説明

パルスレーダ装置

【課題】パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得る。
【解決手段】パルス繰り返し周期毎に送信周波数が所定の周波数間隔ずつ変化する送信パルス列を目標方向へ送信し、パルス繰り返し周期毎に得られる反射信号を受信してI成分ビデオ信号およびQ成分ビデオ信号を生成するパルスレーダ装置であって、隣り合う送信パルスの周波数差を受信機の信号通過帯域幅以上として、パルス毎に異なる周波数で送信するように、送信パルス列を生成する送信パルス列生成手段を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、目標との相対速度が0でない場合においても、合成帯域処理によって、正しい高距離分解能の測距を行うパルスレーダ装置に関する。
【背景技術】
【0002】
従来のパルスレーダ装置において、パルスレーダ装置と目標との間の相対速度が0でない場合に合成帯域処理を行うためには、合成帯域モードと相対速度計測モードを設け、相対速度計測モードで計測した相対速度を用いて、合成帯域モードで取得した信号に対して相対速度補正を行った後の合成帯域処理を行うものがある(例えば、特許文献1参照)。また、合成帯域処理に関する先行技術文献としては、非特許文献1がある。
【0003】
【特許文献1】特許第3709698号公報
【非特許文献1】Donald R.Wehner著「High-Resolution Radar」、Second Edition、Artech House、Chapter 5、第197頁〜第237頁
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術には以下の課題がある。図7は、従来のパルスレーダ装置における送信パルスを示した図である。合成帯域処理を用いたパルスレーダ装置では、送信時に、図7に示すように、N個の送信パルスSt〜StN−1に対して、パルス毎に送信周波数をf〜fN−1まで周波数ステップ間隔Δf毎に変化させる。
【0005】
受信時に、目標から反射してきた各受信信号を、レンジゲートによってレンジビン毎に分割して受信し、送信パルスと同じ周波数、同じ初期位相の局部発振信号でダウンコンバートして、I成分ビデオ信号、Q成分ビデオ信号を生成する。さらに、同じレンジビンのN個のI成分ビデオ信号、Q成分ビデオ信号を逆フーリエ変換することによって帯域を合成し、各レンジビン内の高分解能相対距離を得ることができる。
【0006】
図8は、従来のパルスレーダ装置における受信信号強度の状態を示した図である。パルスレーダ装置と目標との相対速度が0でない場合には、この相対速度の影響により、相対距離Rが正確に求まらない問題がある。すなわち、相対速度が0でない場合には、合成帯域処理によって距離分解能ΔRの高距離分解能化して得られたパルスレーダ装置と目標との相対距離は、基準の時刻のパルスレーダ装置と目標との相対距離Rと異なる距離を示すこととなる。
【0007】
図8において、Srpは、目標との相対速度が0のときの目標からの反射信号を示しており、Srp’は、目標との相対速度が0でないときの目標からの反射信号を示している。相対速度が0の場合には、反射信号Srpから相対距離Rを求めることができるが、相対速度が0でない場合には、反射信号Srp’から相対距離Rを求めることができないこととなる。
【0008】
その解決策として、特許文献1に記載されている従来技術では、合成帯域モードと相対速度計測モードを設け、相対速度計測モードで計測した相対速度を用いて、合成帯域モードで取得した信号に対して相対速度補正を行った後に合成帯域処理を行い、高分解能測距結果を得ている。
【0009】
そのため、1回の高分解能測距結果を得るために、相対速度計測モードによる観測時間と合成帯域モードによる観測時間の両方が必要になる。さらに、相対速度計測モードと合成帯域モードのそれぞれの処理に別々の受信信号を用いるため、相対速度変化の大きい目標に対しては、相対速度補正の精度が劣化するという問題点があった。
【0010】
一方、合成帯域処理において、あいまいさ(アンビギュイティ)なく測距可能な最大の計測距離Rmaxは、周波数ステップ間隔Δfを用いて次式(1)で表される。
【0011】
【数1】

【0012】
ただし、cは光速を表す。一方、1レンジビンの距離範囲Rbinは、送信パルス幅Tを用いて次式(2)で表される。
【0013】
【数2】

【0014】
よって、合成帯域処理によって、1レンジビンの距離範囲Rbin内をあいまいさなく高距離分解能化するためには、あいまいさなく測距可能な最大の距離Rmaxを1レンジビンの距離範囲Rbin以上にする必要がある。よって、周波数ステップ幅Δfと、送信パルス幅Tは、次式(3)の関係となるように設定する必要がある。
【0015】
【数3】

