を示すグラフである。図4は、異なる3個の文献に記載された水温と水の導電率との関係を示すグラフ3本をまとめて示したものである。3本のグラフは、第1、第2および第3の文献に記載されたものを、それぞれ○、×、△の符号を含むように表示した。
【0007】
図4に示されるように、水の導電率は水温の変化に伴い大きく変化する。具体的には、水温が25℃の場合は水の導電率が0.3μS/cm以下であるのに対して、水温が250℃では水の導電率が3.2〜3.6μS/cmとなり、25℃の場合に比べて約10倍大きくなる。
【0008】
このように水の導電率が変化すると、分離の駆動力となる電場強度が変化し、イオンの分離性能が変化するおそれがある。イオン分離回収システムでは、通常、一定電圧を印加して電気泳動を行うが、水の導電率が変化したときに電流の増加が不十分であると印加電圧が低下し、電場強度が変化するからである。
【0009】
水の導電率の変化と電流の変化との関係を、図面を参照して説明する。図5は、水の導電率と電流値との関係を示すグラフである。図5は、具体的には、電極面積98cmの2枚の電極を電極間隔1.8cmで対向配置し、2枚の電極間に所定の一定電圧16V、25Vおよび60Vを印加したときの水の導電率と電流値との関係を示したグラフである。
【0010】
図5に示されるように、電流値は、水の導電率の増加に比例して増加する直線となる。また、直線の傾きは、印加電圧が大きくなるほど、大きくなることが分かる。
【0011】
しかし、電流を多く流す必要が生じることは、イオン分離回収システムの運用に影響を及ぼす。水の導電率が大きくなったときに大きな電流を流せるような電源容量の大きな電源は、水の導電率が小さい通常の状態では過剰なスペックとなるため、導入されにくい。このため、通常のスペックの電源では、水の導電率が大きくなったときに、十分な電流を流すことができずに電圧が低下して、イオン分離回収システムの健全な運用ができなくなるおそれがある。
【0012】
水温と、電源の印加電圧上限値との関係を、図面を参照して説明する。図6は、水温と電源の印加電圧上限値との関係の一例を示すグラフである。図6は、具体的には、一般的に用いられる日本エイドー株式会社製の直流電源を用いた場合の、印加電圧上限値の一例を示すグラフである。
【0013】
図6に示されるように、水温が100℃程度と低いときには印加電圧上限値が450Vであるが、水温が200℃以上と高いときには印加電圧上限値が200V程度に低下することが分かる。このように、水温の上昇に伴い印加電圧上限値が下がると、条件によっては十分な電気泳動を行えず、イオンの分離性能が不十分になるおそれがあることが分かる。
【0014】
水温と水の抵抗値との関係を、図面を参照して説明する。図7は、水温と水の抵抗値(電圧/電流)との関係を示すグラフである。
【0015】
なお、図7で用いられる装置は、隔膜を用いた電気泳動イオン分離回収装置であり、図7中に示される抵抗値は対向する電極間の電極間隔が6mmのときの隔膜を介した抵抗値である。このため、図7で用いられる装置の装置構成は、上述の隔膜を用いない電気泳動イオン分離回収装置と異なるが、水温と水の抵抗値との関係は隔膜の有無に関わらず同様であるので、図7を用いて水温と水の抵抗値との関係を説明する。図7に示されるように、水の抵抗値は、水温の増加に伴い減少する。
【0016】
以上、述べたように、隔膜を用いずに電気泳動でイオンを分離するイオン分離回収システムにおいては、イオン濃度や水温の変化により導電率が変化し、この導電率の変化によりイオンの分離性能が変化するという課題があった。
【0017】
また、水温やイオン濃度の変化のうちでも、特に、水温やイオン濃度が予め設定した値よりも高くなる場合は、液の導電率が高くなることにより、陽極および陰極の電極間における電場強度が低下し、イオンの分離効率が低下しやすいという課題があった。なお、電極間における電場強度の低下は、両電極近傍以外の部分、すなわち両電極から離間した部分においてより生じやすい。
【0018】
また、液の導電率が高くなると、一定電圧での電気泳動を維持するために電極間電流を多く流す必要がある。この場合、電気泳動イオン分離回収装置の電源としてより大きな電源容量が必要になるため、経済的でないとともに、電気泳動イオン分離回収装置の電源容量が足りずに適切な電気泳動処理ができなくなるおそれがあるという課題があった。
【0019】
本発明は上記課題を解決するものであり、電気泳動処理の際に処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能を有するイオン分離回収システムおよびイオン分離回収方法を得ることを目的とする。
【課題を解決するための手段】
【0020】
本発明は、イオン分離回収システム内に存在する液体について、イオン濃度、導電率等の液管理パラメータを測定し、この液管理パラメータの測定値に基づいて、液体の流量制御、液温制御等を行うと、処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能が得られることを見出してなされたものである。
【0021】
すなわち、本発明のイオン分離回収システムは、上記課題を解決するためのものであり、第1電極と第2電極との間に電圧が印加される電極対を備え、導入された処理対象溶液を電気泳動処理することにより、前記第1電極の近傍に局在化したイオンを含む第1溶液と前記第2電極の近傍に局在化したイオンを含む第2溶液とに分離して排出する電気泳動イオン分離回収装置と、前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定する測定部と、前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体の流量制御および液温制御、前記電極対の印加電圧制御、ならびに前記電極対の電極間隔制御から選ばれた1種以上の制御を行う制御部と、を備えることを特徴とする。
【0022】
また、本発明のイオン分離回収方法は、上記課題を解決するためのものであり、第1電極と第2電極との間に電圧が印加される電極対を備え、導入された処理対象溶液を電気泳動処理することにより、前記第1電極の近傍に局在化したイオンを含む第1溶液と前記第2電極の近傍に局在化したイオンを含む第2溶液とに分離して排出する電気泳動イオン分離回収装置を用い、前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定するステップと、前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体の流量制御および液温制御、前記電極対の印加電圧制御、ならびに前記電極対の電極間隔制御から選ばれた1種以上の制御を行うステップと、を備えることを特徴とする。
【発明の効果】
【0023】
本発明のイオン分離回収システムおよびイオン分離回収方法によれば、電気泳動処理の際に処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能を有するイオン分離回収システムおよびイオン分離回収方法が得られる。
【図面の簡単な説明】
【0024】
【図1】本発明のイオン分離回収システムの第1の実施形態を示す概略構成図。
【図2】本発明のイオン分離回収システムの第2の実施形態を示す概略構成図。
【図3】本発明のイオン分離回収システムの第3の実施形態を示す概略構成図。
【図4】水温と水の導電率との関係を示すグラフ。
【図5】水の導電率と電流値との関係を示すグラフ。
【図6】水温と電源の印加電圧上限値との関係の一例を示すグラフ。
【図7】水温と水の抵抗値(電圧/電流)との関係を示すグラフ。
【発明を実施するための形態】
【0025】
[イオン分離回収システム]
本発明のイオン分離回収システムについて、図面を参照して説明する。
【0026】
(第1の実施形態)
図1は、本発明のイオン分離回収システムの第1の実施形態を示す概略構成図である。
図1に示すように、イオン分離回収システム1は、導入された処理対象溶液80を第1溶液81と第2溶液82とに分離して排出する電気泳動イオン分離回収装置10と、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体について、イオン濃度等の液管理パラメータを測定する測定部50と、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体の流量制御等の制御を行う制御部60と、を備える。
【0027】
