説明

ウォータポンプ

【課題】
冷却水流入時、入口側端部や出口側端部の羽根厚さを低減することで、衝突損失やウェークを低減し、ウォータポンプ効率が向上するウォータポンプの提供をすること。
【解決手段】
冷却水流入口11と冷却水吐出口12を備えるポンプハウジング10と、ポンプハウジング10内部に挿通したシャフト13と、シャフト13に支持されたロータ本体2と、ロータ本体2の前端面に放射方向へ円弧状に折曲され、外周側が圧力面7となり内周側が吸力面8となる複数の羽根3と、を備えたインペラと、を備えたウォータポンプであって、圧力面7は、圧力面7と吸力面8との間の羽骨線6と入口円4との交点を通り且つ冷却水流入角度と等しい角度となる入口側傾斜線7a、又は羽骨線6と出口円5との交点を通り且つ冷却水流出角度と等しい角度となる出口側傾斜線7bの少なくともいずれか一方を備えた構成である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はウォータポンプに関する。
【背景技術】
【0002】
ウォータポンプにより冷却水を効率よく循環させるため、冷却水流入口からインペラに流入される冷却水の冷却水流入角度に対して羽根の内周側入口部の内端縁の角度をほぼ直交に形成すると共に、羽根の内周側入口部の内端縁から外周方向に向かう円弧形状の傾斜角度を冷却水流入角度とほぼ同一にした技術が開示されている(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平9−88887号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に記載のウォータポンプでは、羽根の板厚の影響により、冷却水流入時に羽根と冷却水とが衝突して衝突損失が発生する問題があった。従って、羽根を構成する面のうちシャフトの外周面と対向する吸力面への冷却水の流れが悪く、ウォータポンプの効率が低下してしまう。
【0005】
また、羽根の板厚の影響により、冷却水流出口側で羽根と対向する冷却水同士が合流する時に渦が発生するウェーク現象が起こり、ウォータポンプの効率が低下するという問題があった。
【0006】
本発明は、冷却水流入時に羽根と冷却水とが衝突することにより発生する衝突損失、又は/及び冷却水吐出時に羽根と対向する冷却水同士が合流する時に発生するウェーク現象を低減できるウォータポンプを提供することを目的とする。
【課題を解決するための手段】
【0007】
上述の課題を解決するために講じた第1の手段は、冷却水流入口及び冷却水吐出口を備えたポンプハウジングと、前記ポンプハウジング内部に挿通されたシャフトと、前記シャフトの一方に支持されたロータ本体と、前記シャフトの他方に支持されたインペラと、を備え、前記インペラは複数の羽根から構成され、前記羽根は、前記シャフトの径方向に延在すると共に前記シャフトの径方向から周方向に湾曲するような円弧状を呈し、前記羽根を構成する面は少なくとも、前記シャフトの外周面と対向する吸力面と、前記吸力面とは反対側の圧力面とで構成され、前記冷却水流入口から前記インペラに流入される冷却水の冷却水流入角度、及び前記インペラから前記冷却水吐出口に吐出される冷却水の冷却水流出角度から求められ、少なくとも一部が前記吸力面と前記圧力面との間の中心線を通る仮想線である羽骨線と、前記冷却水流入口の大きさと略同一の直径を有する入口円と、前記シャフトの径方向外側における前記羽根の端部を接点として有する出口円と、が設定され、少なくとも前記シャフトの径方向内側における前記羽根の端部側に位置する前記圧力面の部分は、前記冷却水流入角度と等しい入口傾斜線が含まれる面を有し、少なくとも前記シャフトの径方向外側における前記羽根の端部側に位置する前記圧力面の部分は、前記冷却水流出角度と等しい出口傾斜線が含まれる面を有し、前記入口傾斜線は前記羽骨線と前記入口円との交点と交わり、前記出口傾斜線は前記羽骨線と前記出口円との交点と交わるよう設定して、前記シャフトの径方向内側における前記羽根の端部側の板厚、及び前記シャフトの径方向外側における前記羽根の端部側の板厚が、前記羽根の他の部分の板厚よりも薄いことことである。