【0016】
よって、周波数ステップ幅Δfは、最大でも、送信パルス幅Tの逆数の値となる。また、目標反射信号対雑音電力を最大にするためには、受信機最終段のマッチドフィルターの3dBDown帯域幅を送信パルス幅の逆数の1.2倍とすることが望ましい。よって、周波数ステップ幅Δfを送信パルス幅Tの逆数とした場合、受信機の信号通過帯域幅Brxは、次式(4)で表される。
【0017】
【数4】

【0018】
図9は、従来のパルスレーダ装置における受信機最終段のマッチドフィルター特性を示す図であり、中心周波数を0とした特性を示している。また、図10は、従来のパルスレーダ装置における2通りの距離(R、R)からの受信パルスのタイミングを示した図である。
【0019】
図10(a)は、目標までの距離がRのときに、送信パルスと同一のパルス繰り返し周期Tpri内に、送信パルスに対応する受信パルスを受信している場合を示している。また、図10(b)は、目標までの距離がRのときに、送信パルスの次のパルス繰り返し周期Tpri内に、送信パルスに対応する受信パルスを受信している場合を示している。
【0020】
さらに、図11は、従来のパルスレーダ装置における図10に対応したマッチドフィルター特性を示す図である。図11(a)は、図10(a)の受信パルスのパターンに対応するマッチドフィルター特性を示している。また、図11(b)は、図10(b)の受信パルスのパターンに対応するマッチドフィルター特性を示している。
【0021】
パルス毎に送信周波数をfからfN−1まで一定の周波数ステップ間隔Δf毎に変化させた場合、図10(a)に示すように、目標との相対距離が、次式(5)に示すパルス繰り返し周期に相当する距離Rpriより短い距離Rのときには、必ず受信パルスの周波数と局部発振信号の周波数が一致する。
【0022】
【数5】

【0023】
例えば、周波数fの受信パルスは、周波数fの局部発振信号でダウンコンバートすることとなり、生成したビデオ信号の中心周波数は0となり、3dBDownの帯域幅Bは、次式(6)で表される値となる。
【0024】
【数6】