また、イオン分離回収システム1は、電気泳動イオン分離回収装置10の上流側に設けられ、電気泳動イオン分離回収装置10に導入される処理対象溶液80を貯留する原水タンク30と、電気泳動イオン分離回収装置10の下流側に設けられ、電気泳動イオン分離回収装置10から排出された第1溶液81を貯留する第1液タンク31と、電気泳動イオン分離回収装置10の下流側に設けられ、電気泳動イオン分離回収装置10から排出された第2溶液82を貯留する第2液タンク32と、をさらに備える。
【0028】
電気泳動イオン分離回収装置10とこの上流側の原水タンク30とは導入ライン34で接続される。これにより、原水タンク30中の処理対象溶液80が電気泳動イオン分離回収装置10に送液されるようになっている。導入ライン34の途中には、ポンプ37と、測定部50としてのモニタ50Aと、液温調整機構71とが設けられる。
【0029】
電気泳動イオン分離回収装置10とこの下流側の第1液タンク31とは第1排出ライン35で接続される。これにより、電気泳動イオン分離回収装置10中で生成した第1溶液81が第1液タンク31に送液されるようになっている。第1排出ライン35の途中には、測定部50としてのモニタ50Cが設けられる。
【0030】
電気泳動イオン分離回収装置10とこの下流側の第2液タンク32とは第2排出ライン36で接続される。これにより、電気泳動イオン分離回収装置10中で生成した第2溶液82が第2液タンク32に送液されるようになっている。第2排出ライン36の途中には、測定部50としてのモニタ50Dが設けられる。
【0031】
上記構成により、イオン分離回収システム1では、電気泳動イオン分離回収装置10内に処理対象溶液80が導入され、この処理対象溶液80に電気泳動処理がされて第1溶液81および第2溶液82が生成すると、この生成した第1溶液81および第2溶液82が第1液タンク31と第2液タンク32に回収されるようになっている。
【0032】
なお、イオン分離回収システム1において、電気泳動イオン分離回収装置10より上流側かつ処理対象溶液80が流通する領域を分離上流領域21という。具体的には、イオン分離回収システム1において、原水タンク30、導入ライン34、ポンプ37、および測定部50としてのモニタ50Aを含む領域は、分離上流領域21である。
【0033】
また、イオン分離回収システム1において、電気泳動イオン分離回収装置10より下流側かつ第1溶液81が流通する領域を第1分離下流領域23という。具体的には、イオン分離回収システム1において、第1排出ライン35、第1液タンク31、および測定部50としてのモニタ50Cを含む領域は、第1分離下流領域23である。
【0034】
さらに、イオン分離回収システム1において、電気泳動イオン分離回収装置10より下流側かつ第2溶液82が流通する領域を第2分離下流領域24という。具体的には、イオン分離回収システム1において、第2排出ライン36、第2液タンク32、および測定部50としてのモニタ50Dを含む領域は、第2分離下流領域24である。
【0035】
<電気泳動イオン分離回収装置>
電気泳動イオン分離回収装置10は、処理対象溶液80が導入される電気泳動容器11と、電気泳動容器11内に設けられ、第1電極13と第2電極14とを有し第1電極13と第2電極14との間に電圧が印加される電極対12とを備える。
【0036】
電気泳動容器11は、断面矩形の筒状の容器であり、電気泳動容器11の上流側の導入ライン34から処理対象溶液80が導入される導入部15と、電気泳動容器11内での電気泳動処理により処理対象溶液80から生成した第1溶液81を第1排出ライン35に排出する第1排出部17と、電気泳動容器11内での電気泳動処理により処理対象溶液80から生成された第2溶液82を第2排出ライン36に排出する第2排出部18とを備える。
【0037】
電気泳動容器11内に設けられる電極対12は、第1電極13と第2電極14とを有する1対の電極からなる電極ユニットである。電極対12において、第1電極13と第2電極14とは、共に平板状に形成され、対向して配置される。第1電極13と第2電極14は、平板状以外の形状であってもよく、たとえば、メッシュ状であってもよい。第1電極13と第2電極14の材質としては導電性のある物質であればよく、特に限定されないが、たとえば、ステンレス、チタン、白金等が挙げられる。
【0038】
電極対12を構成する第1電極13と第2電極14は、それぞれ、電気泳動イオン分離回収装置10外に設けられた外部電源40である直流電源40Aの別の端子に接続されており、直流電源40Aにより第1電極13と第2電極14との間に電圧が印加されるようになっている。第1電極13と第2電極14との間の電圧値および電流値は、電圧計41および電流計42で測定される。
【0039】
電気泳動イオン分離回収装置10では、導入された処理対象溶液80に対して、電極対12を構成する第1電極13と第2電極14との間に電圧を印加して電気泳動処理をすることにより処理対象溶液80から第1溶液81と第2溶液82とを生成し、第1溶液81を第1排出部17から排出し、第2溶液82を第2排出部18から排出するようになっている。
【0040】
ここで、処理対象溶液80とは、電気泳動イオン分離回収装置10で電気泳動処理される対象となるイオンを含む液体を意味する。処理対象溶液80としては、たとえば、ナトリウムイオンNa等の陽イオンと塩化物イオンCl等の陰イオンを含む水溶液が挙げられる。
【0041】
イオン分離回収システム1に用いられる処理対象溶液80としては、液温が、通常、25〜300℃のものが用いられる。また、イオン分離回収システム1に用いられる処理対象溶液80としては、イオン濃度が、通常、1ppb〜1質量%程度のものが用いられる。
【0042】
第1溶液81とは、電気泳動イオン分離回収装置10での電気泳動処理により処理対象溶液80から生成した、第1電極13の近傍に局在化したイオンを含む溶液である。第1溶液81が含むイオンの種類は、第1電極13が陽極か陰極のいずれであるかにより変わる。第1電極13が陽極であれば第1溶液81は陰イオンを含み、第1電極13が陰極であれば第1溶液81は陽イオンを含む液となる。
【0043】
たとえば、処理対象溶液80がナトリウムイオンNaと塩化物イオンClを含む水溶液である場合において、第1電極13が陽極、第2電極14が陰極となるように電極対12に電圧が印加されたとき、第1溶液81は、陽極である第1電極13の近傍に局在化した塩化物イオンClを含む水溶液になる。
【0044】
第2溶液82とは、電気泳動イオン分離回収装置10での電気泳動処理により処理対象溶液80から生成した、第2電極14の近傍に局在化したイオンを含む溶液である。第2溶液82が含むイオンの種類は、第2電極14が陽極か陰極のいずれであるかにより変わる。第2電極14が陽極であれば第2溶液82は陰イオンを含み、第2電極14が陰極であれば第2溶液82は陽イオンを含む液となる。
【0045】
たとえば、処理対象溶液80がナトリウムイオンNaと塩化物イオンClを含む水溶液である場合において、第1電極13が陽極、第2電極14が陰極となるように電極対12に電圧が印加されたとき、第2溶液82は、陰極である第2電極14の近傍に局在化したナトリウムイオンNaを含む水溶液になる。
【0046】
電極対12を構成する第1電極13と第2電極14には、それぞれ、第1電極13と第2電極14との間の電極間距離を調整するアジャスタ72が取り付けられている。
【0047】
アジャスタ72は、第1電極13または第2電極14を相対する電極に向けて接近または離間させることにより、第1電極13と第2電極14との間の電極間隔を連続的または段階的に増加または減少させる機構である。アジャスタ72は、第1電極13と第2電極14のそれぞれに設けられ、モーター等を用いて第1電極13および第2電極14のそれぞれを移動させることができるようになっている。
【0048】
アジャスタ72としては、たとえば、モーター等により軸方向に移動可能な棒状体の先端部を、第1電極13または第2電極14の裏面に接続した機構が挙げられる。
【0049】
第1電極13および第2電極14のそれぞれに設けられたアジャスタ72、72は、制御部60で制御されることにより、第1電極13と第2電極14との間の電極間距離を適切な距離に調整できるようになっている。
【0050】
イオン分離回収システム1において、電気泳動イオン分離回収装置10の電気泳動容器11内の領域のうち、第1電極13と第2電極14との間またはその近傍に位置する領域を電極間領域22という。
【0051】
