説明

Fターム[4D061GA09]の内容

電気、磁気による水処理 (36,536) | 検知対象 (1,571) | 被電解水の性質 (372) | 水温 (56)

Fターム[4D061GA09]に分類される特許

1 - 20 / 56


【課題】スケール成分を除去するスケール除去装置の電極構造において、その電極板に接続される配線端子の配置構成に伴う局部的な電流密度の集中を回避して、電解処理の効率化と電極構造におけるメンテンナンス性の向上を図る。
【解決手段】本発明のスケール除去装置の電極構造は、熱交換設備11に循環供給される冷却水11cを電解処理する電解槽12を備えたスケール除去装置10の電極構造であって、電解槽12内に互いに所定の電極間隔を有しその極性を交互に切り替えて並列配置される複数の電極板13a〜13dと、電極板の周縁114から垂直方向に延出させた配線端子14a〜14dと、を有することを特徴とする。 (もっと読む)


【課題】電気泳動処理の際に処理液温や分離対象イオンの濃度が変化した場合でも安定したイオン分離性能を有するイオン分離回収システムおよびイオン分離回収方法を提供すること。
【解決手段】イオン分離回収システム1は、第1電極13と第2電極14との間に電圧が印加される電極対12を備え、処理対象溶液80を電気泳動処理して第1溶液81と第2溶液82とに分離して排出する電気泳動イオン分離回収装置10と、処理対象溶液80、第1溶液81および第2溶液82から選ばれた1種以上の系内流通液体についてイオン濃度、導電率、流量および液温から選ばれた1種以上の液管理パラメータを測定する測定部50と、系内流通液体の流量制御および液温制御、電極対12の印加電圧制御、ならびに電極対12の電極間隔制御から選ばれた1種以上の制御を行う制御部60とを備える。 (もっと読む)


【課題】水中のスケール成分の除去効率に優れた電気分解装置、及びこれを備えたヒートポンプ式給湯機を提供する。
【解決手段】各電極対49は、一対の電極板53を有している。複数の電極板53は、電極板53の厚み方向に、間隔をあけて配列されている。複数の電極対49は、入口から容器47内に流入した水が各電極対49における一対の電極板53の間を通って出口に至るように、複数の電極板53により形成された水流路Fを有している。水熱交換器21により加熱される水の温度が予め設定された値以上の場合、又は給湯機の設定温度が予め設定された値以上の場合に、電源51により各電極対49に電圧が印加される。 (もっと読む)


【課題】電極への負担を抑えて効率的にスケールを除去することができる電気分解装置および衛生洗浄装置を提供することを目的とする。
【解決手段】複数の電極を有する電解槽と、前記電極間に電圧を印加する通電部と、前記電解槽への水の供給を制御する給水制御部と、前記電解槽に供給される水の温度に関する情報を取得する温度情報部と、前記温度情報部が取得した前記情報に基づいて前記電極間に印加する電圧の極性を反転させる頻度を決定する制御部と、を備えたことを特徴とする電気分解装置が提供される。 (もっと読む)


【課題】水流路の水が比較的高温であっても、この水流路の水を充分に殺菌・浄化できる給湯システムを提供する。
【解決手段】給湯システムには、水浄化ユニット(60)が設けられる。水浄化ユニット(60)は、水流路に接続される水浄化流路(61)と、水浄化流路(61)の水中でストリーマ放電を生起する電極対(64,65)と、電極対(64,65)に直流電圧を印加する直流電源(70)とを有し、ストリーマ放電によって水浄化流路(61)の水中に過酸化水素を生成するように構成される。給湯システムには、水浄化流路(61)に流入する水を加熱する加熱部と、加熱部が水を加熱する動作を開始した後に水浄化ユニット(60)がストリーマ放電を開始するように、加熱部及び水浄化ユニット(60)を制御する制御部が設けられる。 (もっと読む)


【課題】信頼性の高い浄化を行うと共に、省エネルギ化を図る。
【解決手段】水浄化ユニット(60)は、水の給湯タンク(41)と、給湯タンク(41)内に設けられ、給湯タンク(41)における水中でストリーマ放電を生起する電極対(64,65)と、電極対(64,65)に直流電圧を印加する直流電源(70)とを有し、ストリーマ放電によって上記貯留水に過酸化水素を生成して貯留水を浄化する放電ユニット(62)と、給湯タンク(41)内の貯留水の温度を検出する温度センサ(S1〜S3)と、温度センサ(S1〜S3)が検出した貯留水の温度にしたがって放電ユニット(62)の浄化運転を制御する運転制御部(81)とを備えている。運転制御部(81)は、貯留水の温度が高くなるにしたがって放電ユニット(62)の放電時間を短くする。 (もっと読む)


【課題】水中のスケール成分の除去効率に優れた電気分解装置、及びこれを備えたヒートポンプ式給湯機を提供する。
【解決手段】各電極対49は、一対の電極板53を有している。複数の電極板53は、電極板53の厚み方向に、間隔をあけて配列されている。複数の電極対49は、入口から容器47内に流入した水が各電極対49における一対の電極板53の間を通って出口に至るように、複数の電極板53により形成された水流路Fを有している。 (もっと読む)