【0025】
そのため、受信パルスのスペクトルとマッチドフィルター形状とは、周波数軸上では、図11(a)に示すようになり、マッチドフィルターを受信パルスが通過する関係を有し、受信パルスを正確に抽出できる。
【0026】
しかし、図10(b)に示すように、例えば、目標との相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ長いRのときには、周波数fの局部発振信号のところに周波数fの受信パルスが帰ってくることになる。そのため、周波数fの受信パルスをfの局部発振信号でダウンコンバートすることになり、生成したビデオ信号に−Δfの周波数成分が生じる。
【0027】
このことは、周波数軸上で、図11(b)に示すように、マッチドフィルターに対して−Δfだけ周波数がシフトした受信パルスのスペクトルが入力されることとなる。よって、図11(b)に示す受信パルスのスペクトルの内、斜線で示した成分がマッチドフィルターを通過していくこととなる。
【0028】
そのため、送信パルス毎の初期位相が等間隔に変化している場合、合成帯域処理を行うと、受信信号強度はある程度劣化するが、相対距離がRの目標についても、あたかも、相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ短い距離Rに存在するように測距を行う。
【0029】
このことは、本来目標がいない相対距離に目標がいると誤測距する危険性があることを示す。また、地面からの反射等のように、パルス繰り返し周期に相当する距離Rpriより遠くにある反射物からの受信信号強度が非常に大きい場合、パルス繰り返し周期に相当する距離Rpriより近い目標が、パルス繰り返し周期に相当する距離Rpriより遠くにある反射物からの受信信号に埋もれて、検出ができなくなるという問題が生じる。
【0030】
本発明は、上述のような課題を解決するためになされたもので、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることを目的とする。
【課題を解決するための手段】
【0031】
本発明に係るパルスレーダ装置は、パルス繰り返し周期毎に送信周波数が所定の周波数間隔ずつ変化する送信パルス列を目標方向へ送信し、パルス繰り返し周期毎に得られる反射信号を受信してI成分ビデオ信号およびQ成分ビデオ信号を生成するパルスレーダ装置であって、隣り合う送信パルスの周波数差を受信機の信号通過帯域幅以上として、パルス毎に異なる周波数で送信するように、送信パルス列を生成する送信パルス列生成手段を備えるものである。
【発明の効果】
【0032】
本発明によれば、隣り合う送信パルスの周波数差を受信機の信号通過帯域幅以上として、パルス毎に異なる周波数を有するパルス列からなる送信信号を用いることにより、同じ受信信号に基づいて相対速度の検出を行うことができ、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることができる。
【発明を実施するための最良の形態】
【0033】
以下、本発明のパルスレーダ装置の好適な実施の形態につき図面を用いて説明する。
本発明のパルスレーダ装置は、同一の受信信号を用いて、目標との相対速度計測、および相対速度補正後の合成帯域処理による目標との高分解能相対距離計測を行うことによって、相対速度補正の精度の向上と、1回の合成帯域処理による目標との高分解能相対距離を得るために必要な受信信号観測時間の短縮化の両立を図り、さらに、パルス繰り返し周期に相当する距離より遠い距離にある物体からの反射信号の抑圧を図ることができる。
【0034】
実施の形態1.
図1は、本発明の実施の形態1におけるパルスレーダ装置の構成図である。図1を用いて、各構成要素の機能について説明する。タイミング発生器1は、パルス繰り返し周期Tpriの間隔で、タイミング信号を発生する。このタイミング信号は、周波数シンセサイザ2では周波数切替信号として使用され、パルス変調器7ではパルス変調信号として使用され、送受切替器9では送受切替信号として使用される。
【0035】
一方、周波数設定器3は、隣り合う送信パルスの周波数差を、上式(4)で示した受信機の信号通過帯域幅Brx以上とし、さらに、同じ時間間隔だけ離れた2つの送信パルスを1つのペアとみなし、全ペアのパルス間の周波数差が同じとなるような条件を満たすように、パルス毎の送信周波数を設定する。
【0036】
図2は、本発明の実施の形態1における周波数設定器3から出力される送信パルス毎の周波数、複素乗算器17で処理される送信パルス毎の周波数、並び替え器21から出力される送信パルス毎の周波数に関する説明図である。図2(a)は、送信パルス数Nを32とした場合の、周波数設定器3から出力される送信パルス毎の周波数の一例を示した図である。また、複素乗算器17による処理の説明図である図2(b)、および並び替え器21による処理の説明図である図2(c)については、後に詳述する。
【0037】
図2(a)においては、隣り合う送信パルスの周波数差は、3Δfまたは−5Δfとなり、前述の条件を満たしている。また、1パルス繰り返し周期離れた0番目のパルスと1番目のパルス、2番目のパルスと3番目のパルス、・・・、30番目のパルスと31番目のパルスをそれぞれペアとすると、全ペアのパルス間の送信周波数の差は、いずれも−5Δfで同じとなり、前述の条件を満たしている。
【0038】
周波数シンセサイザ2は、タイミング発生器1からのタイミング信号(周波数切替信号に相当)によって、周波数設定器3から入力され送信周波数に応じて、パルス繰り返し周期Tpri毎に周波数を生成し、分配器4aに出力する。
【0039】
図2(a)に示すように、送信パルス列毎の周波数を設定することによって、相対距離がRよりパルス繰り返し周期に相当する距離Rpriだけ長いRのところからの反射信号(すなわち、本来検出したい目標以外からの反射信号)は、例えば、周波数fの局部発振信号のところに周波数fの受信パルスが、周波数fの局部発振信号のところに周波数fの受信パルスが帰ってくることになる。
【0040】
このため、周波数f0の受信パルスをf5の局部発振信号でダウンコンバートし、周波数f5の受信パルスをf2の局部発振信号でダウンコンバートすることになり、生成したビデオ信号に−5Δfあるいは3Δfの周波数成分が生じる。
【0041】
図3は、本発明の実施の形態1における図2のパルス列に対応したマッチドフィルターの説明図である。より具体的には、周波数f0の受信パルスを周波数f5の局部発振信号でダウンコンバートした場合のマッチドフィルターの説明図である。Rからの受信信号をダウンコンバートすることにより生成されたビデオ信号に−5Δfの周波数成分が生じることは、周波数軸上で、図3に示すように、マッチドフィルターに−5Δfだけ周波数がシフトした受信パルスのスペクトルが入力されることとなる。同様に、周波数f5の受信パルスを周波数f2の局部発振信号でダウンコンバートした場合は、Rからの受信信号をダウンコンバートすることにより生成されたビデオ信号に3Δfの周波数成分が生じ、周波数軸上で、マッチドフィルターに3Δfだけ周波数がシフトした受信パルスのスペクトルが入力されることとなる。
【0042】
従って、このように受信パルスのスペクトルの周波数が−5Δf、あるいは3Δfだけシフトしている場合には、受信パルスが、マッチドフィルターを通過していくことはなくなる。この結果、相対距離がパルス繰り返し周期に相当する距離Rpriより長い目標からの反射信号は、マッチドフィルターを通過することなく、その後の合成帯域処理に影響を及ぼさなくなり、誤検出を防止することができる。
【0043】
分配器4aは、周波数シンセサイザ2からの入力信号を2分し、一方を送信信号生成用の局部発振信号として周波数変換器6aに出力し、もう一方を中間周波数信号生成用の局部発振信号として、周波数変換器6bに出力する。
【0044】
基準中間周波数信号生成器5は、基準中間周波数信号を生成する。周波数変換器6aは、分配器4aからの局部発振信号の周波数と、基準中間周波数信号生成器5で生成された基準中間周波数信号の周波数との和の周波数の送信キャリア信号を生成する。
【0045】
パルス変調器7は、周波数変換器6aで生成された送信キャリア信号に対して、タイミング発生器1からのタイミング信号(パルス変調信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めたパルス幅Tのパルス変調を行う。電力増幅器8は、パルス変調器7の出力信号を取り込み、電力増幅を行う。
【0046】
送受切替器9は、タイミング発生器1からのタイミング信号(送受切替信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めた時間間隔で、電力増幅器8からの入力信号を出力する。アンテナ10は、送受切替器9からの入力信号を、送信信号として空間へ放射する。
【0047】
送信信号は、目標11、および背景に反射し、反射信号となってアンテナ10で受信され、送受切替器9に出力される。送受切替器9は、タイミング発生器1からのタイミング信号(送受切替信号に相当)によって、パルス繰り返し周期Tpri毎に、予め定めた時間間隔で、アンテナ10からの入力信号を周波数変換器6bに出力する。
【0048】
また、周波数変換器6bには、中間周波数信号の生成用として、分配器4aからの局部発振信号も入力される。そして、周波数変換器6bは、受信信号の周波数と局部発振信号の周波数との差の周波数である中間周波数信号を生成し、中間周波数増幅器12へ出力する。
【0049】
中間周波数増幅器12は、中間周波数信号の電力の増幅を行い、その結果を分配器4bに出力する。分配器4bは、中間周波数増幅器12で増幅された中間周波数信号を2分し、それぞれを位相検波器14a、14bに出力する。
【0050】
一方、90度ハイブリッド器13は、基準中間周波数信号生成器5で生成された基準中間周波数信号を、90度の位相差を持った2つの信号に分離し、位相検波器14a、14bに出力する。位相検波器14a、14bは、分配器4bからの入力信号、および90度ハイブリッド器13からの入力信号から、中間周波数信号の周波数と基準中間周波数信号の周波数との差の周波数を持ち、互いに90度の位相差を持つI成分、Q成分のビデオ信号(以下、I、Qビデオ信号と称す)を生成する。
【0051】
生成されたI、Qビデオ信号は、サンプリング周波数が1/T(送信パルス幅Tの逆数に相当)のA/D変換器15a、15bに入力され、送信パルス幅Tと同じ間隔のレンジビン毎のディジタルI、Qビデオ信号に変換され、ビデオ信号保存用メモリ16に記憶される。ビデオ信号保存用メモリ16は、パルス繰り返し周期TpriのN倍の時間間隔のすべてのレンジビン番号のディジタルIビデオ信号を実部、ディジタルQビデオ信号を虚部とした複素ディジタルビデオ信号を保存する。
【0052】
複素乗算器17は、図2(a)、(b)に示すように、送信パルスの各ペアにおいて周波数の小さい方を送信パルス群A、周波数の大きい方を送信パルス群Bとして扱う。そして、複素乗算器17は、ビデオ信号保存用メモリ16から、周波数シンセサイザ2で生成された送信パルス群Aの送信パルスに対する受信信号から得られた同じレンジビン番号の複素ディジタルビデオ信号Aを取り出す。
【0053】
さらに、複素乗算器17は、ビデオ信号保存用メモリ16から、周波数シンセサイザ2で生成された送信パルス群Bの送信パルスに対する受信信号から得られた同じレンジビン番号の複素ディジタルビデオ信号Bを取り出す。
【0054】
そして、複素乗算器17は、それぞれM個(=N/2個)からなる複素ディジタルビデオ信号A、および複素ディジタルビデオ信号Bの虚部の符号を反転させた複素共役ディジタルビデオ信号Bを同じ番号同士で乗算することによって、M個の相対速度計測用複素ディジタル信号(X(0)〜X(M−1))を生成する。図4は、本発明の実施の形態1における複素乗算器17により生成される相対速度計測用複素ディジタル信号の説明図である。さらに、複素乗算器17は、生成したM個の相対速度計測用複素ディジタル信号を周波数スペクトル分析器18に出力する。ここでは、複素共役ディジタルビデオ信号Bを用いる場合を示しているが、複素ディジタルビデオ信号Aの虚部の符号を反転させた素共役ディジタルビデオ信号Aと複素ディジタルビデオ信号Bを同じ番号同士で乗算してもかまわない。
【0055】
パルスレーダ装置と目標との相対速度がvの場合の複素ディジタルビデオ信号Aに相当するV(n)(n=0、2、・・・、N−2)と、複素ディジタルビデオ信号Bに相当するV(n)(n=1、3、・・・、N−1)は、それぞれ次式(7)(8)で表される。ただし、ここでは、図2で示した、送信パルス群Aと送信パルス群Bの同じ番号間の周波数差が5Δfの場合を示している。
【0056】
【数7】

【0057】
ただし、Eは、複素ディジタルビデオ信号の振幅を表し、ここでは、複素ディジタルビデオ信号A、複素ディジタルビデオ信号B共に、全てのnに対して、同じ値としている。
【0058】
M=N/2の関係から、上式(7)のn=0、2、・・・、N−2に対し、n=2mとしたV(m)(m=0、1、・・・、M−1)と、上式(8)のn=1、3、・・・、N−1に対し、n=2m+1としたV(m)(m=0、1、・・・、M−1)は、それぞれ下式(9)(10)で表される。
【0059】
【数8】

【0060】
よって、複素ディジタルビデオ信号Aに相当するV(m)と、複素ディジタルビデオ信号Bの虚部の符号を反転させた複素共役ディジタルビデオ信号Bに相当するV(m)に対して、図4に示す処理を行った場合、その出力信号である相対速度計測用複素ディジタル信号X(m)(m=0、1、・・・M−1)は、次式(11)で表される。
【0061】
【数9】

【0062】
ただし、V(n)の「*」、は複素共役を示す。
【0063】
上式(11)で表される相対速度計測用複素ディジタル信号X(m)(m=0、1、・・・、M−1)に対して、周波数スペクトル分析を行った場合、第1項exp(−j2πf(2v/c)Tpri)、第2項exp(j2π5Δf(2R/c))、第3項exp(−j2π5Δf(2v/c)Tpri)は、それぞれ、変数mには関係のない項なので、これらは初期位相としてしか影響しない。
【0064】
一方、第4項exp(−j2π12Δf(2v/c)mTpri)は、送信キャリア周波数が12Δfの信号に対するドップラ周波数を表す。周波数スペクトル分析方法として逆フーリエ変換を用いた場合、上式(11)で表される相対速度計測用複素ディジタル信号X(m)に対してM点で逆フーリエ変換した信号、すなわち、相対速度計測用複素ディジタル信号の周波数スペクトルP(k’)は、下式(12)で表される。
【0065】
【数10】

【0066】
周波数スペクトル分析器18は、上述のように、逆フーリエ変換を用いて、複素乗算器17からの相対速度計測用複素ディジタル信号の周波数スペクトルを求め、その結果を相対速度計測器19に出力する。
【0067】
上式(12)より、下式(13)が成り立つときに、P(k′)の絶対値として求められる振幅値(強度)がピーク値となることがわかる。
【0068】
【数11】

【0069】
(k′)の振幅値が最大値をとるk′の値をkとすると、kを求めることにより、下式(14)を用いて、パルスレーダ装置と目標との相対速度vを求めることができる。
【0070】
【数12】

【0071】
相対速度計測器19は、上述のように、周波数スペクトル分析器18からの相対速度計測用複素ディジタル信号の周波数スペクトルの振幅値のピーク信号を検出することにより目標との相対速度を求め、その結果を相対速度補正器20に出力する。
【0072】
相対速度補正器20は、相対速度計測器19で求めた目標との相対速度をvcalとして、下式(15)(16)で表される相対速度補正量Z(m)、Z(m)を求める。
【0073】
【数13】

【0074】
さらに、相対速度補正器20は、目標との相対速度計測のために複素乗算器17で用いたものと同じ複素ディジタルビデオ信号Aと複素ディジタルビデオ信号Bをビデオ信号保存用メモリ16から取り出し、下式(17)、(18)で示す相対速度の補正を行い、それぞれに対する相対速度補正後の複素ディジタルビデオ信号VcA(m)、VcB(m)を求める。
【0075】
【数14】

【0076】
そして、相対速度補正器20は、求めた相対速度補正後の複素ディジタルビデオ信号VcA(m)、VcB(m)を並び替え器21に出力する。並び替え器21は、相対速度補正後の複素ディジタルビデオ信号VcA(m)、VcB(m)の両方を合わせた信号に対して、対応する送信周波数が昇順、あるいは降順になるように並び替え、並び替え後の複素ディジタルビデオ信号を生成し、合成帯域器22に出力する。
【0077】
すなわち、並び替え器21は、先の図2(a)を昇順に並び替える場合を例にすれば、図2(c)に示すように、周波数番号がf4、f5、・・・、f31の順番となるように並び替えることにより、並び替え後の複素ディジタルビデオ信号を生成する。ただし、この場合は、等間隔に周波数差がならないf0、f2、f33、f35を用いない場合を示しているが、用いることも可能である。
【0078】
合成帯域器22は、並び替え器21から入力された並び替え後の複素ディジタルビデオ信号を逆フーリエ変換することによって、帯域の合成を行い、パルス幅T以下の距離分解能ΔRを持つ複素信号を生成し、その結果を包絡線検波器23に出力する。包絡線検波器23は、合成帯域器22から入力されるすべての複素信号の振幅値を求め、合成帯域処理による高距離分解能相対距離計測結果として、表示器24に出力する。表示器24は、包絡線検波器23からの入力信号を表示する。
【0079】
以上のように、実施の形態1によれば、パルスレーダ装置と目標との間の相対速度が0でない場合に、所定の条件を満たす複数のパルス列からなる送信信号を用いることにより、送信信号に対応した受信結果から相対速度計測用複素信号を算出して相対速度を容易に求めることが可能となる。
【0080】
さらに、相対速度を算出するために使用したものと同じ受信結果に対して、相対速度による補正を施し、相対速度の補正後の受信結果に基づいて合成帯域処理を行うことにより目標までの測距結果を求めることができる。これにより、パルスレーダ装置と目標との間の相対速度が0でない場合にも、相対速度の影響により測距結果を間違うことがなく、高分解能相対距離計測結果を得ることができる。
【0081】
さらに、隣同士の送信信号の周波数差を信号通過帯域幅以上に設定することにより、パルス繰り返し周期に相当する距離Rpriより遠い目標からの反射信号を除去することができる。これにより、パルス繰り返し周期に相当する距離Rpriより近いところにある検出すべき本来の目標の誤検出あるいは未検出を防ぐことができる。
【0082】
さらに、相対速度の影響による相対距離計測結果の劣化を防止することができ、パルス繰り返し周期に相当する距離Rpriより遠い目標からの反射信号を除去することができることにより、パルスレーダ装置と目標との間の相対速度が0でない場合にも、1回の高分解能の測距結果を得るために必要な信号送信時間間隔を、本来検出すべき目標までの距離に適用できる範囲で短くした上で、高精度に目標までの相対距離を検出することができるパルスレーダ装置を得ることが可能となる。
【0083】
実施の形態2.
図5は、本発明の実施の形態2におけるパルスレーダ装置の構成図である。図5における本実施の形態2のパルスレーダ装置は、図1における先の実施の形態1のパルスレーダ装置と比較すると、相対速度補正器20と並び替え器21との間に、相対速度再補正処理部30がさらに設けられている点が異なっている。
【0084】
ここで、本実施の形態2で追加になった相対速度再補正処理部30は、相対速度補正後ビデオ信号保存用メモリ31、並び替え器32、合成帯域器33、ピーク検出器34、相対速度補正誤差算出器35、および相対速度再補正器36で構成される。
【0085】
次に、本実施の形態2におけるパルスレーダ装置の動作について、先の実施の形態1と異なる構成である相対速度再補正処理部30を中心に説明する。図5において、相対速度補正器20までの動作は、先の実施の形態1の動作と同様である。
【0086】
相対速度再補正処理部30において、相対速度補正後ビデオ信号保存用メモリ31は、相対速度補正器20から出力される相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)を保存する。並び替え器32、合成帯域器33は、相対速度補正後ビデオ信号保存用メモリ31より相対速度補正後の複素ディジタルビデオ信号VcA(n)、VcB(n)を取り出し、先の実施の形態1で説明した並び替え器21、合成帯域器22と同様の処理を行う。
【0087】
ピーク検出器34は、合成帯域器33の出力信号より、上式(1)で求まる合成帯域処理において、あいまいさなく測距可能な最大の計測距離Rmaxの半分の距離間隔だけ離れた2つのピークを求める。図6は、本発明の実施の形態2におけるピーク検出器で求める2つのピークを示した図である。ピーク検出器34は、振幅の大きい方のピークの振幅G、位相Φ、振幅の小さい方のピークの振幅G、位相Φをそれぞれ求め、相対速度補正誤差算出器35に出力する。
【0088】
相対速度補正誤差算出器35は、ピーク検出器34から入力された、2つのピークにおける振幅G、Gを用いて、次式(19)により、相対速度補正誤差Verrを求める。
【0089】
【数15】

【0090】
上式(19)は、cos−1を用いているため、正負2つの値が求まる。次に、相対速度補正誤差算出器35は、2つのピークにおける位相Φ、Φを用いて、次式(20)の演算を行い、位相差Φ12を求める。
【0091】
【数16】