図1に示されるイオン分離回収システム1では、電極対12は1個であり、電極対12は1枚の第1電極13と1枚の第2電極14からなるため、電極間領域22は容易に定められる。
【0052】
なお、本発明では、図1に示されるイオン分離回収システム1と異なり、複数個の電極対12が電気泳動容器11の長手方向に沿って隣接するように設けられていてもよい。具体的には、複数個の電極対12が電気泳動容器11の長手方向に沿って所定の間隔で離間して配置されていてもよい。
【0053】
電気泳動イオン分離回収装置10の電気泳動容器11内には、電極間領域22に、測定部50としてのモニタ50Bが設けられる。モニタ50Bで測定された液管理パラメータの情報は、モニタ50Bと電気的に接続された制御部60に伝達される。
【0054】
<測定部>
測定部50は、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定するものである。
【0055】
本発明では、イオン分離回収システム1の系内を流通する液体である処理対象溶液80、第1溶液81および第2溶液82を総称して系内流通液体という。
【0056】
イオン分離回収システム1の運転時において、処理対象溶液80は、通常、分離上流領域21および電極間領域22に存在する。具体的には、処理対象溶液80は、通常、原水タンク30、導入ライン34、および電気泳動イオン分離回収装置10内に存在する。
【0057】
また、イオン分離回収システム1の運転時において、第1溶液81は、通常、第1分離下流領域23に存在する。具体的には、第1溶液81は、通常、第1排出ライン35、および第1液タンク31内に存在する。
【0058】
なお、電気泳動イオン分離回収装置10内でも処理対象溶液80の電気泳動処理により第1溶液81が生成される。しかし、電気泳動イオン分離回収装置10内の第1溶液81は、処理対象溶液80や第2溶液82から十分に分離されたものでない。このため、純粋な第1溶液81は、電気泳動イオン分離回収装置10内の電極間領域22には実質的に存在せず、第1分離下流領域23に存在するといえる。
【0059】
さらに、イオン分離回収システム1の運転時において、第2溶液82は、通常、第2分離下流領域24に存在する。具体的には、第2溶液82は、通常、第2排出ライン36、および第2液タンク32内に存在する。
なお、電気泳動イオン分離回収装置10内でも処理対象溶液80の電気泳動処理により第2溶液82が生成される。しかし、電気泳動イオン分離回収装置10内の第2溶液82は、処理対象溶液80や第1溶液81から十分に分離されたものでない。このため、純粋な第2溶液82は、電気泳動イオン分離回収装置10内の電極間領域22には実質的に存在せず、第2分離下流領域24に存在するといえる。
【0060】
測定部50は、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体について、液管理パラメータを測定するものである。測定部50は、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体が存在する領域に設けられる。
【0061】
処理対象溶液80が存在する領域は、通常、分離上流領域21および電極間領域22である。このため、処理対象溶液80の液管理パラメータを測定する測定部50は、通常、分離上流領域21に含まれる導入ライン34および原水タンク30、ならびに電気泳動イオン分離回収装置10内の電極間領域22から選ばれる1箇所以上の場所に設けられる。
【0062】
図1に示されるイオン分離回収システム1では、導入ライン34の途中に測定部50としてのモニタ50Aが設けられるとともに、電気泳動イオン分離回収装置10内の電極間領域22に測定部50Bが設けられている。
【0063】
第1溶液81が存在する領域は、通常、第1分離下流領域23である。このため、第1溶液81の液管理パラメータを測定する測定部50は、通常、第1分離下流領域23に含まれる第1排出ライン35、および第1液タンク31から選ばれる1箇所以上の場所に設けられる。
【0064】
図1に示されるイオン分離回収システム1では、第1排出ライン35の途中に測定部50としてのモニタ50Cが設けられている。
【0065】
第2溶液82が存在する領域は、通常、第2分離下流領域24である。このため、第2溶液82の液管理パラメータを測定する測定部50は、通常、第2分離下流領域24に含まれる第2排出ライン36、および第2液タンク32から選ばれる1箇所以上の場所に設けられる。
【0066】
図1に示されるイオン分離回収システム1では、第2排出ライン36の途中に測定部50としてのモニタ50Dが設けられている。
【0067】
測定部50は、上記系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定する。ここで、液管理パラメータとは、イオン濃度、導電率、流量および液温から選ばれた1種以上の測定項目を意味する。
【0068】
測定部50の測定する液管理パラメータがイオン濃度であるとき、測定部50としては、たとえば、イオン濃度計が用いられる。イオン濃度計を用いる場合、たとえば、モニタ50A、50Cおよび50Dをイオン濃度計とする。
【0069】
系内流通液体は、通常、イオン濃度が高くなると導電率も高くなる。このため、電極対12に一定電圧を印加する電気泳動処理の際にイオン濃度が高くなると、通常、一定電圧を維持するために電流が多く必要になる。
【0070】
なお、イオン分離回収システム1において、測定部50としてのイオン濃度計が分離上流領域21にモニタ50Aとして設けられ、イオン濃度計で測定される液管理パラメータが分離上流領域21に存在する処理対象溶液80のイオン濃度であると、電気泳動イオン分離回収装置10に導入され、電気泳動処理が行われる対象である処理対象溶液80のイオン濃度を正確に測定することができるため、好ましい
【0071】
また、測定部50としてのイオン濃度計が第1分離下流領域23にモニタ50Cとして設けられ、イオン濃度計で測定される液管理パラメータが第1分離下流領域23に存在する第1溶液81のイオン濃度である場合は、第1溶液81中に多く含まれるイオンを測定対象イオンとして分離度を測定することができる。
【0072】
また、測定部50としてのイオン濃度計が第2分離下流領域24にモニタ50Dとして設けられ、イオン濃度計で測定される液管理パラメータが第2分離下流領域24に存在する第2溶液82のイオン濃度である場合は、第2溶液82中に多く含まれるイオンを測定対象イオンとして分離度を測定することができる。
【0073】
測定部50の測定する液管理パラメータが導電率であるとき、測定部50としては、たとえば、導電率計が用いられる。導電率計を用いる場合、たとえば、モニタ50Aおよび50Bの1個以上を導電率計とする。
【0074】
モニタ50Aが導電率計であると、電気泳動処理前の処理対象溶液80の導電率を測定することができ、モニタ50Bが導電率計であると、電気泳動処理時の導電率を測定することができる。
【0075】
測定部50の測定する液管理パラメータが流量であるとき、測定部50としては、たとえば、流量計が用いられる。流量計を用いる場合、たとえば、モニタ50Aを流量計とする。モニタ50Aが流量計であると、電気泳動処理前の処理対象溶液80の流量を測定することができる。
【0076】
測定部50の測定する液管理パラメータが液温であるとき、測定部50としては、たとえば、温度計が用いられる。温度計を用いる場合、たとえば、モニタ50Bを温度計とする。
【0077】
なお、イオン分離回収システム1において、測定部50としての温度計が電極間領域22にモニタ50Bとして設けられ、温度計で測定される液管理パラメータが電極間領域22に存在する処理対象溶液80の液温であると、電気泳動イオン分離回収装置10で電気泳動処理が行われている処理対象溶液80の液温を正確に測定することが可能になるため、好ましい。
【0078】
また、イオン分離回収システム1において、測定部50としての温度計が分離上流領域21にモニタ50Aとして設けられ、温度計で測定される液管理パラメータが分離上流領域21に存在する処理対象溶液80の液温であると、電気泳動イオン分離回収装置10に導入され、電気泳動処理が行われる対象である処理対象溶液80の液温を正確に測定することが可能になるため、好ましい。
【0079】
なお、モニタ50A、50B、50Cおよび50Dは、それぞれ、複数の測定機能を有していてもよい。たとえば、モニタ50Aが、イオン濃度計と流量計との機能を有していてもよいし、モニタ50Bが、導電率計と温度計との機能を有していてもよい。