【0008】
また、第2の課題解決手段は、前記シャフトの径方向内側における前記羽根の端部、及び前記シャフトの径方向外側における前記羽根の端部の少なくともいずれか一方はR形状を呈することである。
【発明の効果】
【0009】
本発明によれば、第1の手段に記載の如くシャフトの径方向内側における羽根の端部側の羽根の板厚を低減することにより、冷却水流入時に羽根と冷却水とが衝突することにより発生する衝突損失を低減し、冷却水の流れを改善するため、ウォータポンプの効率が向上する。また、第1の手段に記載の如くシャフトの径方向外側における前記羽根の端部側の羽根厚さを低減することにより、圧力面側の冷却水と吸力面側の冷却水とが合流する際に発生するウェーク現象が低減でき、ウォータポンプの効率が向上する。
【0010】
また、シャフトの径方向内側における羽根の端部、及びシャフトの径方向外側における羽根の端部の少なくともいずれか一方はR形状を呈することにより、水の流れがスムーズになるため、ウォータポンプ駆動時に発生する騒音を防止し、羽根に冷却水が衝突することによるウォータポンプの効率の低下を抑制することが可能になる。また、羽根の型成形の際、バリの発生や割れを防止することが可能になる。
【図面の簡単な説明】
【0011】
【図1】ウォータポンプの全体断面図である。
【図2】ウォータポンプのインペラの簡略化された概略正面図である。
【図3】羽根の入口側端部の拡大図である。
【図4】羽根の出口側端部の拡大図である。
【発明を実施するための形態】
【0012】
以下、本実施の形態について図面を参照しつつ詳細に説明する。
【0013】
図1はウォータポンプの全体断面図である。本実施例にかかるウォータポンプは、冷却水流入口11と冷却水吐出口12を備えるポンプハウジング10と、ポンプハウジング10内部に挿通したシャフト13と、シャフト13の一方に支持(軸支)されたロータ本体2と、シャフト13の他方に支持(軸支)されたインペラ1と、を備えている。尚、インペラ1とロータ本体とは樹脂成形により一体となっている。
【0014】
図2は、本実施例にかかるインペラ1の概略正面図である。ポンプハウジング10内に設けられたインペラ1は、複数の羽根3から構成され、羽根3は、シャフト13の径方向に延在すると共にシャフト13の径方向から周方向に湾曲するような円弧状を呈している。羽根3の数は、ウォータポンプの性能に応じて任意に設定可能であり、図2においては、簡略化のために1つの羽根3のみが図示されている。
【0015】
羽根3の輪郭について説明する。まず、ポンプハウジング10の大きさに基づいて決定される入口円4と、出口円5とが決定される。ここで、入口円4は、要求される冷却水の流量Qにより決定される。具体的には、冷却水流入口11の流入通路の大きさ(パイプ径)A、入口円4の直径をBとすると、BはAの1.0〜1.1倍程度の大きさとなる。本実施例では、A=Bとなっている。また、出口円5は、要求される冷却水の吐出圧Pにより決定される。具体的には、出口円の直径をCとすると、PとCとは比例する。本実施例では、出口円5はロータ本体2の円周と等しくなっている。次に、冷却水流入口11からインペラ1に流入される冷却水の冷却水流入角度α(図3)、及びインペラ1から冷却水吐出口12に吐出される冷却水の冷却水流出角度β(図4)に基づいて、羽根3を設計するための仮想線である羽骨線6が決定される。そして、羽根3の厚さをtとした場合に羽骨線6と距離t/2の間隔にある輪郭線に沿って圧力面7と吸力面8を備える。
【0016】
