説明

コーティングを有するマイクロミラー構成体及びコーティングを作製する方法

本発明は、マイクロミラー構成体(1)であって、ミラー基板(2)に形成される反射面(11)を有する少なくとも1つのマイクロミラー(3)と、反射面(11)内でミラー基板(2)に形成される反射コーティング(8)とを備えるマイクロミラー構成体(1)に関する。反射コーティング(8)は、反射面(11)内に形成され、少なくとも2つの層サブシステムを有し、第1層サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列から構成される層(8e,8f)を有し、マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、マイクロミラー構成体の測定波長に関する反射率に関して最適化され、上記測定波長は使用波長からずらしたものである。本発明は、コーティングを作製する方法であって、コーティングは反射コーティング(8)及び反射防止コーティング(7)を含む方法にも関する。この場合、反射防止コーティング(7)は、特に反射コーティング(8)の層応力を補償する役割を果たす。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ミラー基板に形成される反射面を有する少なくとも1つのマイクロミラーと、反射面外でミラー基板に形成される反射防止コーティングとを備えるマイクロミラー構成体に関する。本発明は、マイクロミラー構成体用のコーティングを作製する方法にも関する。
【背景技術】
【0002】
マイクロミラー構成体は、面状の(areal;flachigen)概して行列型の配置で相互に並んで配置され相互に独立して動かすことができる複数のマイクロミラーを有する。個々のマイクロミラーの光学面は、全部のマイクロミラーに共通の平面に対して可動、特に傾斜可能であるよう通常は取り付けられる。駆動又は傾斜を行わせるために、マイクロミラーの下に電極を装着することができ、これらの電極は、ミラー基板を静電的に引き付ける。個々のミラーの傾斜の結果として、個々のミラーは、入射放射線を種々の空間方向に目標通りに反射させることができるため、例えばマイクロリソグラフィ用の照明系における瞳整形に用いることができる。
【0003】
マイクロミラー構成体には、マイクロミラー構成体の基板材料の自然な反射率に対して使用波長での当該マイクロミラー構成体の反射率を高めるために、反射コーティングを設けることができる。概して、マイクロミラー構成体用のこのようなコーティングは、誘電体で強化した金属層(dielectrically reinforced metal layers)からなり、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、及び特許文献7を参照されたい。
【0004】
しかしながら、これらの層に関して不利なのは、これらのコーティングが強い照射を受けて劣化し、経時的に、概ね円形の断面を有する表面上の小さな突起であるいわゆる「ヒロック」を有するようになり、粗度も高くなることで、これらの層の迷光の増加につながることである。さらに、これらの層に関して不利なのは、これらがミラー面に対する法線に対して大きな入射角で入射する異なる波長を有する光に同時に適さないことである。使用波長からずらした測定波長を有するこのような光は、マイクロリソグラフィ用の照明系におけるマイクロミラー構成体の較正目的で必要である。
【0005】
構造工学上の定めにより、マイクロミラーの反射面は概して、相互に直接隣接して配置することができず、マイクロミラー構成体に入射する放射線は、個々のマイクロミラーの反射面だけでなく放射線の反射が望まれない領域にも入射する。マイクロミラー構成体のうち反射面外で入射放射線を受ける領域が反射又は後方散乱させる放射線は、例えばマイクロミラー構成体を瞳整形に用いる場合に外部光として瞳の領域へ直接反射されるので、上記放射線は可能な限り少なくすべきである。
【0006】
特許文献4は、マイクロミラー構成体及びこれを製造する方法を開示しており、UV波長域の放射線に対するマイクロミラーの耐性を、耐放射線層を塗布することにより高めることを意図している。上記文献はさらに、マイクロミラーの後側及び/又はマイクロミラーを取り付ける不動基板に反射防止コーティングを塗布することも提案している。特に、フッ化マグネシウム及びフッ化カルシウムが反射防止コーティングの層の材料として提案されている。
【0007】
光学面外のマイクロミラー構成体の反射率を低下させるために、入射放射線を集める絞りを設けることも可能である。しかしながら、この解決手段に関して不利なのは、その機械的安定性が低いこと、及びその固定又は位置合わせ時に精度が不十分である可能性があることである。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許第7307775号明細書
【特許文献2】米国特許第6816302号明細書
【特許文献3】米国特許第6778315号明細書
【特許文献4】米国特許第6891655号明細書
【特許文献5】国際公開第2006/000445号パンフレット
【特許文献6】米国特許第5572543号明細書
【特許文献7】米国特許第6746886号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、マイクロミラー構成体と、使用波長を有する光による強い照射を受けて劣化することがなく、使用波長とは異なる波長を有する光にも同時に適しているコーティングを作製する方法とを特定することである。さらに、コーティングは、外部光を回避するために、マイクロミラーの反射面外で反射する光を可能な限り少なくすることが意図される。
【課題を解決するための手段】
【0010】
この目的は、マイクロミラー構成体が、ミラー基板に形成される反射面を有する少なくとも1つのマイクロミラーを備え、反射コーティングがミラー基板の反射面内に形成され、反射面外でミラー基板に形成された反射防止コーティングが、UV域の波長、特に193nmで、0.1以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する好ましくは非金属性の材料から構成される少なくとも1つの吸収層を有することにより、本発明に従って達成される。マイクロミラーの反射面内での反射コーティング及び反射面外での反射防止コーティングの使用は、一方で所望の反射特性の提供を可能にし、他方で望ましくない外部光の抑制を可能にする。
【0011】
一実施形態では、マイクロミラー構成体の反射防止コーティングは、185nm〜210nm、特に最大230nmの波長域での垂直入射で、10%以下、好ましくは5%以下の反射率を有する。これにより、外部光が反射防止コーティングにより十分に抑制されるため、特に、193nmの波長でこのようなマイクロリソグラフィ用のマイクロミラー構成体を用いることが可能となる。
【0012】
さらに、上記目的は、マイクロミラー構成体が、ミラー基板に形成される反射面を有する少なくとも1つのマイクロミラーを備え、反射コーティングが反射面内でミラー基板に形成され、上記反射コーティングが少なくとも2つの層サブシステムを有することにより、本発明に従って達成される。この場合、第1層サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列からなり、マイクロミラー構成体の使用波長に関する反射率に関して最適化される。さらに、反射コーティングの第2層サブシステムは、マイクロミラー構成体の測定波長に関する反射率に関して最適化され、上記測定波長は使用波長からずらしたものである。第1実施形態において、ミラー基板はケイ素からなり、反射コーティングは、反射コーティングがマイクロミラーの反射面の面積を画定するようにパターニングされたコーティングとして具現される。
【0013】
本願において、高屈折率層は、使用波長又は測定波長において関連周期の他方の層の材料よりも大きく対応の光を屈折させる材料から構成される層であると理解される。これに対して、低屈折率層に関しては、この層の材料が関連周期の他方の層の材料よりも小さく対応の光を屈折させると言える。
【0014】
本願において、マイクロミラー構成体の使用波長は、目的とした使用時にマイクロミラー構成体が受ける使用光の波長であると理解される。マイクロリソグラフィの場合、これは193nm又は248nmの使用波長である。
【0015】
測定波長は、使用波長から少なくとも50nmずらした測定光の波長であり、マイクロミラー構成体は、動作時に上記測定光を用いて較正される。マイクロリソグラフィの場合、測定波長は可視スペクトル域又は赤外スペクトル域にあることが有利である。
【0016】
本願において、表面又はコーティングの反射率は、単位[%]での入射光の強度に対する反射放射線の強度の比として規定される。
【0017】