【0080】
測定部50(50A、50B、50C、50D)は、制御部60に電気的に接続される。これにより、測定部50(50A、50B、50C、50D)で測定された液管理パラメータの情報が、制御部60に伝達されるようになっている。
【0081】
<制御部>
制御部60は、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体の流量制御および液温制御、電極対12の印加電圧制御、ならびに電極対12の電極間隔制御から選ばれた1種以上の制御を行うものである。
【0082】
具体的には、制御部60は、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体中のイオンの分離度(D)を算出し、この算出された分離度(D)にもとづいて、系内流通液体の流量制御および液温制御、電極対12の印加電圧制御、ならびに電極対12の電極間隔制御から選ばれた1種以上の制御を行うものである。
【0083】
より具体的には、制御部60は、たとえば、系内流通液体中のイオンの分離度(D)を算出する算出ステップと、算出された分離度Dが、予め設定された分離度仕様値(D)の数値範囲内にあるか否かを判断する判断ステップと、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲外にある場合に、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲内に入るように、流量制御、液温制御、印加電圧制御、電極間隔制御等の制御を行う制御ステップとを行う。
【0084】
算出ステップ、判断ステップおよび制御ステップについて、詳細に説明する。
【0085】
(算出ステップ)
算出ステップは、測定部50で測定された液管理パラメータの測定値に基づいて第1溶液81および第2溶液82から選ばれた1種以上の液体中のイオンの分離度(D)を算出するステップである。
【0086】
ここで、分離度とは、処理対象溶液80中の全イオン濃度に対する、第1溶液81または第2溶液82中の測定対象イオンの濃度の比率、を意味する。すなわち、分離度は、分離後の第1溶液81または第2溶液82中の測定対象イオンのモル濃度等の濃度を、処理対象溶液80中の全イオンのモル濃度の濃度で除することにより、算出することができる。
【0087】
ここで、処理対象溶液80中の全イオン濃度とは、溶媒に起因するイオンを含まないイオンの濃度とする。たとえば、処理対象溶液80がNaとClを含む水溶液である場合、Naのイオン濃度とClのイオン濃度との合計値を全イオン濃度とし、溶媒である水に起因するイオンであるHとOHは、処理対象溶液80中の全イオン濃度に含めない。
【0088】
測定対象イオンとは、第1溶液81または第2溶液82に含まれるイオンのうち、分離度を測定する対象とするイオンであり、通常、第1溶液81または第2溶液82に最も多く含まれるイオンが選ばれる。
【0089】
たとえば、測定対象溶液が第1溶液81で、第1溶液81がClを1.8モル/l、Naを0.2モル/lの濃度で含む水溶液である場合、測定対象イオンとしては、通常、Clが選ばれる。
【0090】
分離度の算出例を示す。たとえば、処理対象溶液80が、Naを10モル、Clを10モル、NaとClとを合計で20モル含む10Lの水溶液であり、分離後の第1溶液81が、Clを9モル、Naを1モル含む5Lの水溶液であり、分離後の第2溶液82が、Clを1モル、Naを9モル含む5Lの水溶液である場合を考える。
【0091】
換言すれば、処理対象溶液80は、Naを1.0モル/l、Clを1.0モル/lの濃度で含み、Naの濃度とClの濃度との合計値が2.0モル/lになる10Lの水溶液であり、分離後の第1溶液81は、Clを1.8モル/l、Naを0.2モル/lの濃度で含む5Lの水溶液であり、分離後の第2溶液82は、Clを0.2モル/l、Naを1.8モル/lの濃度で含む5Lの水溶液になっている。
【0092】
この条件において、測定対象溶液が第1溶液81であり、第1溶液81中の測定対象イオンがClであるときの分離度は、第1溶液81のClが1.8モル/lであり、処理対象溶液80の全イオン濃度、すなわち、Clの濃度とNaの濃度との合計値が2.0モル/lであるから、1.8モル/lを2.0モル/lで除して90%と算出される。
【0093】
また、測定対象溶液が第2溶液82であり、第2溶液82中の測定対象イオンがNaであるときの分離度は、第2溶液82のNaが1.8モル/lであり、処理対象溶液80の全イオン濃度が2.0モル/lであるから、1.8モル/lを2.0モル/lで除して90%と算出される。
【0094】
なお、分離度は、濃度でなく、モル数に着目して算出することもできる。この場合は、分離後の第1溶液81または第2溶液82中の測定対象イオンのモル数を、処理対象溶液80中の測定対象イオンのモル数で除することにより、算出することができる。
【0095】
たとえば、上記例において、測定対象溶液が第1溶液81であり、第1溶液81中の測定対象イオンがClであるときの分離度は、第1溶液81中のClのモル数が9モル、処理対象溶液80中のClのモル数が10モルであるから、9モルを10モルで除して90%と算出することができる。
【0096】
(判断ステップ)
判断ステップは、液管理パラメータの測定値に基づいて算出された分離度Dが、イオン分離回収システム1の運用に好ましい分離度として予め設定された分離度仕様値Dの数値範囲内にあるか否かを判断するステップである。
【0097】
予め設定される分離度仕様値Dは、たとえば、下限値D0L、中央値D0Mおよび上限値D0Hを有する数値範囲として設定される。予め設定された分離度仕様値Dの情報は、制御部60内、または制御部60がアクセス可能な他の図示しない記憶手段等に格納される。
【0098】
算出された分離度Dが予め設定された分離度仕様値Dの数値範囲内にあるか否かは、たとえば、算出された分離度Dと分離度仕様値Dの中央値D0Mとの差分を求め、この差分が所定範囲内にあるか否かで判断する方法が挙げられる。
【0099】
(制御ステップ)
制御ステップは、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲外にある場合に、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲内に入るように、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体の流量制御および液温制御、電極対12の印加電圧制御、ならびに電極対12の電極間隔制御から選ばれた1種以上の制御を行うステップである。
【0100】
<流量制御>
流量制御は、イオン分離回収システム1に設けられた流量調節ポンプやバルブ等の流量調節機構を制御して系内流通液体の流量を調節する制御である。
【0101】
流量調節ポンプやバルブ等の流量調節機構は、たとえば、導入ライン34、第1排出ライン35、第2排出ライン36等のラインに設けられる。
【0102】
流量調節機構であるポンプ37は、制御部60に電気的に接続される。これにより、ポンプ37は、制御部60からの指示で送液量等が制御されるようになっている。
【0103】
イオン分離回収システム1では、一般的に、流量を減少させると、分離度が高くなる。
【0104】
流量制御の具体例を示す。たとえば、測定部50で測定された液管理パラメータの測定値に基づいて算出された分離度がA(%)であり、この分離度A(%)が予め設定された分離度仕様値D(%)の数値範囲外にある場合において、分離度A(%)を分離度D(%)の数値範囲内の分離度であるB(%)に変化させるときの流量制御を考える。
【0105】
流量制御前の分離度A(%)のときの導入ライン34中の処理対象溶液80の流量をV(L/min)、流量制御後の分離度B(%)のときの導入ライン34中の処理対象溶液80の流量をV(L/min)とすると、流量Vは、下記式(1)により算出される。
【0106】
[数1]
=V(B/A) (1)
【0107】
たとえば、流量制御後の分離度B(%)を、流量制御前の分離度A(%)よりも大きくする場合は、導入ライン34中の処理対象溶液80の流量をV以下になるように制御する。
【0108】
また、イオン分離回収システム1には、イオン分離回収システム1の運用に好ましい流量である流量仕様値が予め設定されていてもよい。流量仕様値が予め設定されていると、イオン分離回収システム1での流量制御が容易になる。流量仕様値の情報は、制御部60内、または制御部60がアクセス可能な他の図示しない記憶手段等に格納される。