【0092】
そして、相対速度補正誤差算出器35は、Φ12が正の場合には、上式(19)で求まった負の値を相対速度補正誤差Verrとし、Φ12が負の場合には、上式(19)で求まった正の値を相対速度補正誤差Verrとして、相対速度再補正器36に出力する。
【0093】
相対速度再補正器36は、相対速度補正後ビデオ信号保存用メモリ31より取り出した相対速度補正後の複素ディジタルビデオ信号VcA(m)、VcB(m)と、相対速度補正誤差算出器35で算出された相対速度補正誤差Verrに基づいて、次式(21)(22)により、相対速度の再補正を行った後の複素ディジタルビデオ信号V’cA(m)、V’cB(m)を求め、並び替え器21に出力する。
【0094】
【数17】

【0095】
並び替え器21以降の処理は、先の実施の形態1と同じである。
【0096】
以上のように、実施の形態2によれば、相対速度再補正の処理結果を用いて、最終的な相対速度補正後の複素ディジタルビデオ信号を求めている。これにより、先の実施の形態1に比べ、さらに相対速度計測の精度を向上することができ、相対速度計測誤差の合成帯域処理結果への影響を低減することができる。
【図面の簡単な説明】
【0097】
【図1】本発明の実施の形態1におけるパルスレーダ装置の構成図である。
【図2】本発明の実施の形態1における周波数設定器から出力される送信パルス毎の周波数、複素乗算器で処理される送信パルス毎の周波数、並び替え器から出力される送信パルス毎の周波数に関する説明図である。
【図3】本発明の実施の形態1における図2のパルス列に対応したマッチドフィルターの説明図である。
【図4】本発明の実施の形態1における複素乗算器により生成される相対速度計測用複素ディジタル信号の説明図である。
【図5】本発明の実施の形態2におけるパルスレーダ装置の構成図である。
【図6】本発明の実施の形態2におけるピーク検出器で求める2つのピークを示した図である。
【図7】従来のパルスレーダ装置における送信パルスを示した図である。
【図8】従来のパルスレーダ装置における受信信号強度の状態を示した図である。
【図9】従来のパルスレーダ装置における受信機最終段のマッチドフィルター特性を示す図である。
【図10】従来のパルスレーダ装置における2通りの距離(R、R)からの受信パルスのタイミングを示した図である。
【図11】従来のパルスレーダ装置における図10に対応したマッチドフィルター特性を示す図である。
【符号の説明】
【0098】
1 タイミング発生器、2 周波数シンセサイザ、3 周波数設定器、4a、4b 分配器、5 基準中間周波数信号生成器、6a、6b 周波数変換器、7 パルス変調器、8 電力増幅器、9 送受切替器、10 アンテナ、11 目標、12 中間周波数増幅器、13 90度ハイブリッド器、14a、14b 位相検波器、15a、15b A/D変換器、16 ビデオ信号保存用メモリ、17 複素乗算器(複素乗算手段)、18 周波数スペクトル分析器(周波数スペクトル分析手段)、19 相対速度計測器(相対速度計測手段)、20 相対速度補正器(相対速度補正手段)、21 並び替え器(第1の並び替え手段)、22 合成帯域器(第1の合成帯域手段)、23 包絡線検波器、24 表示器、30 相対速度再補正処理部、31 相対速度補正後ビデオ信号保存用メモリ、32 並び替え器(第2の並び替え手段)、33 合成帯域器(第2の合成帯域手段)、34 ピーク検出器、35 相対速度補正誤差算出器(相対速度補正誤差算出手段)、36 相対速度再補正器(相対速度再補正手段)。

【特許請求の範囲】
【請求項1】
パルス繰り返し周期毎に送信周波数が所定の周波数間隔ずつ変化する送信パルス列を目標方向へ送信し、パルス繰り返し周期毎に得られる反射信号を受信してI成分ビデオ信号およびQ成分ビデオ信号を生成するパルスレーダ装置であって、
隣り合う送信パルスの周波数差を受信機の信号通過帯域幅以上として、パルス毎に異なる周波数で送信するように、前記送信パルス列を生成する送信パルス列生成手段を備えることを特徴とするパルスレーダ装置。
【請求項2】
請求項1に記載のパルスレーダ装置において、
前記送信パルス列生成手段は、同じ時間間隔だけ離れた2つの送信パルスを1つのペアとみなし、各ペア内の周波数の小さい方の送信パルスを送信パルス群Aを構成する送信パルスとし、各ペア内の周波数の大きい方の送信パルスを送信パルス群Bを構成する送信パルスとし、全ペア内の送信パルス間の周波数差が同じになるように、前記送信パルス列を生成し、
前記送信パルス群Aの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号A、および前記送信パルス群Bの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、符号を反転したQ成分ビデオ信号を虚部とした複素共役ディジタルビデオ信号Bを生成し、前記複素ディジタルビデオ信号Aと前記複素共役ディジタルビデオ信号Bの乗算を行って相対速度計測用複素信号を生成する複素乗算手段と、
前記相対速度計測用複素信号の周波数スペクトルを求める周波数スペクトル分析手段と、
前記周波数スペクトルを用いて前記目標との相対速度を求める相対速度計測手段と
をさらに備えたことを特徴とするパルスレーダ装置。
【請求項3】
請求項2に記載のパルスレーダ装置において、
前記複素乗算手段を、前記送信パルス群Bの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、Q成分ビデオ信号を虚部とした複素ディジタルビデオ信号B、および前記送信パルス群Aの送信信号に対する受信信号から得られた同じレンジビン番号のI成分ビデオ信号を実部、符号を反転したQ成分ビデオ信号を虚部とした複素共役ディジタルビデオ信号Aを生成し、前記複素ディジタルビデオ信号Bと前記複素共役ディジタルビデオ信号Aの乗算を行って相対速度計測用複素信号を生成する複素乗算手段に置き換えたことを特徴とするパルスレーダ装置。
【請求項4】
請求項2または3に記載のパルスレーダ装置において、
前記相対速度計測用複素信号の生成に用いた前記送信パルス群Aおよび送信パルス群Bに対する同じレンジビン番号のI成分ビデオ信号、Q成分ビデオ信号に対して、前記相対速度計測手段で求めた前記相対速度による補正を行う相対速度補正手段と、
相対速度補正後の送信パルス群Aおよび送信パルス群Bに対するI成分ビデオ信号、Q成分ビデオ信号全てに対し、対応する送信周波数が昇順あるいは降順になるように並び替える第1の並び替え手段と、
前記第1の並び替え手段で並び替えられたI成分ビデオ信号、Q成分ビデオ信号を用いて帯域の合成を行い、所定の分解能で前記目標との相対距離を得る合成帯域手段と
をさらに備えたことを特徴とするパルスレーダ装置。
【請求項5】
請求項4に記載のパルスレーダ装置において、
前記相対速度補正手段による相対速度補正後のI成分ビデオ信号、Q成分ビデオ信号に基づいて求めた相対速度補正誤差を用いて、相対速度の再補正を行った後のI成分ビデオ信号、Q成分ビデオ信号を求め、前記第1の並び替え手段に出力する相対速度再補正処理部をさらに備え、
前記第1の並び替え手段は、前記相対速度再補正処理部による相対速度再補正後の送信パルス群Aおよび送信パルス群Bに対するI成分ビデオ信号、Q成分ビデオ信号全てに対し、対応する送信周波数が昇順あるいは降順になるように並び替える
ことを特徴とするパルスレーダ装置。
【請求項6】
請求項5に記載のパルスレーダ装置において、
前記相対速度再補正処理部は、
前記相対速度補正手段による相対速度補正後の送信パルス群Aおよび送信パルス群Bに対するI成分ビデオ信号、Q成分ビデオ信号全てに対し、対応する送信周波数が昇順あるいは降順になるように並び替える第2の並び替え手段と、
前記第2の並び替え手段で並び替えられたI成分ビデオ信号、Q成分ビデオ信号を用いて帯域の合成を行い、所定の分解能で前記目標との相対距離を得る第2の合成帯域手段と、
前記第2の合成帯域手段の結果から、相対速度補正誤差を求める相対速度補正誤差算出手段と、
前記相対速度補正手段による相対速度補正後の前記送信パルス群Aおよび前記送信パルス群Bに対するI成分ビデオ信号、Q成分ビデオ信号全てに対し、前記相対速度補正誤差算出手段で求めた前記相対速度補正誤差を用いて、相対速度補正誤差を補正する相対速度再補正手段と
を含むことを特徴とするパルスレーダ装置。
【請求項7】
請求項6に記載のパルスレーダ装置において、
前記相対速度補正誤差算出手段は、前記送信パルスの周波数差から求まる距離情報と前記第2の合成帯域手段の測距結果の2つのピーク値の振幅と位相を用いて前記相対速度補正誤差を求めることを特徴とするパルスレーダ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2009−180666(P2009−180666A)
【公開日】平成21年8月13日(2009.8.13)
【国際特許分類】
【出願番号】特願2008−21298(P2008−21298)
【出願日】平成20年1月31日(2008.1.31)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】