マイクロミラー構成体の反射コーティングに少なくとも2つの層サブシステムを用いることにより、マイクロミラー構成体を、使用波長及び付加的な測定波長の両方に関して、上記層サブシステムの設計により対応の層サブシステムの目的に合わせて同時に最適化することができる。さらに、第1層サブシステムで金属層を回避することにより、本発明者らが認識したように、強い放射線の場合に第1層サブシステムが経時的に劣化する状況を回避することが可能である。この場合、第1層サブシステムが基板から見て表面法線の方向で第2サブシステムの後に続けば有利であり、その理由は、そうすれば使用光が第1層サブシステムにより実質的に反射され、結果としてその下に位置する第2層サブシステムの影響を実質的に受けないからである。
【0018】
一実施形態では、反射コーティングは、2つの層サブシステム間に少なくとも1つの分離層を有し、分離層の材料は、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から好ましくは選択される材料である。上記分離層は、使用波長を有する光に対して実質的に不透過性であり、測定波長を有する光に対して少なくとも部分的に透過性を有する。結果として、2つの層サブシステムは、層サブシステムが光を完全に反射しない少数の層からなる場合にも、反射率特性に関して切り離すことができる。有利には、分離層は、使用波長と測定波長との間にバンドエッジを有する材料からなる。
【0019】
さらに別の実施形態では、第1層サブシステムの層は、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料からなる。結果として、第1層サブシステムにおいて使用波長で少数の層と共に特に高い反射率値を実現することが可能である。
【0020】
一実施形態では、第2層サブシステムの層は、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料からなる。結果として、特に可視波長域又は赤外波長域の光に対して反射コーティングの高い反射率値を実現することが可能である。
【0021】
さらに別の実施形態では、マイクロミラー構成体の少なくとも1つのマイクロミラーは、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数(屈折率の虚部)を有する非金属材料から構成される少なくとも1つの吸収層を有する反射防止コーティングを有する。
【0022】
一実施形態では、反射防止コーティングは、ミラー基板の反射面に隣接して配置され、反射面外の全域を可能な限り覆うべきであるが、これは概して、反射防止コーティングがパターニングされる場合にのみ達成することができ、反射防止コーティングのパターニング中の公差を可能な限り小さくすべきである。フォトリソグラフィは、小さい公差で反射防止コーティングをパターニングする方法として特に適している。一実施形態では、この場合のミラー基板はケイ素からなる。
【0023】
一実施形態では、吸収層の材料は、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から選択される化合物である。これは、標準化されたプロセスで、厳密には特に、プラズマ化学気相成長(PECVD)、熱蒸発、又はスパッタリングにより、薄層として塗布することができる材料を伴う。
【0024】
さらに、反射コーティングが反射防止コーティング上に塗布される一実施形態では、言及した材料を用いた反射防止コーティングの層応力を、反射コーティングの層応力の補償に用いることができる。この場合、反射コーティング及び反射防止コーティングを含むコーティングの全応力は、マイクロミラーの変形を回避するために、100N/m、可能であればさらに30N/mの値を超えるべきではない。
【0025】
言及した層材料は、ケイ素基板に関して実質的に選択的にエッチング可能でもあり、すなわち、概してケイ素の厚さの変化は、エッチング除去プロセス中に、特に湿式化学エッチング除去プロセス中にごく僅かにしか生じない。上述の材料の吸収係数(屈折率の虚部)は、塗布様式に応じて変わる可能性があり、例えば193nmの波長でのSiNの場合、0.17〜0.3の範囲内又はそれ以上、最大約0.7であり得る。これに関する詳細は、この態様に関して参照により本願の内容に援用される米国特許第6,319,568号を参照されたい。
【0026】
さらに別の実施形態では、吸収層の屈折率よりも低い屈折率を有する少なくとも1つの追加層(further layer)が、吸収層に塗布される。この追加層は、入射放射線が吸収層に結合される際に反射を回避又は低減する役割を果たし、入射放射線に対して透明であり且つ例えば0.001未満であり得る比較的低い吸収係数を有する材料からなる。言うまでもなく、より高い吸収係数、例えば0.015以上を有する透明層を用いることも可能である。さらに、反射防止コーティングは、上下に重ねて配置されそれぞれが吸収層及び透明層からなる複数の層対を有することができる。
【0027】
一実施形態では、追加層は、MgF、LaF、チオライト、氷晶石、Al、ErF、又はケイ素酸素化合物、特に二酸化ケイ素(SiO)からなる。193nmの波長で、二酸化ケイ素は約0.0002以上の吸収係数を有し、これも同様に塗布条件に応じて変わり得る。248nmの使用波長では、HfOを追加透明層として同じく用いることができる。この場合、HfOは吸収層として機能できない。
【0028】
さらに別の実施形態では、反射防止コーティングの全層が非金属材料、特にケイ素化合物からなる。この場合、反射防止コーティング全体を、反応性ガス成分の適当な選択により単一のコーティング装置で塗布することができる。
【0029】
さらに別の実施形態では、少なくとも1つの吸収層の厚さは、吸収層に入射する放射線を完全に吸収するよう選択される。本発明者らの認識では、ケイ素から構成されたミラー基板を用いる場合、酸化ケイ素(SiO)の薄層がミラー基板の表面に形成され得るが、上記層の厚さは通常は約0nm〜約7nmで変わる。この酸化ケイ素層は、反射防止コーティングの層設計を計算する際に付随して考慮すべきであるが、概して、これを可能にするには、その変わりやすい厚さゆえに必ず困難が伴う。したがって、吸収層の厚さを、放射線がミラー基板又は酸化ケイ素層に入射しなくなるのに十分な大きさであるよう選択することが提案される。このように、設計の計算は酸化ケイ素層とは無関係であり、吸収層に続く追加層の層厚の計算に関して規定の条件がある。
【0030】
一実施形態では、少なくとも1つの吸収層の厚さは、40nm〜100nm、特に60nm〜80nmである。マイクロミラー構成体に用いられるパワー密度及び吸収層に通常用いられるケイ素窒素化合物の場合、このような厚さを有する吸収層は概して、入射放射線を完全に吸収するのに十分である。
【0031】
さらに別の実施形態では、反射防止コーティングは、193nmの使用波長又は248nmの使用波長及び垂直入射で、5%以下、好ましくは3%以下、特に1%以下の反射率を有する。これは、例えば193nmの波長で約65%の反射率を有するケイ素から構成されたミラー基板と比較して、著しく低い反射率である。
【0032】
一実施形態では、反射コーティング、特に第1層サブシステムは、193nmの使用波長又は248nmの使用波長で、反射面に対する法線に対して0°〜25°の入射角で、65%を超える、好ましくは80%を超える、特に95%を超える反射率を有する。このような高反射率は、マイクロリソグラフィ用の照明系内でのマイクロミラー構成体の使用に関して、当該マイクロミラー構成体の全域が光を反射しないという欠点を補償することができる。
【0033】
さらに別の実施形態では、反射コーティング、特に第2層サブシステムの設計は、65%を超える、特に85%を超える反射率が、使用波長からずらした測定波長で、反射面に対する法線に対して使用光の入射角から15%よりも大きく、特に20%よりも大きくずらした入射角で得られるようなものであり、使用光の入射角はマイクロミラー構成体の使用目的により予め決定される。これにより、較正に必要なビーム経路及び光学ユニットをマイクロミラー構成体に対して特に傾斜した他のビーム経路に沿って導き、較正用の光学ユニット及び照明系の残りの光学ユニットが工学的な面で構造空間の観点から相互に影響し合わないようにすることが可能である。
【0034】
さらに別の実施形態では、反射防止コーティングは、垂直入射及び185nm〜210nm、特に最大230nmの波長域で、10%以下、好ましくは5%以下の反射率を有する。このような広帯域反射防止コーティングの効果は、吸収層及び追加層の厚さを相互に適切に協調させることにより達成することができる。用いる層材料の屈折率が既知である場合、従来の層設計プログラムを層厚の最適化に用いることができる。広帯域反射防止コーティング効果の利点は、選択波長に関してより高い製造公差が得られ、より広範囲の入射角が有効となることである。
【0035】