【課題】スケールの発生を抑制することができる殺菌装置および衛生洗浄装置を提供することを目的とする。
【解決手段】殺菌水を生成可能な電解槽と、前記電解槽に水を供給する給水手段と、前記電解槽への通電と、前記給水手段から前記電解槽への通水と、を制御する制御部と、を備え、前記電解槽で生成された殺菌水を供給可能な殺菌装置であって、前記制御部は、前記殺菌水の供給を停止する際に、前記電解槽への通電を停止させた後に、前記給水手段から供給される水を前記電解槽へ所定時間通水させる制御を実行することを特徴とする殺菌装置が提供される。 (もっと読む)


【課題】イオン交換膜電気透析装置における海水の濃縮効率を良好とするとともに、海水を昇温させるために要する電力消費を抑制することができる製塩装置及び製塩方法を提供することを目的とする。
【解決手段】製塩装置1は、供給経路を介して供給された海水を濃縮するイオン交換膜電気透析装置と、濃縮した海水の水分を蒸発させて塩を結晶化させる蒸発結晶化装置9と、前記イオン交換膜電気透析装置の前段で、海水を前記供給経路からタービン用復水器に冷媒として使用可能に導く第1経路6と、前記タービン用復水器11で冷媒として使用された海水を、前記第1経路6よりも下流側の前記供給経路に導く第2経路7と、を備える。 (もっと読む)


【課題】電気式脱イオン装置の目詰まりの発生や処理水の水質悪化を防止するとともに、電気式脱イオン装置の処理効率の低下や、装置の短命化を防止できる純水製造方法及び製造装置を提供することを目的とする。
【解決手段】電気式脱イオン装置14により脱イオンを行う純水製造処理と、電気式脱イオン装置14に熱水を供給して殺菌する熱水殺菌処理と、を交互に繰り返して行う純水製造方法であって、純水製造処理時における、電気式脱イオン装置14の濃縮室142内の被処理水の流れ方向を、脱塩室141の被処理水の流れ方向に対して向流方向とし、前記熱水殺菌処理時における、電気式脱イオン装置14の濃縮室142内の被処理水の流れ方向を、脱塩室141内の被処理水の流れ方向に対して並流方向とする、純水製造方法。 (もっと読む)


【課題】電解処理により被処理水中の硬度成分を除去する軟水化装置において、電極で生じたスケールを円滑に除去することができる軟水化装置と、この軟水化装置を備えた飲料製造装置を提供する。
【解決手段】被処理水の流路中に配置された通水性の少なくとも一対の電極105、106と、両電極105、106に電圧を供給する制御装置C(制御手段)と、被処理水の流入部102及び流出部103と、電極106の下流側に位置し、陰極となる一方の電極に生じたスケールを排出するためのスケール排出部112と、流入部102から流出部103への被処理水の流通を許容した状態で、スケールの流通を阻止可能な遮蔽部材140とを備えた。 (もっと読む)


【課題】換気ダクトが結露しにくい状態を維持しながら、電解水生成装置への通電により発生する水素ガスが浴室内に滞留蓄積されることをなくすこと。
【解決手段】被電解水に浸漬した電極間に電流を流して次亜塩素酸を含む電解水を生成する電解水生成装置6と、生成した電解水のミストを空中に浮遊しにくい程度の粒子径で噴霧する浴室洗浄用ノズル4と、浴室13内の空気を吸い込んで屋外に排出する換気ファン42とを具備する。換気ファン42は、浴室13内に噴霧される電解水のミストを吸い込まない程度の小風量で浴室13内の空気を換気する小風量モードと、浴室13内の空気を大風量で換気する大風量モードとの間で風量設定を可変可能とすると共に、電解水生成装置6への通電時には小風量モードで換気ファン42を駆動させるための制御部39を備える浴室洗浄装置1である。 (もっと読む)


【課題】 目的水となるもの以外の水も流れる流路での流量の測定結果を用いつつ、他の条件も加味して目的水の使用量を算出して表示し、簡略な流量測定機構を維持しながら使用者が実際に使用に供した水の量を適切に把握できる水処理装置を提供する。
【解決手段】 目的水の分を含む水の流量を測定する測定手段を使用し、得られた流量の情報から、算出手段が目的水の実際に使用された量に相当する有効水量の値を算出すると共に、この有効水量を表示手段で表示し、また、これら算出及び表示の各手順を通水状態の目的水供給開始時点を基準として開始して、実際に使用者が目的水を使用している状況で、使用者に目的水の使用量の目安を提示することから、使用される目的水の量を適切に見積って得られた有効水量の表示で、使用者が目的水の使用量を容易に把握でき、飲用等使用した量を確実に認識して水使用の管理が適切に行える。 (もっと読む)