図3は、羽根3の入口側端部の拡大図である。図3には、羽骨線6と、羽骨線6と距離t/2の間隔にある圧力面側輪郭線6aおよび吸力面側輪郭線6bと、羽骨線6と入口円4の交点を点Aとした場合に点Aにおける入口円4の接線4aと、接線4aから冷却水流入角度αだけ傾き、点Aを通る冷却水流入角度傾斜線Xとが仮想線として記載されている。ここで、冷却水流入角度傾斜線Xと圧力面側輪郭線6aとの交点を点Cとし、吸力面側輪郭線6bと入口円4の交点を点Gとする。圧力面7は、冷却水流入角度傾斜線Xに沿った入口側傾斜線7aと、圧力面側輪郭線6aに沿った圧力面中央部7cを備える。吸力面8は吸力面側輪郭線6bに沿った吸力面中央部8bと、入口円4に沿った吸力面入口部8cを備える。また、羽根3の入口側端部の入口側傾斜線7aと圧力面中央部7cとが交差する位置、吸力面入口部8cと吸力面中央部8bとが交差する位置、および入口側傾斜線7aと吸力面入口部8cとが交差する位置には、Rが形成されている。
【0017】
羽根3の入口側端部(シャフト13の径方向内側における羽根3の端部)では、冷却水流入角度傾斜線Xに沿った入口側傾斜線7aを備えることにより、圧力面輪郭線6aに比べて、入口側端部に近づくほど羽根3の板厚が薄くなるよう形成されている。
【0018】
図4は、羽根3の出口側端部の拡大図である。図4には、羽骨線6と、圧力面側輪郭線6aおよび吸力面側輪郭線6bと、羽骨線6と出口円5の交点を点Bとした場合に点Bにおける出口円5の接線5aと、接線5aから冷却水流出角度βだけ傾き、点Bを通る冷却水流出角度傾斜線Yとが仮想線として記載されている。ここで、冷却水流出角度傾斜線Yと圧力面側輪郭線6aとの交点を点Dとし、圧力面7は、冷却水流出角度傾斜線Yに沿った出口側傾斜線7bと、圧力面側輪郭線6aに沿った圧力面中央部7cと、出口円5に沿った圧力面出口部7dを備える。また、圧力面出口部7dの距離をLとしたとき、2t/3≒Lの箇所を点Eとする。点Eから吸力面側輪郭線6bに吸力面接線8aを引く。吸力面接線8aと吸力面側輪郭線6bの接点を点Fとする。吸力面8は、吸力面接線8aと吸力面輪郭線6bに沿った吸力面中央部8bを備える。また、羽根3の出口側端部の出口側傾斜線7bと圧力面中央部7cとが交差する位置、吸力面接線8aと吸力面中央部8bとが交差する位置、および圧力面出口部7dと吸力面接線8aとが交差する位置には、Rが形成されている。
【0019】
尚、図2〜図4において、インペラ1の回転方向は右回り(時計回り)である。
【0020】
羽根3の出口側端部(シャフト13の径方向外側における羽根3の端部)では、冷却水流出角度傾斜線Yに沿った出口側傾斜線7bを備えること、圧力面出口部7dの距離Lを2t/3≒Lとすることで、圧力面側輪郭線6aと吸力面側輪郭線6bに比べて、出口側端部に近づくほど羽根3の板厚が薄くなるよう形成されている。
【0021】
上記説明したように羽根3の輪郭は、入口側傾斜線7aと圧力面中央部7cと出口側傾斜線7bと圧力面出口部7dとを備える圧力面7と、吸力面接線8aと吸力面中央部8bと吸力面入口部8cを備える吸力面8と、を備え、羽根3の入口側傾斜線7aと圧力面中央部7cとが交差する位置、吸力面入口部8cと吸力面中央部8bとが交差する位置、および入口側傾斜線7aと吸力面入口部8cとが交差する位置である入口側端部と、羽根3の出口側傾斜線7bと圧力面中央部7cとが交差する位置、吸力面接線8aと吸力面中央部8bとが交差する位置、および圧力面出口部7dと吸力面接線8aとが交差する位置である出口側端部と、にはRを設けた形状になっている。
【0022】
次に、ポンプハウジング10内を冷却水が流動する態様について説明する。上記の構成において、インペラ1の回転運動により冷却水流入口11からポンプハウジング10内に吸入されてきた冷却水は、シャフト13と連結して回転するインペラ1の入口円4付近に到達する。冷却水は、インペラ1の回転運動により、ロータ本体2、および羽根3に沿って流動し、冷却水吐出口12から吐出される。