一実施形態では、反射コーティングは、最初に反射防止コーティングに面状に塗布され、続いて所定の領域の反射コーティングを反射防止コーティングに達するまで目標通りに除去することにより、リソグラフィ法によってパターニングされる。代替的又は付加的に、例えば、反射防止コーティングがすでにパターニングされていて、光学面の形成を意図する領域に反射防止コーティングがない場合、反射コーティングを少なくとも部分的にミラー基板に直接塗布することが可能である。
【0036】
さらに別の実施形態では、マイクロミラー構成体は、少なくとも1つのマイクロミラーが可動式に取り付けられる支持構造を備える。概ね板状のマイクロミラーを概ね柱状の支持構造に可動式に取り付けるのは、例えばヒンジ又はばねにより行うことができる。この場合、マイクロミラーの偏向は通常、マイクロミラーの下に配置された電極を用いたミラー基板の静電的な引き付けにより行われる。
【0037】
一実施形態では、マイクロミラー構成体は、反射防止コーティングへの反射コーティングの付着を促進する役割を果たすか、又は基板への反射防止コーティングの付着を促進する役割を果たす、少なくとも1つの付着促進層を有する。これにより、基板からの層の望ましくない欠損が防止される。欠損した層は、影響を受けたマイクロミラー自体に損害を与えるだけでなく、隣接するマイクロミラーの故障も引き起こし得る。
【0038】
本発明のさらに別の態様は、冒頭で述べたタイプの方法であって、ミラー基板を反射防止コーティングでコーティングするステップと、照射によりパターニングできる材料層を反射防止コーティング及び/又はミラー基板に塗布するステップとを含む方法で実現される。一実施形態では、ミラー基板はこの場合はケイ素からなる。
【0039】
本発明は、リソグラフィ法を用いて、すなわち、照射によりパターニングできる放射線感応性材料を塗布することにより、反射防止コーティングをパターニングすることを提案する。この場合、材料層は、反射防止コーティングに又は直接ミラー基板に塗布することができ、前者の場合はエッチングマスクとして、後者の場合は犠牲層又はエッチングストップとして働く。いずれの場合も、放射線感応性材料層は、反射防止コーティングのパターニング後又はパターニング中に除去されるため、反射防止コーティングを最初に面状に塗布し、その後、反射防止コーティングが望まれない領域で目標通りに除去することができる。
【0040】
一変形形態では、ミラー基板は、UV域の波長、特に193nmで、0.1以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する非金属材料から構成される少なくとも1つの吸収層でコーティングされるため、層の数、したがってコーティングプロセスの数を、透明材料からなる慣習的な多層系から構成される反射防止コーティングと比較して大幅に減らすことができる。
【0041】
さらに別の変形形態では、吸収層の材料として、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から化合物が選択される。これらの化合物は全て、193nmの使用波長で高い吸収値を有する。
【0042】
さらに別の変形形態では、放射線を吸収層に結合する、すなわち吸収層に反射防止コーティングを施すために、吸収層の屈折率よりも低い屈折率を有する少なくとも1つの追加層が吸収層に塗布される。言うまでもなく、高屈折率を有する層も追加層に続くことができる。
【0043】
一変形形態では、上記追加層は、HfO、MgF、LaF、チオライト、氷晶石、Al、ErF、又はケイ素酸素化合物、特に二酸化ケイ素(SiO)からなる。
【0044】
本方法の一変形形態は、マイクロミラーに少なくとも1つの反射面を作製するために、反射コーティングを反射防止コーティング及び/又はミラー基板に塗布するステップを含む。この場合、反射コーティングは、第1層サブシステム及び第2層サブシステムを含む本発明による反射多層系からなり、第1層サブシステムは、交互の高屈折率透明層及び低屈折率透明層からなる。
【0045】
さらに別の変形形態では、反射コーティングを最初に面状に塗布し、その後、反射面外の反射防止コーティングから選択的に除去し、この場合も、パターニングできる放射性感応性材料層を、反射面の領域でエッチングマスクとして反射コーティングに塗布することができ、且つ/又は反射面外で犠牲層又はエッチングストップとして反射防止コーティングに塗布することができる。
【0046】
さらに別の変形形態では、反射防止コーティングの層応力を反射コーティングの層応力と協調させることで、2つの層応力が相互に実質的に補償し合う、すなわち、例えば反射防止コーティングの負の層応力を実質的に同一の絶対値を有する反射コーティングの正の層応力により補償でき、逆も又同様であるようにする。「実質的に」補償するとは、2つのコーティングの層応力の絶対値の差異が約20%以下であることを意味すると理解される。
【0047】
一変形形態では、反射防止コーティングを最初にミラー基板に面状に塗布し、その後、反射面の領域でミラー基板から選択的に除去する。このように、反射コーティングを反射面の領域でミラー基板に直接塗布できるため、それ自体が(例えばケイ素の場合に)すでに入射放射線に対して高い屈折率を有するミラー基板は、反射面の領域で入射放射線に対して所望の高屈折率を得るために少数の反射層で補うだけでよい。
【0048】
さらに別の変形形態では、反射防止コーティングの少なくとも1つ、好ましくはそれぞれを、プラズマ化学気相成長により塗布する。特にケイ素化合物を反射防止コーティング層の材料として専ら用いる場合、反射防止コーティングを、反応性ガス成分を適切に変えることによりコーティング装置において単一のコーティングプロセスで塗布することが可能である。
【0049】
一変形形態では、反射コーティングは、少なくとも2つの層サブシステムを有し、第1層サブシステムは、非金属材料から構成される交互の高屈折率層及び低屈折率層の周期的配列から構成される層を有し、マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、マイクロミラー構成体の測定波長に関する反射率に関して最適化され、上記測定波長は使用波長からずらしたものであり、反射コーティングは、2つの層サブシステム間に少なくとも1つの分離層を有し、分離層の材料は、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から選択される材料であり、第1層サブシステムの層の材料は、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料からなり、第2層サブシステムの層の材料は、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料である。
【0050】
本発明のさらに他の特徴及び利点は、本発明に重要な詳細を示す図面を用いた以下の本発明の実施例の説明から、また特許請求の範囲から得ることができる。個々の特徴それぞれを、本発明の変形形態において、単独で個別に又は複数の特徴の任意の組み合わせで実現することができる。
【0051】
例示的な実施形態を概略図に示し、以下で説明する。
【図面の簡単な説明】
【0052】
【図1a】本発明によるマイクロミラー構成体の概略図を平面図で示す。
【図1b】放射線感応性パターニング材料層による反射防止コーティングのコーティング後及びパターニング前の、図1aからのマイクロミラー構成体を断面図で示す。
【図1c】反射防止コーティングのパターニング後で且つ放射線感応性材料層の除去後の、図1bからのマイクロミラーを示す。
【図2a】反射防止コーティング及び反射コーティングでの図1aからのマイクロミラー構成体のコーティングの第1変形形態の概略図を示す。
【図2b】反射防止コーティング及び反射コーティングでの図1aからのマイクロミラー構成体のコーティングの第1変形形態の概略図を示す。
【図2c】反射防止コーティング及び反射コーティングでの図1aからのマイクロミラー構成体のコーティングの第1変形形態の概略図を示す。
【図3a】図1aからのマイクロミラー構成体のコーティングの第2変形形態の概略図を示す。
【図3b】図1aからのマイクロミラー構成体のコーティングの第2変形形態の概略図を示す。
【図3c】図1aからのマイクロミラー構成体のコーティングの第2変形形態の概略図を示す。
【図4a】図1aからのマイクロミラー構成体のコーティングの第3変形形態の概略図を示す。
【図4b】図1aからのマイクロミラー構成体のコーティングの第3変形形態の概略図を示す。
【図4c】図1aからのマイクロミラー構成体のコーティングの第3変形形態の概略図を示す。
【図5】入射角の関数としての反射防止コーティングの第1変形形態の反射率の図を示す。
【図6】ミラー基板に形成された酸化ケイ素層の入射角及び厚さの関数としての反射防止コーティングの第2変形形態の反射率の図を示す。
【図7】波長の関数としての反射防止コーティングの第2変形形態に関する第2実施形態の反射率の図を示す。
【図8】図1aからのマイクロミラー構成体のコーティングに関する例示的な実施形態の層構成の概略図を示す。
【図9】使用波長の関数としての図8からの例示的な実施形態の反射率の図を示す。
【図10】測定波長の関数としての図8からの例示的な実施形態の反射率の図を示す。
【図11】図1aからのマイクロミラー構成体のコーティングに関する例示的な実施形態の層構成の概略図を示す。
【発明を実施するための形態】
【0053】
図1aは、板状のミラー基板2を有するマイクロミラー構成体1を概略的に示し、ミラー基板2上には、複数のマイクロミラー3を柱状の支持構造5上で厚さを減らしたミラー基板2の部分領域4間に可動式に取り付け、部分領域4はヒンジとして働く。複数の、通常は3つの電極(図示せず)を各マイクロミラー3の領域でミラー基板2の下に装着し、これらの電極は、破線で示し支持構造5の領域でミラー基板2を通って延びる各軸に対して、マイクロミラー3を傾斜させることを可能にする。言うまでもなく、マイクロミラー3は、ヒンジ4の配置又は造形を適切に変更すれば、例えばヒンジ4をマイクロミラー3のコーナ領域に配置すれば、2つの例えば相互に直交する軸を中心に傾斜させることもできる。
【0054】
コーティングの種々の変形形態を示す図2a〜図2c、図3a〜図3c、及び図4a〜図4cを参照してより詳細に後述するように、図1aに示すマイクロミラー構成体1を得るために、パターニング済みでない平面ミラー基板2に、反射防止コーティング7が塗布され、反射コーティング8も塗布されている。
【0055】
図2aは、反射防止コーティング7をミラー基板2に塗布し、反射防止コーティング8を上記反射防止コーティングに面状に塗布する、コーティング変形形態を示す。以下でレジストとも称する放射線感応性材料層9を反射コーティング8に塗布し、この材料層は、前のステップで照射又は露光及び後続の現像によりパターニングしてから、非露光領域を除去したものである。この場合、材料層9は、マイクロリソグラフィで慣習的であり選択的に除去することができるレジスト材料からなることができるため、反射コーティング8は、材料層9の部分除去中に残ったままとなる。
【0056】
同様に図2aに示すように、反射コーティング8を、その後、パターニングした材料層9が残っていない領域で選択的にエッチングプロセスにより除去する。この場合、エッチングアタックを破線矢印10で示し、これは、ドライエッチング又はウェットエッチングにより既知の方法で実行することができる。エッチングにより、図2bに示すようにレジスト9で保護されていない領域において、反射コーティング8が完全に除去される。すなわち、レジスト9は、反射コーティング8のパターニング用のエッチングマスクとして働く。図2cは、レジスト9を反射コーティング8から除去した後のコーティングの結果を示し、除去の結果として、所望の幾何学的形状を有する反射面11が反射コーティング8に形成される。
【0057】
図3a〜図3cに示すコーティングプロセスは、反射コーティング8を反射防止コーティング7に塗布する前に最初にレジスト9を塗布してパターニングするという点が、図2a〜図2cに示すものと異なる。図3aを参照されたい。この場合、レジスト9は犠牲層として働き、図3bに矢印12で示すように、反射コーティング8を反射防止コーティング7に塗布した後に適当な同様に既知の方法により当該反射防止コーティングから取り去ることができる。図3cに示すように、このようにして同様に、反射面11を有する反射コーティング8の所望の領域が反射防止コーティング7上に残る。
【0058】
最後に、図4a〜図4cは、図2a〜図3cからのコーティングステップを組み合わせた方法の変形形態を示す。この場合の開始点は、反射コーティング8をパターニングしたレジスト9に塗布した図3bに示す状況である。しかしながら、この場合、犠牲層としてではなくその下にある反射防止コーティング7のためのエッチングストップとして働くレジスト材料を選択した。図4bに示すように、エッチングストップとしての追加のレジスト層9aを、反射防止コーティング7に直接塗布した反射コーティング8の部分領域に塗布してパターニングすることで、図4bに矢印10で示すように、反射コーティング9のうちレジスト層9aで覆われていない部分を後続のエッチングステップで除去することができ、その際にエッチングがレジスト9で停止される。レジスト9及びレジスト層9aの除去後、図4cに示すように、所望の形態を有する反射面11が同様に反射防止コーティング7上で得られる。
【0059】
図3a〜図4cに示す2つの変形形態は、反射コーティング8を反射防止コーティング7に対して選択的にエッチングできない場合に適切である。上述のコーティング変形形態では、個別層それぞれを、慣習的な薄膜コーティング法により、例えばプラズマ化学気相成長(PECVD)、熱蒸発、又はスパッタリングにより塗布することができる。
【0060】
図2a〜図4cに示すコーティング変形形態に加えて、最初に反射防止コーティング7をパターニングし、それを反射コーティング8又は光学面11の形成を意図する領域で目標通りに除去することも可能である。このように、反射コーティング8をミラー基板2に直接塗布できるため、その高反射率を考慮に入れて反射コーティングの設計で用いることができる。
【0061】
いずれの場合も、図1bに示すように、追加のレジスト層9bをその後基板3に面状に塗布し、上記追加のレジスト層をヒンジとして働く部分領域4においてパターニングするが、図1b中、反射防止コーティング及び反射コーティングの図は、より明確にするために省いてある。この場合、図1bに示す図は、基板2のパターニング前に図1aに示す断面線に従ったものである。後続のエッチングステップにおいて、図1cに示すように、部分領域4に穿孔が形成され、図1cは、レジスト層9aの除去後の最終状態で図1aからの断面線に沿ったマイクロミラー構成体1を示す。
【0062】
図1cはさらに、反射防止コーティング7の構成をより正確に示す。反射防止コーティング7は第1吸収層7aを有し、これに追加層7bが塗布され、これは反射防止コーティング7に入射する放射線(図示せず)を吸収層7aに結合させる役割を果たし、その屈折率は吸収層7aよりも低い。第1層対7a,7bに続き、さらに別の2つの同一層対7a,7bがある。本実施形態の場合、吸収層7aは窒化ケイ素(SiN)からなり、これは、選択するプロセス実施態様に応じて、193nmの波長で約2.20〜2.65の屈折率nの実部及び0.17〜0.7の虚部k(吸収係数)を有する。この場合、追加層7bは、1.56〜1.70の屈折率n及び0.0002〜0.015の吸収係数kを有するSiOからなる。
【0063】
同様に図1cから分かるように、マイクロミラー構成体1の面積の約50%を反射面11における入射放射線の目標偏向に用いる。反射面11外には、入射放射線の全強度の約1%が依然として入射するが、マイクロミラー構成体1を瞳整形に用いることを意図する場合、そのうちの最大10%の反射が許される。その理由は、この場合、目標通りに反射されない放射線が瞳に直接入るからである。ケイ素から構成されるミラー基板2は、約65%の反射率を有するため、反射防止コーティング7は、反射率を約55%〜60%低減するよう設計しなければならない。
【0064】
50°以上の大きな入射角αでも10%未満の反射率Rを有する反射防止コーティング7の通常の層設計(6層実施形態)を、図5に示し、ここで、層厚を(Si基板)3×(2.9nmH1.95nmL)(それぞれナノメートルでの物理的厚さ)により与え、個別層の基礎として以下のデータを取った。
n k
シリコン基板: 0.88 2.78
SiN: H 2.5 0.3
SiO: L 1.56 0.0002
【0065】
言うまでもなく、層7a,7bの厚さ又は用いる層の数を適合させることにより、反射率を適切に適合させる、特にさらに低減することができ、吸収層材料として窒化ケイ素の比較的高い吸収率(0.1を超える吸収係数)が非透明ケイ素の反射防止コーティングに好ましい。言うまでもなく、他の層材料、例えば、異なる組成を有する窒化ケイ素(Si)又は窒化酸化ケイ素(SiO)も、反射防止コーティング7に適しており、塗布層の数及び順序は、得るべき反射率及び放射線がマイクロミラー構成体1に入射する入射角範囲に応じて変わる。
【0066】
反射防止コーティング7の層に上述のケイ素含有材料しか用いなければ、全層を同じコーティング装置で、装置内の反応性ガスを適切に設定することにより塗布することができる。言うまでもなく、所望の反射率を得ることができる他の材料から構成される層を反射防止コーティングで用いることも可能である。特に、適切な場合、アルミニウム、クロム、又はチタン等の金属も吸収層として用いることができる。追加層7bに関しても、入射放射線に対して実質的に透明であり吸収層7aの屈折率よりも低い屈折率を有する、酸化ケイ素(SiO)以外の材料を用いることが可能である。
【0067】
反射防止コーティングに関して図5に関連して説明する例では、吸収層7aの層厚は、入射放射線を完全に吸収するのに十分な厚さではない。したがって、ミラー基板2を層設計の計算において考慮に入れなければならない。しかしながら、概して、酸化ケイ素の薄層(最大7nm)がミラー基板の表面にでき、その厚さは、場所には無関係とすることができ、ミラー基板の作製プロセスに応じても変わる。酸化物層の厚さは、概して設計の計算において正確に分かっていないため、所望の特性を有する設計を製造することは困難である。したがって、反射防止コーティングの反射層7aに与える厚さは、入射放射線が通過しないか、又はミラー基板2に達するまで若しくは酸化物層(oxidic layer)に達するまでの短い範囲までしか通過しないことで、反射防止コーティング効果に影響を及ぼさないようなものであることが有利である。残留反射の目標に応じて、吸収層としての窒化ケイ素の場合、それに必要な厚さは数十nm〜約100nm以上である。必要な厚さは、吸収係数に応じて、したがって窒化ケイ素層の作製プロセスにも応じて変わる。
【0068】
図6は、垂直入射及び193nmの波長の場合に約≦1%の反射を有する層設計(2層実施形態)の反射率Rの例を示す。この設計は以下の物理的層厚を有する:(Si基板)(0〜7nmN)(97.9nmH)(28.5nmL)。
【0069】
個別層の基礎として以下のデータを得た:
屈折率 n k
基板Si 0.88 2.78
N 自然SiO 1.56 0.0002
H PECVD Sin 2.38 0.44
L PECVD SiO 1.66 0.0005
【0070】
図6に示す反射率曲線10a〜10eを、この場合、0nm〜7nmの範囲の酸化ケイ素層の以下の厚さに関して求めた:曲線10a:0nm、10b:1nm、10c:3nm、10d:5nm、10e:7nm。明確に認識できるように、自然SiO層の層厚が増加するにつれて反射率Rは低下するが、約100nmの吸収層7aの厚さは、考慮したいずれの場合も、垂直入射であれば約1%以下の範囲の反射率Rを達成するのに十分である。したがって、この設計の場合、図1cに示す場合から逸脱して、所望の反射率Rを得るには単一の層対7a,7bで十分である。
【0071】
個別波長、例えば193nmで反射防止コーティングを達成することに加えて、例えば185nm〜230nmの波長域にわたって反射防止コーティングを実現することも可能である。この場合、層7a,7bの、また適切な場合は追加層の光学設計又は層厚を、それに従って適合させなければならない。用いる層材料の屈折率が既知であれば、市販の層設計プログラムを層厚の最適化に通常は用いる。広帯域反射防止コーティング効果の利点は、選択波長に関してより高い製造公差が得られ、広範囲の入射角が有効となることである。
【0072】
反射コーティング8を反射防止コーティング7に塗布する図1cに示す構成の場合、反射防止コーティングの層応力を反射コーティングの層応力と協調させることで、2つの層応力が相互に実質的に補償し合う、すなわち、一方のコーティングで生じる正の層応力を他方のコーティングの実質的に同一の絶対値(最大約20%の差異)を有する負の層応力で補償できるようにすることが可能である。この場合、個別層の、特に吸収層7a(例えば、SiNから構成される)の層応力が、選択したコーティング法又は選択したコーティングパラメータに応じて変わることを利用することが可能であり、その結果として、反射防止コーティングの層応力を適切に適合させることができる。
【0073】
図7は、波長の関数としての図6に従った反射防止コーティング7の第2変形形態に関する例示的な第2実施形態の反射率を示す。この反射防止コーティング7の反射は、マイクロミラー構成体の使用光について193nmの使用波長及び垂直入射で1%未満である。この設計は以下の物理的層厚を有する:(Si基板)(90.2nmH)(85.8nmL)。
【0074】
この場合、個別層の基礎として図6に関する例示的な実施形態に従ったデータを取り、図7に関する例示的な実施形態のコーティングをSiミラー基板に直接塗布し、SiO層によりSiミラー基板から分離しない。結果として、吸収層7aはSiNからなり、反射防止コーティング7に入射する放射線を結合させるために塗布される追加層7bはSiOからなる。
【0075】
図7を参照すると、関連の反射防止コーティング7は、最大212nmの使用波長まで、マイクロミラー構成体の反射面11外の領域の反射率を10%未満に確実に留まらせることが可能であることを認識できる。
【0076】
図8は、図1aからのマイクロミラー構成体のマイクロミラー3のコーティングに関する例示的な実施形態の層構成の概略図を示し、これは、基板2上の層7a及び7bを有する反射防止コーティング7に加えて、反射コーティング8も付随して備える。この場合、反射コーティング8は、2つの層サブシステムからなり、第1層サブシステムは、非金属材料から構成される交互の高屈折率層及び低屈折率層の周期的配列から構成される層8a,8bを有し、193nmの使用波長に関する反射率に関して最適化される。第2層サブシステムは、高屈折率層及び低屈折率層8c、8dからなり、633nmの測定波長に関する反射率に関して最適化される。この例示的な実施形態の特定の層設計は、以下のように指定することができる:
(Si基板)(4.288SiN)(2.783SiO)2×(1.796TiO4.170MgF)(1.796TiO)9×(1MgF1LaF)。
【0077】
この場合、数値表示は、193nmの波長及び事実上の垂直入射での四分の一光学厚さ(QWOT)、すなわち波長の1/4の単位に関するものである。したがって、図8に関する例示的な実施形態は、図7に従った反射防止コーティング7と、633nmの波長用のTiOから構成される層8c及びMgFから構成される層8dの2周期から構成される第2反射層サブシステムと、TiOから構成される分離層8tと、193nmの波長用のMgFから構成される層8b及びLaFから構成される層8aの9周期から構成される第1層サブシステムとを備える。第1層サブシステムと第2層サブシステムとの間にあるTiOから構成される分離層の代わりに、ZrO、Ta、HfO、Si、Ge、ZnS、CuInSe、又はCuInSといった材料から構成される層もこの場合に選択することができた。分離層は、使用波長を有する最小限の光が分離層を通過してその下の層サブシステムに至ることを確実にすることにより、第1層サブシステムの反射特性を下の層サブシステムから切り離す役割を果たす。さらに、図8に関する例示的な実施形態において、反射防止コーティング7と基板2との間、及び/又は反射防止コーティング7と反射コーティング8との間に、付加的な付着促進層を設けることが可能である。
【0078】
反射面11外のこの例示的な実施形態の反射特性は、図7を参照してすでに説明した。図8に関する例示的な実施形態に従ったコーティングを有するマイクロミラー3の反射面11内の反射特性を、図9及び図10を参照して以下で説明する。
【0079】
図9は、使用波長193nm近傍の波長の関数としての図8からの例示的な実施形態の反射率の図を示す。図9を参照すると、図8に関する例示的な実施形態が、193nmの使用波長でマイクロミラー3の反射面11に対する法線に対して10°の入射角である場合に、95%を超える反射率を有することを認識できる。さらに、この例示的な実施形態では185nm〜205nmの使用波長で10°の入射角である場合に、反射率が85%を超えることを認識できる。
【0080】
図10は、マイクロミラー構成体の測定波長633nm近傍の波長の関数としての図8からの例示的な実施形態の反射率の図を示す。図10を参照すると、図8に関する例示的な実施形態が、633nmの測定波長でマイクロミラー3の反射面11に対する法線に対して45°の入射角である場合に、90%を超える反射率を有することを認識できる。さらに、図9に示す使用波長での反射率と同時にこの例示的な実施形態の反射率が、500nm〜800nmの測定波長で45°の入射角である場合に、80%を超えることを認識できる。結果として、反射コーティング8、特に第2層サブシステムの設計は、65%を超える、特に85%を超える反射率が、使用波長からずらした測定波長で、反射面11に対する法線に対して使用光の入射角から15%よりも大きく、特に20%よりも大きくずらした入射角で得られるようなものであり、使用光の入射角はマイクロミラー構成体の使用目的により予め決定される。
【0081】
言うまでもなく、反射防止コーティングは、必ずしもミラー基板2の上面側に塗布する必要はなく、マイクロミラー構成体の幾何学的形状が適切であれば、反射防止コーティングをミラー基板2の背面側に、又は適切な場合は同様にケイ素からなる下地基板に塗布することもでき、これは、この態様に関して参照により本願の内容に援用される米国特許第6,891,655号に説明されている通りである。
【0082】
上述のマイクロミラー構成体は、特に、193nmの波長で作動されるマイクロリソグラフィ用の照明系における瞳整形に適している。さらに、複数のマイクロミラー構成体をこのような照明系で並行して又は連続して作動させることもできる。言うまでもなく、上述の概念を、適当な変更を加えて、例えば248nm等の他の波長で用いることもできる。さらに、上述のマイクロミラー構成体は、他の光学装置で又はマイクロリソグラフィ以外の光学分野で有利に用いることもできる。この場合に重要なのは、反射防止コーティングをフォトリソグラフィによりパターニングできることであり、こうした理由から、パターニング中に小さな公差しか生じず、反射防止コーティングが反射面外の事実上全域を覆うことができることで、個々のマイクロミラーの「フレーム」を反射防止コーティングで事実上完全にコーティングすることができる。
【0083】
図11は、図1aからのマイクロミラー構成体のマイクロミラー3の、本発明によるコーティングに関する例示的な実施形態の本発明による層構成の概略図であり、これは、基板2上の層7a及び7bを有する反射防止コーティング7に加えて、反射コーティング8も付随して備える。この場合、反射コーティング8は、2つの層サブシステムからなり、第1層サブシステムは、非金属材料から構成される交互の高屈折率層及び低屈折率層の周期的配列から構成される層8e,8fを有し、使用波長に関する反射率に関して最適化される。第2層サブシステムは、高屈折率層及び低屈折率層8g、8hからなり、測定波長に関する反射率に関して最適化される。これらの例示的な実施形態の層設計は、以下のように指定することができ:
(基板) A×(7a,7b) B×(8g,8h) (8t) C×(8f,8e)
層7a及び7bからなる反射防止層7のA周期と、測定波長の反射用の層8g及び8hからなる反射コーティング8の第1層サブシステムのB周期と、使用波長の反射用の層8e及び8fからなる反射コーティング8の第2層サブシステムのC周期とを有する。
【0084】
例示的な実施形態の各周期の数A,B,及びCは、この場合は1〜20であり得る。以下の材料が吸収層7aの材料として適している:TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)。
【0085】
以下の材料が、反射防止コーティング7の追加層7bの材料として適している:SiO、MgF、LaF、チオライト、氷晶石、Al、及びErF。層8g及び8hに関しては、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料が好ましい。分離層8hの材料としては、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から選択される材料が適している。層8e及び8fに関しては、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料が好ましい。さらに、図11に従った実施形態では、反射防止コーティング7と基板2との間及び/又は反射防止コーティング7と反射コーティング8との間に付加的な付着促進層を設けることが可能である。この場合、例示的な実施形態の個別層の厚さは、193nmの使用波長及び事実上の垂直入射での四分の一光学厚さ(QWOT)単位の1/2〜1/15であり得る。
【0086】
この場合に上述したような図8に関する例示的な実施形態は、図11における本発明による多数の例示的な実施形態のうち1つの可能な特定の例示的な実施形態のみを構成するものであるが、これらの例示的な実施形態は、上述の材料リストの組み合わせから得られ、使用波長及び測定波長において反射面11に対する各入射角で最大限の反射率を達成するとともに、反射面11外では最小限の反射率を達成するという趣旨で、層厚の選択に関して選択及び最適化される。
【0087】
この多数の組み合わせから、例として図7、図9、及び図10を参照して特性を説明するために、図8に従った例示的な実施形態を選択する。この場合、図8に関する例示的な実施形態は、図7に従った反射防止コーティング7と、633nmの波長用のTiOから構成される層8g及びMgFから構成される層8hの2周期から構成される第2反射層サブシステムと、TiOから構成される分離層8tと、193nmの波長用のMgFから構成される層8f及びLaFから構成される層8eの9周期から構成される第1層サブシステムとを備える。
【0088】
この場合、本発明は、図8に従った例示的な実施形態に制限されるのではなく、図11の図の説明に関して指定したような材料の可能な組み合わせから得られ且つ所定の目的に関して最適化することができる、全ての例示的な実施形態を包含する。
【0089】
本発明は、図1a〜図11に従った例示的な実施形態に基づき以下の定式(formulations)S1〜S34の形態で提示されるような態様も包含する。これらの定式S1〜S34は、本明細書の一部であり、したがって、欧州特許庁審判部の審決J15/88に従って特許請求の範囲を構成するものではない。
【0090】
S1:ミラー構成体1であって、
ミラー基板2に形成される反射面11を有する少なくとも1つのマイクロミラー3と、反射面11内でミラー基板2に形成される反射コーティング8とを備える、ミラー構成体1において、反射コーティング8は2つの層サブシステムを有し、第1サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列から構成される層8e及び8fを有し、マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、マイクロミラー構成体の測定波長に関する反射率に関して最適化され、上記測定波長は使用波長からずらしたものであることを特徴とするマイクロミラー構成体1。
【0091】
S2:定式S1によるマイクロミラー構成体において、ミラー基板2はケイ素からなり、反射コーティング8はパターニングされたコーティングであり、反射コーティング8のパターニングは、反射コーティング8がマイクロミラー3の反射面11内にのみ延在することにより与えられるマイクロミラー構成体。
【0092】
S3:定式S1によるマイクロミラー構成体において、反射コーティング8は2つの層サブシステム間に少なくとも1つの分離層8tを有し、分離層8tの材料は、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から選択される材料であるマイクロミラー構成体。
【0093】
S4:定式S1〜S3のいずれか1つによるマイクロミラー構成体において、第1層サブシステムの層8e及び8fの材料は、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料であるマイクロミラー構成体。
【0094】
S5:定式S1〜S4のいずれか1つによるマイクロミラー構成体において、第2層サブシステムの層8g及び8hの材料は、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料であるマイクロミラー構成体。
【0095】
S6:定式S1〜S5のいずれか1つによるマイクロミラー構成体において、少なくとも1つのマイクロミラー3は、反射面11外でミラー基板2に形成される反射防止コーティング7を有する、マイクロミラー構成体において、
反射防止コーティング7は、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する非金属材料から構成される少なくとも1つの吸収層7aを有することを特徴とするマイクロミラー構成体。
【0096】
S7:定式S6によるマイクロミラー構成体において、吸収層7aの材料は、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から選択される材料であるマイクロミラー構成体。
【0097】
S8:定式S6によるマイクロミラー構成体において、吸収層の屈折率よりも低い屈折率を有する少なくとも1つの追加層7bが吸収層7aに塗布されるマイクロミラー構成体。
【0098】
S9:定式S6によるマイクロミラー構成体において、ミラー基板2はケイ素からなり、反射防止コーティング7はパターニングされたコーティングであり、反射防止コーティング7のパターニングは、反射防止コーティング7がマイクロミラー3の反射面11外にのみ延在することにより少なくとも与えられるマイクロミラー構成体。
【0099】
S10:定式S6によるマイクロミラー構成体において、反射防止コーティング7は、反射面11内でもミラー基板2に形成され、反射面11内の反射防止コーティング7及び反射コーティングは、100N/m未満、特に30N/m未満のコーティングの全応力を有するマイクロミラー構成体。
【0100】
S11:定式S6によるマイクロミラー構成体において、少なくとも1つの吸収層7aの厚さは、40nm〜100nm、好ましくは60nm〜80nmであり、反射防止コーティング7は、193nmの使用波長又は248nmの使用波長及び垂直入射で、5%以下、好ましくは3%以下、特に1%以下の反射率を有するマイクロミラー構成体。
【0101】
S12:定式S1〜S11のいずれか1つによるマイクロミラー構成体において、反射コーティング8、特に第1層サブシステムは、193nmの使用波長又は248nmの使用波長で、反射面11に対する法線に対して0°〜25°の入射角で、65%を超える、好ましくは80%を超える、特に95%を超える反射率を有するマイクロミラー構成体。
【0102】
S13:定式S1〜S12のいずれか1つによるマイクロミラー構成体において、反射コーティング8、特に第2層サブシステムの設計は、65%を超える、特に80%を超える反射率が、使用波長からずらした測定波長で、反射面11に対する法線に対して使用光の入射角から15%よりも大きく、特に20%よりも大きくずらした入射角で得られるようなものであり、使用光の入射角はマイクロミラー構成体の使用目的により予め決定されるマイクロミラー構成体。
【0103】
S14:定式S1〜S13のいずれか1つによるマイクロミラー構成体において、マイクロミラー構成体1は、反射防止コーティング7への反射コーティング8の付着を促進する役割を果たすか、又は基板への反射防止コーティング7の付着を促進する役割を果たす、少なくとも1つの付着促進層を有するマイクロミラー構成体。
【0104】
S15:マイクロミラー構成体1のコーティングを作製する方法であって、ミラー基板2を反射防止コーティング7でコーティングするステップと、照射によりパターニングできる材料層9bを反射防止コーティング9及び/又はミラー基板2に塗布することにより、反射防止コーティング7をパターニングするステップとを含む方法。
【0105】
S16:定式S15による方法において、ミラー基板2を、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する非金属材料から構成される少なくとも1つの吸収層7aでコーティングする方法。
【0106】
S17:定式S16による方法において、吸収層7aの材料として、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から材料を選択する方法。
【0107】
S18:定式S16又はS17による方法において、吸収層7aの屈折率よりも低い屈折率を有する少なくとも1つの追加層7bを吸収層7aに塗布する方法。
【0108】
S19:定式S15〜S18のいずれか1つによる方法において、マイクロミラー3において少なくとも1つの反射面11を作製するために、反射コーティング8を反射防止コーティング7及び/又はミラー基板2に塗布するステップをさらに含む方法。
【0109】
S20:定式S19による方法において、反射コーティング8を最初に面状に塗布し、その後、反射面11外の反射防止コーティングから選択的に除去する方法。
【0110】
S21:定式S19又はS20による方法において、反射防止コーティング7の層応力を反射コーティング8の層応力と協調させることで、2つの層応力が相互に実質的に補償し合うようにする方法。
【0111】
S22:定式S15〜S21のいずれか1つによる方法において、反射防止コーティング7を最初にミラー基板2に面状に塗布し、その後、反射面11の領域でミラー基板2から選択的に除去する方法。
【0112】
S23:ミラー構成体1であって、ケイ素からなることが好ましいミラー基板2に形成される反射面11を有する少なくとも1つのマイクロミラー3と、反射面11外でミラー基板2に形成される反射防止コーティング7とを備えるミラー構成体1において、好ましくはパターニングされる反射防止コーティング7は、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する好ましくは非金属性の材料から構成される少なくとも1つの吸収層7aを有することを特徴とするマイクロミラー構成体1。
【0113】
S24:定式S23によるマイクロミラー構成体において、吸収層7aの材料は、窒化ケイ素(Si)及び窒化酸化ケイ素(SiN)からなる群から好ましくは選択されるケイ素窒素化合物であるマイクロミラー構成体。
【0114】
S25:定式S23又はS24によるマイクロミラー構成体において、吸収層の屈折率よりも低い屈折率を有する少なくとも1つの追加層7bが吸収層7aに塗布されるマイクロミラー構成体。
【0115】
S26:定式S25によるマイクロミラー構成体において、追加層7bは、ケイ素窒素化合物、特に酸化ケイ素(SiO)からなるマイクロミラー構成体。
【0116】
S27:定式S23〜S26のいずれか1つによるマイクロミラー構成体において、反射防止コーティング7の層7a及び7bは、非金属材料、特にケイ素化合物からなるマイクロミラー構成体。
【0117】
S28:定式S23〜S27のいずれか1つによるマイクロミラー構成体において、少なくとも1つの吸収層7aの厚さは、吸収層7aに入射する放射線が完全に吸収されるよう選択されるマイクロミラー構成体。
【0118】
S29:定式S28によるマイクロミラー構成体において、少なくとも1つの吸収層7aの厚さは、40nm〜100nm、好ましくは60nm〜80nmであるマイクロミラー構成体。
【0119】
S30:定式S23〜S29のいずれか1つによるマイクロミラー構成体において、反射防止コーティング7は、193nmの使用波長及び垂直入射で、5%以下、好ましくは3%以下、特に1%以下の反射率を有するマイクロミラー構成体。
【0120】
S31:定式S23〜S30のいずれか1つによるマイクロミラー構成体において、反射防止コーティング7は、垂直入射及び185nm〜210nm、特に最大230nmの波長域で、10%以下、好ましくは5%以下の反射率を有するマイクロミラー構成体。
【0121】
S32:定式S23〜S31のいずれか1つによるマイクロミラー構成体において、反射面11は、反射防止コーティング7及び/又はミラー基板2に塗布されることが好ましい反射コーティング8に形成されるマイクロミラー構成体。
【0122】
S33:定式S32によるマイクロミラー構成体において、反射防止コーティング7の層応力は、反射コーティング8の層応力を実質的に補償するマイクロミラー構成体。
【0123】
S34:定式S23〜S33のいずれか1つによるマイクロミラー構成体において、少なくとも1つのマイクロミラー3が可動式に取り付けられる支持構造5をさらに備えるマイクロミラー構成体。

【特許請求の範囲】
【請求項1】
ミラー基板(2)に形成される反射面(11)を有する少なくとも1つのマイクロミラー(3)と、
前記反射面(11)内で前記ミラー基板(2)に形成される反射コーティング(8)と
を備えるマイクロミラー構成体(1)において、
前記反射面(11)外で前記ミラー基板(2)に形成される反射防止コーティング(7)が、UV波長域の波長、特に193nmで、0.1以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する好ましくは非金属性の材料から構成される少なくとも1つの吸収層(7a)を有することを特徴とするマイクロミラー構成体。
【請求項2】
請求項1に記載のマイクロミラー構成体において、前記反射防止コーティング(7)は、185nm〜210nm、特に最大230nmの波長域での垂直入射で、10%以下、好ましくは5%以下の反射率を有するマイクロミラー構成体。
【請求項3】
請求項1又は2に記載のマイクロミラー構成体において、前記反射コーティング(8)は、少なくとも2つの層サブシステムを有し、第1層サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列から構成される層(8a,8b;8e,8f)を有し、該マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、該マイクロミラー構成体の測定波長に関する反射率に関して最適化され、前記測定波長は前記使用波長からずらしたものであるマイクロミラー構成体。
【請求項4】
ミラー基板(2)に形成される反射面(11)を有する少なくとも1つのマイクロミラー(3)と、
前記反射面(11)内で前記ミラー基板(2)に形成される反射コーティング(8)と
を備えるマイクロミラー構成体(1)において、
前記反射コーティング(8)は、少なくとも2つの層サブシステムを有し、第1層サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列から構成される層(8a,8b;8e,8f)を有し、該マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、該マイクロミラー構成体の測定波長に関する反射率に関して最適化され、前記測定波長は前記使用波長からずらしたものであることを特徴とするマイクロミラー構成体。
【請求項5】
請求項3又は4に記載のマイクロミラー構成体であって、前記反射コーティング(8)は、2つの前記層サブシステム間に少なくとも1つの分離層(8t)を有し、該分離層(8t)の材料は、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から選択される材料であるマイクロミラー構成体。
【請求項6】
請求項3〜5のいずれか1項に記載のマイクロミラー構成体において、前記第1層サブシステムの前記層(8a,8b;8e,8f)の材料は、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料であるマイクロミラー構成体。
【請求項7】
請求項3〜6のいずれか1項に記載のマイクロミラー構成体において、前記第2層サブシステムの前記層(8c,8d;8g,8h)の材料は、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料であるマイクロミラー構成体。
【請求項8】
請求項4に記載のマイクロミラー構成体において、前記少なくとも1つのマイクロミラー(3)は、前記反射面(11)外で前記ミラー基板(2)に形成される反射防止コーティング(7)を有し、
該反射防止コーティング(7)は、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する非金属材料から構成される少なくとも1つの吸収層(7a)を有することを特徴とするマイクロミラー構成体。
【請求項9】
請求項1又は8に記載のマイクロミラー構成体において、前記吸収層(7a)の材料は、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から選択される材料であるマイクロミラー構成体。
【請求項10】
請求項1又は8に記載のマイクロミラー構成体において、前記反射防止コーティング(7)は、前記反射面(11)内でも前記ミラー基板(2)に形成され、前記反射面(11)内の前記反射防止コーティング(7)及び前記反射コーティングは、100N/m未満、特に30N/m未満のコーティングの全応力を有するマイクロミラー構成体。
【請求項11】
請求項1又は8に記載のマイクロミラー構成体において、前記少なくとも1つの吸収層(7a)の厚さは、40nm〜100nm、好ましくは60nm〜80nmであり、前記反射防止コーティング(7)は、193nmの使用波長又は248nmの使用波長及び垂直入射で、5%以下、好ましくは3%以下、特に1%以下の反射率を有するマイクロミラー構成体。
【請求項12】
請求項3〜11のいずれか1項に記載のマイクロミラー構成体において、前記反射コーティング(8)、特に前記第1層サブシステムは、193nmの使用波長又は248nmの使用波長で、前記反射面(11)に対する法線に対して0°〜25°の入射角で、65%を超える、好ましくは80%を超える、特に95%を超える反射率を有するマイクロミラー構成体。
【請求項13】
請求項3〜12のいずれか1項に記載のマイクロミラー構成体において、前記反射コーティング(8)、特に前記第2層サブシステムの設計は、65%を超える、特に80%を超える反射率が、前記使用波長からずらした測定波長で、前記反射面(11)に対する法線に対して使用光の入射角から15%よりも大きく、特に20%よりも大きくずらした入射角で得られるようなものであり、前記使用光の前記入射角は該マイクロミラー構成体の使用目的により予め決定されるマイクロミラー構成体。
【請求項14】
先行の請求項のいずれか1項に記載のマイクロミラー構成体において、該マイクロミラー構成体(1)は、前記反射防止コーティング(7)への前記反射コーティング(8)の付着を促進する役割を果たすか、又は前記基板への前記反射防止コーティング(7)の付着を促進する役割を果たす、少なくとも1つの付着促進層を有するマイクロミラー構成体。
【請求項15】
先行の請求項のいずれか1項に記載のマイクロミラー構成体において、少なくとも1つの追加層(7b)が前記吸収層(7a)に塗布され、前記追加層(7b)は、HfO、MgF、LaF、チオライト、氷晶石、Al、ErF、又はケイ素酸素化合物、特に二酸化ケイ素(SiO)から構成されるマイクロミラー構成体。
【請求項16】
マイクロミラー構成体(1)のコーティングを作製する方法であって、
ミラー基板(2)を反射防止コーティング(7)でコーティングするステップと、
照射によりパターニングできる材料層(9b)を反射防止コーティング(9)及び/又は前記ミラー基板(2)に塗布することにより、前記反射防止コーティング(7)をパターニングするステップと
を含む方法。
【請求項17】
請求項16に記載の方法において、前記ミラー基板(2)を、UV域の波長で、特に193nmで、0.01以上、好ましくは0.2以上、特に0.4以上の吸収係数を有する非金属材料から構成される少なくとも1つの吸収層(7a)でコーティングする方法。
【請求項18】
請求項17に記載の方法において、前記吸収層(7a)の材料として、TiO、Ta、Ta、HfO、ZrO、酸化クロム(Cr)、PbF、YF、C、ダイヤモンド状炭素、Ge、Si、SiN、窒化ケイ素(Si)、窒化酸化ケイ素(SiN)、及び不定比酸化ケイ素(Si)からなる群から材料を選択する方法。
【請求項19】
請求項17又は18に記載の方法において、少なくとも1つの追加層(7b)を前記吸収層(7a)に塗布し、前記追加層(7b)は、HfO、MgF、LaF、チオライト、氷晶石、Al、ErF、又はケイ素酸素化合物、特に二酸化ケイ素(SiO)から構成される方法。
【請求項20】
請求項16〜19のいずれか1項に記載の方法において、マイクロミラー(3)において少なくとも1つの反射面(11)を作製するために、反射コーティング(8)を前記反射防止コーティング(7)及び/又は前記ミラー基板(2)に塗布するステップをさらに含む方法。
【請求項21】
請求項20に記載の方法において、前記反射コーティング(8)を最初に面状に塗布し、その後、前記反射面(11)外の前記反射防止コーティングから選択的に除去する方法。
【請求項22】
請求項20又は21に記載の方法において、前記反射防止コーティング(7)の層応力を前記反射コーティング(8)の層応力と協調させることで、2つの層応力が相互に実質的に補償し合うようにする方法。
【請求項23】
請求項16〜21のいずれか1項に記載の方法において、前記反射防止コーティング(7)を最初に前記ミラー基板(2)に面状に塗布し、その後、前記反射面(11)の領域で前記ミラー基板(2)から選択的に除去する方法。
【請求項24】
請求項16〜23のいずれか1項に記載の方法において、前記反射コーティング(8)は、少なくとも2つの層サブシステムを有し、第1層サブシステムは、非金属材料から構成される交互の光屈折率層及び低屈折率層の周期的配列から構成される層(8a,8b;8e,8f)を有し、前記マイクロミラー構成体の使用波長に関する反射率に関して最適化され、第2層サブシステムは、前記マイクロミラー構成体の測定波長に関する反射率に関して最適化され、前記測定波長は前記使用波長からずらしたものであり、前記反射コーティング(8)は、2つの前記層サブシステム間に少なくとも1つの分離層(8t)を有し、該分離層(8t)の材料は、TiO、Ta、HfO、ZrO、Si、Ge、ZnS、CuInSe、CuInS、Laからなる群から選択される材料であり、前記第1層サブシステムの前記層(8a,8b;8e,8f)の材料は、LaF、MgF、SiO、Al、ErF、GdF、HfO、AlFからなる群から選択される材料であり、前記第2層サブシステムの前記層(8c,8d;8g,8h)の材料は、La、ZrO、TiO、Ta、MgF、SiO、Al、Si、Ge、HfO、AlFからなる群から選択される材料である方法。

【図1a】
image rotate

【図1b】
image rotate

【図1c】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図2c】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図3c】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図4c】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2012−533095(P2012−533095A)
【公表日】平成24年12月20日(2012.12.20)
【国際特許分類】
【出願番号】特願2012−519940(P2012−519940)
【出願日】平成22年4月1日(2010.4.1)
【国際出願番号】PCT/EP2010/054426
【国際公開番号】WO2011/006685
【国際公開日】平成23年1月20日(2011.1.20)
【出願人】(503263355)カール・ツァイス・エスエムティー・ゲーエムベーハー (435)
【Fターム(参考)】