【0109】
なお、流量制御は、液温制御と併用して行うと、流量制御での制御が容易になるため好ましい。具体的には、はじめに液温制御を行って処理対象溶液80の液温をイオン分離回収システム1の運用に好ましい液温である液温仕様値に近づけておくと、測定部50で測定された液管理パラメータの測定値に基づいて算出された分離度Dが予め設定された分離度仕様値Dの数値範囲に近づくため、流量制御での制御が容易になる。
【0110】
<液温制御>
液温制御は、イオン分離回収システム1に設けられた熱交換器やヒータ等の液温調節機構を制御して系内流通液体の液温を調節する制御である。
【0111】
熱交換器やヒータ等の液温調節機構は、たとえば、導入ライン34、第1排出ライン35、第2排出ライン36等のラインや、原水タンク30に設けられる。
【0112】
図1に示されるイオン分離回収システム1では、導入ライン34の途中に液温調節機構71が設けられている。導入ライン34の途中に液温調節機構71が設けられると、電気泳動イオン分離回収装置10に導入され、電機泳動処理が行われる対象である処理対象溶液80の液温を高い精度で調節することができるため、好ましい。
【0113】
イオン分離回収システム1では、一般的に、液温を低下させると、分離度が高くなる。
【0114】
液温調節機構71は、制御部60に電気的に接続される。これにより、液温調節機構71は、制御部60からの指示で液温調節具合が制御されるようになっている。
【0115】
また、イオン分離回収システム1には、イオン分離回収システム1の運用に好ましい液温である液温仕様値が予め設定されていてもよい。液温仕様値が予め設定されていると、イオン分離回収システム1での液温制御が容易になる。液温仕様値の情報は、制御部60内、または制御部60がアクセス可能な他の図示しない記憶手段等に格納される。
【0116】
<印加電圧制御>
印加電圧制御は、イオン分離回収システム1に設けられた直流電源40A等の電圧調節機構を制御して、電極対12の第1電極13と第2電極14との間の印加電圧を調節する制御である。
【0117】
ここで、印加電圧制御とは、電極対12への印加電圧を一定に保つ制御を意味する。印加電圧制御は、通常、直流電源40A等の電源の電流値を調節して印加電圧を一定に保つように制御する。
【0118】
図1に示されるイオン分離回収システム1では、直流電源40Aが電圧調節機構となっている。
【0119】
直流電源40Aは、制御部60に電気的に接続される。これにより、直流電源40Aは、制御部60からの指示で電極対12の印加電圧を制御することが可能になっている。
【0120】
<電極間隔制御>
電極間隔制御は、たとえば、アジャスタ72等の電極間隔調節機構を制御して、電極対12の第1電極13と第2電極14との間の電極間隔を調節する制御である。
【0121】
イオン分離回収システム1では、一般的に、電極間隔を減少させると、分離度が高くなる。
【0122】
電極間隔制御は、系内流通液体の流量制御および液温制御や、電極対12の印加電圧制御があまり有効でない場合でも、有効なことがある。
【0123】
図4および図6を用いて説明したように、水温が上昇すると、水の導電率が急激に増加する現象が生じる。このように水の導電率が増加した場合、印加電圧制御では電流を増加させる制御をするため、電源の容量が不足し電流を十分に増加させることができなくなって印加電圧を十分に制御できないことが生じうる。これに対し、電極間隔制御では、水の導電率が増加した場合に、電極間隔を減少させる制御を行えばよいため、電極間隔の下限値までの調節範囲が広く、水の導電率の増加に幅広く対応できる。
【0124】
たとえば、水温が高くなって水の導電率が10倍増加し、電極対12への一定電圧の印加のために電流を10倍多く流す必要があるときは、電極間隔が1/10になるように調整すれば、一定電圧の印加が可能になる。このように、電極間隔制御では、水の導電率の増加分に反比例するように電極間隔を調整すれば一定電圧の印加が可能になるため、調節の幅が広い。
【0125】
電極間隔制御は、通常、電極対12の第1電極13および第2電極14の少なくともいずれかに設けられた、第1電極13と第2電極14との離間距離を変化させるアジャスタを用いて行われる。
【0126】
図1に示されるイオン分離回収システム1では、電極対12の第1電極13と第2電極14とのそれぞれに、電極間隔調節機構としてのアジャスタ72が設けられている。
【0127】
各アジャスタ72は、アジャスタ72と電気的に接続された制御部60により独立して制御される。すなわち、イオン分離回収システム1では、第1電極13に設けられたアジャスタ72と、第2電極14に設けられたアジャスタ72とで、第1電極13と第2電極14とを独立して移動させることができるようになっている。
【0128】
<作用>
イオン分離回収システム1の作用について説明する。はじめに、イオン分離回収システム1の原水タンク30に処理対象溶液80を貯留しておく。処理対象溶液80は、陽イオン84と陰イオン85を含むものである。
【0129】
次に、ポンプ37を稼働して、原水タンク30中の処理対象溶液80を導入ライン34を介して電気泳動イオン分離回収装置10に導入する。このとき、液温調整機構71を適宜稼働させ、処理対象溶液80を、電気泳動処理を行うための所定の温度範囲に入るようにしておくことが好ましい。
【0130】
電気泳動イオン分離回収装置10内に処理対象溶液80が導入されたら、直流電源40Aを用いて、電極対12の第1電極13と第2電極14との間に、電気泳動処理を行うための所定の電圧を印加して、電気泳動処理を行う。以下、第1電極13が陽極、第2電極14が陰極になるように電圧を印加した場合について作用を説明する。
【0131】
直流電源40Aを用いて電極対12に電圧が印加されることにより電気泳動イオン分離回収装置10の電気泳動容器11内で電気泳動処理が行われると、処理対象溶液80に含まれる陽イオン84と陰イオン85は、第1電極13と第2電極14の極性に応じて、第1電極13または第2電極14の近傍に移動する。
【0132】
電極対12は、第1電極13が陽極、第2電極14が陰極となるように電圧を印加されているので、処理対象溶液80中の陰イオン85は陽極である第1電極13の近辺に移動して第1電極13の近辺で第1溶液81が生成され、処理対象溶液80中の陽イオン84は陰極である第2電極14の近辺に移動して第2電極14の近辺で第2溶液82が生成される。
【0133】
電気泳動イオン分離回収装置10中の第1溶液81は、第1排出部17から排出され、第1排出ライン35を流通して、第1液タンク31に回収される。また、電気泳動イオン分離回収装置10中の第2溶液82は、第2排出部18から排出され、第2排出ライン36を流通して、第2液タンク32に回収される。
【0134】
イオン分離回収システム1の運転時には、イオン分離回収システム1に設けられた測定部50、すなわち、導入ライン34の途中に設けられたモニタ50A、電気泳動イオン分離回収装置10内の電極間領域22に設けられたモニタ50B、第1排出ライン35の途中に設けられたモニタ50C、および第2排出ライン36の途中に設けられたモニタ50Dから選ばれる1個以上の測定部50を用いて、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータが測定される。
【0135】
モニタ50A、50B、50C、および50Dから選ばれる1個以上の測定部50で測定された液管理パラメータの情報は、測定部50と電気的に接続された制御部60に伝達される。
【0136】
制御部60は、測定部50から伝達された液管理パラメータの情報に基づいて、系内流通液体中のイオンの分離度(D)を算出する算出ステップと、算出された分離度Dが、予め設定された分離度仕様値(D)の数値範囲内にあるか否かを判断する判断ステップと、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲外にある場合に、算出された分離度Dが予め設定された分離度仕様値Dの数値範囲内に入るように、流量制御、液温制御、印加電圧制御、電極間隔制御等の制御を行う制御ステップとを行う。
【0137】
制御部60で、算出ステップ、判断ステップおよび制御ステップを行うことにより、イオン分離回収システム1の分離度を、算出ステップ、判断ステップおよび制御ステップを行う前の分離度Dから、分離度仕様値Dの数値範囲内の分離度Dに変化させることができ、分離度の調整が可能になる。
【0138】
<本実施形態の効果>
イオン分離回収システム1によれば、測定部50で測定した液管理パラメータに基づき、制御部60で分離度を適正化する制御を行うため、電気泳動処理の際に処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能を有するイオン分離回収システムおよびイオン分離回収方法を得ることができる。
【0139】
(第2の実施形態)
図2は、本発明のイオン分離回収システムの第2の実施形態を示す概略構成図である。
図2に示すイオン分離回収システム1Aは、図1に第1の実施形態として示したイオン分離回収システム1に比較して、直流電源40Aに代えてパルス電源40Bを用いたものである。
【0140】
図2に第2の実施形態として示すイオン分離回収システム1Aと、図1に第1の実施形態として示したイオン分離回収システム1とは、パルス電源40B以外の構成が同じであるため、図2に示すイオン分離回収システム1Aと、図1に示したイオン分離回収システム1とで同じ構成に同じ符号を付し、構成および作用の説明を省略または簡略化する。
【0141】
パルス電源40Bは、パルス状の波形の電流を発生可能な装置であり、公知のパルス電源が用いられる。
【0142】
パルス電源40Bとしては、10msecよりも短時間だけ電圧を印加することができる電源であることが好ましい。このようなパルス電源40Bとしては、通常1kHz以上、好ましくは2kHz以上の繰り返し駆動のパルス電源が用いられる。1kHz以上の繰り返し駆動のパルス電源であると、電気泳動処理の際に、電極対12の電極表面近傍への電気二重層の形成によるイオン分離効率の低下が生じにくいため好ましい。
【0143】
図2に示したイオン分離回収システム1Aでは、外部電源40としてパルス電源40Bを用いることにより、図1に第1の実施形態として示したイオン分離回収システム1に比較して、電気泳動処理におけるイオンの分離効率が高くなっている。
【0144】
直流電源40Aは、制御部60に電気的に接続される。これにより、パルス電源40Bは、制御部60からの指示で電極対12の印加電圧を制御することが可能になっている。
【0145】
パルス電源40Bを用いることにより、電気泳動処理におけるイオンの分離効率が高くなる理由について説明する。
【0146】
一般的に、水温やイオン濃度が高いことにより液中の導電率が高くなるが、このように液中の導電率が高い場合は、導電率が低い場合よりも電極表面の電圧降下が大きくなることが知られている。この電圧降下の詳しいメカニズムは十分には解明されていないが、液の導電率が高いと電極表面の近傍に電気二重層が形成されるために、電極表面の電圧降下が大きくなるものと考えられる。
【0147】
たとえば、電極対12に対し、第1電極13の電位が10V、第2電極14の電位が0V、すなわち第1電極13と第2電極14との間の電位差が10Vになるように電圧を印加した場合において、第1電極13および第2電極14の表面近傍に電気二重層が形成されると、条件により、第1電極13の近傍の電位が10Vから5V程度に減少するとともに、第2電極14の近傍の電位が0Vから5V程度に増加することが生じうる。
【0148】
このように、第1電極13の近傍の電位と、第2電極14の近傍の電位とが、ともに5V程度になると、第1電極13と第2電極14との間の電位勾配がほとんど0になり、電気泳動によるイオンの分離効率が著しく低下するため好ましくない。
【0149】
電気二重層の形成に要する時間は、10msec程度であることが多い。また、電極対12に電圧を印加する電源が直流電源であると、形成された電気二重層が維持されるため、電極対12に電圧を印加する電源が直流電源であると、条件によっては、開始から10msec程度で、電気泳動処理が不十分になることもあり得る。
【0150】
電気二重層の形成による弊害を除去する方法としては、電気二重層が十分に形成される前に電圧の印加を止める方法、たとえば、10msecよりも短時間だけ電圧を印加する方法が挙げられる。パルス電源40Bは、電気二重層の形成を防止するとともに形成されかけた電気二重層を破壊することができるため、電極対12の第1電極13と第2電極14との間の電位勾配を大きいまま維持し、電気泳動処理によるイオン分離効率を高く維持することができる。
【0151】
<作用>
イオン分離回収システム1Aの作用について説明する。図2に第2の実施形態として示したイオン分離回収システム1Aの作用は、図1に第1の実施形態として示したイオン分離回収システム1の作用に比較して、直流電源40Aに代えてパルス電源40Bを用いたこと以外の作用が同じであるため、作用の説明を省略または簡略化する。
【0152】
はじめに、イオン分離回収システム1Aの原水タンク30に処理対象溶液80を貯留しておき、さらに、ポンプ37を稼働して、原水タンク30中の処理対象溶液80を導入ライン34を介して電気泳動イオン分離回収装置10に導入する。ここまでは、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じである。
【0153】
電気泳動イオン分離回収装置10内に処理対象溶液80が導入されたら、パルス電源40Bを用いて、電極対12の第1電極13と第2電極14との間に、電気泳動処理を行うための所定の電圧を所定の繰り返し駆動数で印加して、電気泳動処理を行う。以下、第1電極13が陽極、第2電極14が陰極になるように電圧を印加した場合について作用を説明する。
【0154】
パルス電源40Bからパルス電流が発振されることにより電極対12に電圧が印加されているときは、電気泳動イオン分離回収装置10の電気泳動容器11内で電気泳動処理が行われ、処理対象溶液80に含まれる陽イオン84と陰イオン85は、パルス電源40Bで電圧を印加された時間のみ、第1電極13と第2電極14の極性に応じて、第1電極13または第2電極14の近傍に移動する。
【0155】
一方、パルス電源40Bからパルス電流が発振されず電極対12に電圧が印加されないときは、電気泳動イオン分離回収装置10の電気泳動容器11内で電気泳動処理が行われない。
【0156】
上記のパルス電源40Bからパルス電流が発振される状態と、発振されない状態とは、1kHz以上の繰り返し頻度で繰り返し行われる。
【0157】
イオン分離回収システム1Aでは、パルス電源40Bからパルス電流が発振される間、電極対12は、第1電極13が陽極、第2電極14が陰極となるように電圧を印加されているので、処理対象溶液80中の陰イオン85は陽極である第1電極13の近辺に移動し、処理対象溶液80中の陽イオン84は陰極である第2電極14の近辺に移動する。
【0158】
イオン分離回収システム1Aでは、パルス電源40Bからパルス電流が発振される状態と発振されない状態とを所定の繰り返し頻度で繰り返すことにより、電気泳動イオン分離回収装置10の電気泳動容器11内において、第1電極13の近辺で第1溶液81が生成されるとともに、第2電極14の近辺で第2溶液82が生成される。
【0159】
電気泳動イオン分離回収装置10中の第1溶液81は、第1排出部17から排出され、第1排出ライン35を流通して、第1液タンク31に回収される。また、電気泳動イオン分離回収装置10中の第2溶液82は、第2排出部18から排出され、第2排出ライン36を流通して、第2液タンク32に回収される。
【0160】
これ以後の作用は、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じであるため、説明を省略する。
【0161】
<本実施形態の効果>
イオン分離回収システム1Aによれば、図1に第1の実施形態として示したイオン分離回収システム1と同様の効果に加え、パルス電源40Bを用いることにより、電極対12の電極表面の近傍に電気二重層が形成されにくく、電極対12の電位勾配を大きいまま維持し、電気泳動処理によるイオン分離効率を高く維持することができる。
【0162】
(第3の実施形態)
図3は、本発明のイオン分離回収システムの第3の実施形態を示す概略構成図である。
【0163】
図3に示すイオン分離回収システム1Bは、図1に第1の実施形態として示したイオン分離回収システム1に比較して、直流電源40Aに加えてさらにパルス電源40Bを備えるとともに、電気泳動イオン分離回収装置10に代えて電気泳動イオン分離回収装置10Bを用いたものである。電気泳動イオン分離回収装置10Bは、独立した電極対12を4個備え、各電極対12にそれぞれ設けられたアジャスタ72により電極対12毎の電極間隔制御が独立して行われるようにしたものである。
【0164】
図3に第3の実施形態として示すイオン分離回収システム1Bと、図1に第1の実施形態として示したイオン分離回収システム1とは、パルス電源40B、および電気泳動イオン分離回収装置10B以外の構成が同じであるため、図3に示すイオン分離回収システム1Bと、図1に示したイオン分離回収システム1とで同じ構成に同じ符号を付し、構成および作用の説明を省略または簡略化する。
【0165】
パルス電源40Bは、図2に第2の実施形態として示すイオン分離回収システム1Aのパルス電源40Bと同じものが用いられる。
図3に示したイオン分離回収システム1Bでは、外部電源40として直流電源40Aとパルス電源40Bとを併用する。
【0166】
電気泳動イオン分離回収装置10Bは、図1に第1の実施形態として示したイオン分離回収システム1を構成する電気泳動イオン分離回収装置10において、1個の電極対12に代えて独立した電極対12を4個備えるとともに、各電極対12にアジャスタ72が設けられ、アジャスタ72により電極対12毎の電極間隔制御が独立して行われるようにしたものである。
【0167】
独立して設けられた4個の電極対12、12、12、12のうち、一部の電極対は直流電源40Aにより印加電圧制御が行われ、残りの電極対はパルス電源40Bにより印加電圧制御が行われるようになっている。
【0168】
すなわち、独立して設けられた4個の電極対12、12、12、12のうち、電気泳動イオン分離回収装置10の電気泳動容器11内の上流側、すなわち、図3中の左側から順番に1番目と3番目の2個の電極対12、12については直流電源40Aが電圧を印加し、残りの2番目と4番目の2個の電極対12、12についてはパルス電源40Bが電圧を印加できるようになっている。
【0169】
また、各電極対12に設けられたアジャスタ72は、制御部60により、電極間隔制御が独立して行われるようになっている。
【0170】
<作用>
イオン分離回収システム1Bの作用について説明する。図3に第3の実施形態として示したイオン分離回収システム1Bの作用は、図1に第1の実施形態として示したイオン分離回収システム1の作用に比較して、直流電源40Aに加えてさらにパルス電源40Bを備えること、および、電気泳動イオン分離回収装置10に代えて電気泳動イオン分離回収装置10Bを用いたこと以外の作用が同じであるため、作用の説明を省略または簡略化する。
【0171】
はじめに、イオン分離回収システム1Bの原水タンク30に処理対象溶液80を貯留しておき、さらに、ポンプ37を稼働して、原水タンク30中の処理対象溶液80を導入ライン34を介して電気泳動イオン分離回収装置10Bに導入する。ここまでは、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じである。
【0172】
電気泳動イオン分離回収装置10B内に処理対象溶液80が導入されたら、直流電源40Aとパルス電源40Bとを用いて、4個の電極対12につき、第1電極13と第2電極14との間に、電気泳動処理を行うための所定の電圧を印加する。
【0173】
具体的には、独立して設けられた4個の電極対12、12、12、12のうち、電気泳動イオン分離回収装置10の電気泳動容器11内の上流側、すなわち、図3中の左側から順番に1番目と3番目の2個の電極対12、12については直流電源40Aが電圧を印加し、残りの2番目と4番目の2個の電極対12、12についてはパルス電源40Bが電圧を印加する。
【0174】
直流電源40Aへの電圧の印加方法は、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じであり、パルス電源40Bへの電圧の印加方法は、図2に第2の実施形態として示したイオン分離回収システム1Aの作用と同じであるため、作用の説明を省略する。
【0175】
イオン分離回収システム1Bでは、電気泳動イオン分離回収装置10Bの電気泳動容器11内において、第1電極13の近辺で第1溶液81が生成されるとともに、第2電極14の近辺で第2溶液82が生成される。
【0176】
電気泳動イオン分離回収装置10B中の第1溶液81は、第1排出部17から排出され、第1排出ライン35を流通して、第1液タンク31に回収される。また、電気泳動イオン分離回収装置10B中の第2溶液82は、第2排出部18から排出され、第2排出ライン36を流通して、第2液タンク32に回収される。
【0177】
イオン分離回収システム1Bの運転時には、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じように、測定部50、すなわち、モニタ50A、50B、50C、および50Dから選ばれる1個以上の測定部50を用いて、系内流通液体について液管理パラメータが測定される。
【0178】
モニタ50A、50B、50C、および50Dから選ばれる1個以上の測定部50で測定された液管理パラメータの情報は、測定部50と電気的に接続された制御部60に伝達される。
【0179】
制御部60は、測定部50から伝達された液管理パラメータの情報に基づいて、図1に第1の実施形態として示したイオン分離回収システム1の作用と同じように、算出ステップと、判断ステップと、制御ステップとを行う。
【0180】
なお、イオン分離回収システム1Bは、独立して設けられた4個の電極対12、12、12、12のうち、一部の電極対12に直流電源40Aが電圧を印加し、残りの電極対12にパルス電源40Bが電圧を印加する。
【0181】
このため、制御ステップで印加電圧制御が行われる場合は、一部の電極対12について直流電源40Aで印加電圧制御が行われ、残りの電極対12についてパルス電源40Bで印加電圧制御が行われる。
【0182】
また、イオン分離回収システム1Bは、各電極対12にそれぞれ設けられたアジャスタ72により電極対12毎の電極間隔制御が独立して行われる。このため、制御ステップで電極間隔制御が行われる場合は、電極対12毎の電極間隔制御が独立して行われる。
【0183】
制御部60で、算出ステップ、判断ステップおよび制御ステップを行うことにより、イオン分離回収システム1の分離度を、算出ステップ、判断ステップおよび制御ステップを行う前の分離度Dから、分離度仕様値Dの数値範囲内の分離度Dに変化させることができ、分離度の調整が可能になる。
【0184】
<本実施形態の効果>
イオン分離回収システム1Bによれば、図1に第1の実施形態として示したイオン分離回収システム1と同様の効果、および図2に第2の実施形態として示したイオン分離回収システム1Aと同様の効果を有する。
【0185】
また、イオン分離回収システム1Bによれば、直流電源40Aにより印加電圧制御が行われる電極対12と、パルス電源40Bにより印加電圧制御が行われる電極対12とからなる4個の電極対12について、それぞれ、電極対12毎に電極間隔制御が独立して行われるため、図1に第1の実施形態として示したイオン分離回収システム1や図2に第2の実施形態として示したイオン分離回収システム1Aに比較してより精度の高い印加電圧制御および電極間隔制御が可能になる。
【0186】
このため、イオン分離回収システム1Bによれば、図1に第1の実施形態として示したイオン分離回収システム1や図2に第2の実施形態として示したイオン分離回収システム1Aに比較して、電気泳動処理によるイオン分離効率を高く維持しやすくなる。
【0187】
なお、図3に第3の実施形態として示したイオン分離回収システム1Bでは、4個の電極対12が設けられているが、本発明のイオン分離回収システムは、電極対12の数を2個以上の任意の個数とすることができる。
【0188】
また、図3に第3の実施形態として示したイオン分離回収システム1Bでは、4個の電極対12、12、12、12のうち、電気泳動イオン分離回収装置10Bの電気泳動容器11内の上流側から順番に1番目と3番目の2個の電極対12、12については直流電源40Aが電圧を印加し、残りの2番目と4番目の2個の電極対12、12についてはパルス電源40Bが電圧を印加できるようになっている。
【0189】
しかし、本発明のイオン分離回収システムでは、直流電源40Aが電圧を印加する電極対12の個数およびこの電極対12の電気泳動容器11内の位置、ならびにパルス電源40Bが電圧を印加する電極対12の個数およびこの電極対12の電気泳動容器11内の位置を、任意に選択することができる。
【0190】
さらに、図1に第1の実施形態として示したイオン分離回収システム1、図2に第2の実施形態として示したイオン分離回収システム1A、および図3に第3の実施形態として示したイオン分離回収システム1Bには、測定部50として50A、50B、50Cおよび50Dが設けられているが、本発明のイオン分離回収システムは、これらの測定部50のうち、2個以上設けられていればよい。
【0191】
また、図1に第1の実施形態として示したイオン分離回収システム1、図2に第2の実施形態として示したイオン分離回収システム1A、および図3に第3の実施形態として示したイオン分離回収システム1Bでは、測定部50としてのモニタ50Bは、電気泳動イオン分離回収装置10または10Bの電気泳動容器11内の中ほどより下流側に設けられているが、本発明のイオン分離回収システムは、モニタ50Bが電気泳動イオン分離回収装置10または10Bの電気泳動容器11内の中ほどより上流側に設けられていてもよい。
【0192】
さらに、図1に第1の実施形態として示したイオン分離回収システム1、および図2に第2の実施形態として示したイオン分離回収システム1Aでは、電極対12が1個になっている。
【0193】
しかし、本発明のイオン分離回収システムでは、第1の実施形態として示したイオン分離回収システム1、および第2の実施形態として示したイオン分離回収システム1Aにおいても、図3に第3の実施形態として示したイオン分離回収システム1Bと同様に、独立してアジャスタ72で電極間隔制御が可能な複数個の電極対12が設けられていてもよい。
【0194】
また、図1に第1の実施形態として示したイオン分離回収システム1、図2に第2の実施形態として示したイオン分離回収システム1A、および図3に第3の実施形態として示したイオン分離回収システム1Bでは、電気泳動容器11が断面矩形の筒状の容器であるが、本発明のイオン分離回収システムは、電気泳動容器11の形状は特に限定されない。
【0195】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0196】
1、1A、1B イオン分離回収システム
10、10B 電気泳動イオン分離回収装置
11 電気泳動容器
12 電極対
13 第1電極
14 第2電極
15 導入部
17 第1排出部
18 第2排出部
21 分離上流領域
22 電極間領域
23 第1分離下流領域
24 第2分離下流領域
30 原水タンク
31 第1液タンク
32 第2液タンク
34 導入ライン
35 第1排出ライン
36 第2排出ライン
37 ポンプ
40 外部電源
40A 直流電源(外部電源)
40B パルス電源(外部電源)
41 電圧計
42 電流計
50 測定部
50A、50B、50C、50D モニタ(測定部)
60 制御部
71 液温調整機構
72 アジャスタ
80 処理対象溶液
81 第1溶液
82 第2溶液
84 陽イオン
85 陰イオン

【特許請求の範囲】
【請求項1】
第1電極と第2電極との間に電圧が印加される電極対を備え、導入された処理対象溶液を電気泳動処理することにより、前記第1電極の近傍に局在化したイオンを含む第1溶液と前記第2電極の近傍に局在化したイオンを含む第2溶液とに分離して排出する電気泳動イオン分離回収装置と、
前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定する測定部と、
前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体の流量制御および液温制御、前記電極対の印加電圧制御、ならびに前記電極対の電極間隔制御から選ばれた1種以上の制御を行う制御部と、
を備えることを特徴とするイオン分離回収システム。
【請求項2】
前記電気泳動イオン分離回収装置に導入される処理対象溶液を貯留する原水タンクと、
前記電気泳動イオン分離回収装置から排出された前記第1溶液を貯留する第1液タンクと、
前記電気泳動イオン分離回収装置から排出された前記第2溶液を貯留する第2液タンクと、
を備えることを特徴とする請求項1に記載のイオン分離回収システム。
【請求項3】
前記制御部は、
前記測定部で測定された液管理パラメータの測定値に基づいて前記第1溶液および第2溶液から選ばれた1種以上の系内流通液体中のイオンの分離度を算出し、
この算出された分離度が、予め設定された分離度仕様値の数値範囲内にあるか否かを判断し、
前記算出された分離度が前記予め設定された分離度仕様値の数値範囲外にある場合に、前記算出された分離度が前記予め設定された分離度仕様値の数値範囲内に入るように、前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体の流量制御および液温制御、前記電極対の印加電圧制御、ならびに前記電極対の電極間隔制御から選ばれた1種以上の制御を行うことを特徴とする請求項1または2に記載のイオン分離回収システム。
【請求項4】
前記測定部は、
前記処理対象溶液のうち、前記電気泳動イオン分離回収装置内の前記第1電極と第2電極との間に位置する電極間領域に存在する処理対象溶液、
前記処理対象溶液のうち、前記電気泳動イオン分離回収装置より上流側かつ前記処理対象溶液が流通する領域である分離上流領域に存在する処理対象溶液、
前記第1溶液のうち、前記電気泳動イオン分離回収装置より下流側かつ前記第1溶液が流通する領域である第1分離下流領域に存在する第1溶液、および
前記第2溶液のうち、前記電気泳動イオン分離回収装置より下流側かつ前記第2溶液が流通する領域である第2分離下流領域に存在する第2溶液、
から選ばれた1種以上の系内流通液体の液管理パラメータを測定するように配置されたことを特徴とする請求項1〜3のいずれか1項に記載のイオン分離回収システム。
【請求項5】
前記測定部は、前記電極間領域または分離上流領域に設けられた温度計であり、
前記液管理パラメータは、前記電極間領域または分離上流領域に存在する前記処理対象溶液の液温であり、
前記制御部は、前記分離上流領域に存在する前記処理対象溶液の液温制御を行うことを特徴とする請求項1〜4のいずれか1項に記載のイオン分離回収システム。
【請求項6】
前記測定部は、前記分離上流領域に設けられたイオン濃度計であり、
前記液管理パラメータは、前記分離上流領域に存在する前記処理対象溶液のイオン濃度であり、
前記制御部は、前記電極対の電極間隔制御を行うことを特徴とする請求項1〜5のいずれか1項に記載のイオン分離回収システム。
【請求項7】
前記電極対に電圧を印加する外部電源は、直流電源であることを特徴とする請求項1〜6のいずれか1項に記載のイオン分離回収システム。
【請求項8】
前記電極対に電圧を印加する外部電源は、1kHz以上の繰り返し駆動のパルス電源であることを特徴とする請求項1〜7のいずれか1項に記載のイオン分離回収システム。
【請求項9】
前記電極対は複数個設けられ、各電極対の電極間隔制御は独立して行われることを特徴とする請求項1〜8のいずれか1項に記載のイオン分離回収システム。
【請求項10】
前記電極対は複数個設けられ、複数個の電極対のうち、一部の電極対は前記直流電源により印加電圧制御が行われ、残りの電極対は前記パルス電源により印加電圧制御が行われることを特徴とする請求項8または9に記載のイオン分離回収システム。
【請求項11】
第1電極と第2電極との間に電圧が印加される電極対を備え、導入された処理対象溶液を電気泳動処理することにより、前記第1電極の近傍に局在化したイオンを含む第1溶液と前記第2電極の近傍に局在化したイオンを含む第2溶液とに分離して排出する電気泳動イオン分離回収装置を用い、
前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体について、イオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定するステップと、
前記処理対象溶液、第1溶液および第2溶液から選ばれた1種以上の系内流通液体の流量制御および液温制御、前記電極対の印加電圧制御、ならびに前記電極対の電極間隔制御から選ばれた1種以上の制御を行うステップと、
を備えることを特徴とするイオン分離回収方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−700(P2013−700A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−136508(P2011−136508)
【出願日】平成23年6月20日(2011.6.20)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】