【課題】耐用性とメンテナンス性に優れた冷却水のスケール除去装置を提供する。
【解決手段】クーリングタワーなどの熱交換設備11に供給される冷却水中のスケール成分を電解処理により析出除去する冷却水のスケール除去装置10であって、熱交換設備に供給される冷却水を電解処理して熱交換設備に循環供給する電解槽12と、電解槽内に設置された複数の電極板13a〜13dと、電極板により形成される接続回路構成を切り換えるリレーボックス部14と、リレーボックス部により設定された電極板間に電圧を印加する電源部15と、電極板間に定電流を供給する定電流制御における電源部の電源電圧の変化に基づいてリレーボックス部を制御する電解制御部16と、を有する。 (もっと読む)


膜システムを通過する供給水流からのスケール形成及び堆積の阻害方法が開示される。本方法は:(a)供給水流のpHを約7.0〜約8.2の範囲に制御すること;(b)膜システムが逆浸透システム、ナノろ過システム、電気透析システム、電気脱イオン化システム又はそれらの組み合わせであるときに随意に供給水流の温度を約5℃〜約40℃の範囲に制御すること;(c)膜システムが膜蒸留システムであるときに、随意に供給水流の温度を約40℃〜約80℃の範囲に制御すること;及び(d)供給水流に有効量のAA−AMPS共重合体を含むスケール阻害剤を加えることを含む。 (もっと読む)


【課題】高温下で不純物イオンのみを選択的に除去できる脱塩処理装置を用いることにより、不純物イオン脱塩浄化負荷を軽減し、ブローダウン水の冷却操作に伴う熱損失の軽減を図るとともに、アンモニア等の薬剤消費を抑制する。
【解決手段】アンモニアを含有する被処理水12を、一対の隔膜14と前記一対の隔膜14の外側に対向配置される電極17に直流電圧を印加する脱塩装置11により処理する水処理方法において、前記被処理水12を100℃以上で処理することにより、不純物イオン成分が除去されたアンモニアが濃縮された処理水を得る。 (もっと読む)


【課題】活性炭処理した後に中空糸膜や逆浸透膜またはナノろ過膜で膜ろ過処理し、膜ろ過水を貯水タンクに貯留する浄水器において、膜処理した浄水を貯留させる貯水タンク等における雑菌汚染を長期間抑制できる浄水器を提供する。
【解決手段】銀添着活性炭で水をろ過処理する前処理カートリッジ40と、逆浸透膜またはナノろ過膜で膜ろ過処理する膜ろ過カートリッジ15とで処理する浄水器であって、電圧を印加した電極から抗菌性金属イオンを溶出する抗菌ユニット70を、前記膜ろ過カートリッジ15と前記貯水タンク18との間に配するとともに、水温検出手段50と前記前処理カートリッジ40と前記貯水タンク18との間に3方切換弁55を有している浄水器。 (もっと読む)


【課題】浴槽内におけるカビや酵母菌等の繁殖を確実に抑制して次の入浴時まで浴槽内を清潔に保つことができる浴槽等自動洗浄システムを提供する。
【解決手段】浴槽等自動洗浄システムは、浴槽洗浄又は配管洗浄に当たって湯又は水を放出させるために浴槽2へ通じる通水管路(洗浄管32、湯張り管17等)においてこの通水管路に流れる湯又は水に対し電気分解により銀イオンを溶解させる銀電極62を備えた銀イオン発生装置6(60)を設け、また、銀イオン発生装置6(60)の銀電極62に通電する電流値を制御することにより上記の湯又は水の銀イオン濃度を変更させる濃度制御手段51(71)を設ける。濃度制御手段51(71)は、例えば、夏季には高濃度となるように季節に応じて銀イオン濃度を変更させる。 (もっと読む)


【課題】被処理水中の微生物とスケール成分とを除去することができ、且つ、被処理水中の性質に応じて、処理する対象を自在に選択して、効率的な水処理を実現できる水処理装置及び当該水処理装置を備えた水処理システムを提供する。
【解決手段】水処理装置1は、被処理水の流路中に配置された通水性を有する第1の電極6と、この第1の電極6の下流側に位置して当該第1の電極6により通電される炭素繊維8と、この炭素繊維8の下流側に位置して、第1の電極6と対を成す通水性の第2の電極7と、この第2の電極7と炭素繊維8間に介在された非導電性の多孔質スペーサ9とをそれぞれ有する第1及び第2のモジュールM1、M2を備える。 (もっと読む)


【課題】 給湯装置において、排ガスドレン水からホルムアルデヒドを除去処理して再利用可能な水を生成する。
【解決手段】 二次熱交換器から集水されたドレン水を電解槽51に導く。電解槽内に陽極54,陰極55を交互に配置し直流電源56からの通電により電気分解によりホルムアルデヒドを酸化除去する。循環ポンプ52を作動させて循環路53を通して電解槽内を循環させる。加熱手段59を作動させて設定温度まで加熱する。所定の処理時間が経過するまで循環式でホルムアルデヒドの酸化除去を進行させた後、浴槽水又は中水等の再利用可能な水として浴槽等に流す。加熱が十分ではない初期に通電電流値を高くし、加熱が十分となる後期は電流値を低くする。 (もっと読む)


1 - 20 / 56