【0023】
以上のように、本実施例では、羽根3の入口側端部に入口側傾斜線7aを設けて、入口端部に近づくにつれて羽根の板厚を低減することにより、冷却水が吸入される際に発生する衝突損失を低減し、吸力面8への流れを改善することで、ウォータポンプの効率が向上する。
【0024】
また、羽根3の出口側端部に出口側傾斜線7bを設けて、出口側端部に近づくにつれて羽根厚さを低減することにより、圧力面7側の冷却水と吸力面8側の冷却水が合流する際に発生するウェーク現象を低減することができ、ウォータポンプの効率や全楊程が向上する。従来構造の羽根厚さが一定のウォータポンプから本実施例の入口側端部と出口側端部の羽根の板厚を薄くしたウォータポンプにすることで、全楊程が5%程度、ウォータポンプ効率が0.5%程度向上した。
【0025】
また、圧力面出口部7dの距離Lは、2t/3≒Lとすることにより、圧力面7側の冷却水と吸力面8側の冷却水が合流する際に発生するウェークを低減することができる。L=2t/3と比較し、シミュレーションによる解析結果からL=t/3の全楊程よりも0.6%程度向上した。また、L=2t/3と比較し、L=tの全楊程よりも1.0%程度向上した。
【符号の説明】
【0026】
1・・・インペラ
2・・・ロータ本体
3・・・羽根
4・・・入口円
5・・・出口円
6・・・羽骨線
7・・・圧力面
7a・・・入口側傾斜線
7b・・・出口側傾斜線
8・・・吸力面
10・・・ポンプハウジング
11・・・冷却水流入口
12・・・冷却水吐出口
13・・・シャフト
α・・・冷却水流入角度
β・・・冷却水流出角度

【特許請求の範囲】
【請求項1】
冷却水流入口及び冷却水吐出口を備えたポンプハウジングと、
前記ポンプハウジング内部に挿通されたシャフトと、
前記シャフトの一方に支持されたロータ本体と、
前記シャフトの他方に支持されたインペラと、を備え、
前記インペラは複数の羽根から構成され、
前記羽根は、前記シャフトの径方向に延在すると共に前記シャフトの径方向から周方向に湾曲するような円弧状を呈し、
前記羽根を構成する面は少なくとも、前記シャフトの外周面と対向する吸力面と、前記吸力面とは反対側の圧力面とで構成され、
前記冷却水流入口から前記インペラに流入される冷却水の冷却水流入角度、及び前記インペラから前記冷却水吐出口に吐出される冷却水の冷却水流出角度から求められ、少なくとも一部が前記吸力面と前記圧力面との間の中心線を通る仮想線である羽骨線と、
前記冷却水流入口の大きさと略同一の直径を有する入口円と、
前記シャフトの径方向外側における前記羽根の端部を接点として有する出口円と、が設定され、
少なくとも前記シャフトの径方向内側における前記羽根の端部側に位置する前記圧力面の部分は、前記冷却水流入角度と等しい入口傾斜線が含まれる面を有し、
少なくとも前記シャフトの径方向外側における前記羽根の端部側に位置する前記圧力面の部分は、前記冷却水流出角度と等しい出口傾斜線が含まれる面を有し、
前記入口傾斜線は前記羽骨線と前記入口円との交点と交わり、
前記出口傾斜線は前記羽骨線と前記出口円との交点と交わるよう設定して、
前記シャフトの径方向内側における前記羽根の端部側の板厚、及び前記シャフトの径方向外側における前記羽根の端部側の板厚が、前記羽根の他の部分の板厚よりも薄いことを特徴とするウォータポンプ。
【請求項2】
前記シャフトの径方向内側における前記羽根の端部、及び前記シャフトの径方向外側における前記羽根の端部の少なくともいずれか一方はR形状を呈することを特徴とする請求項1に記載のウォータポンプ。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate