説明

ファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法

【課題】FBGセンサの反射光パルスの反射時間情報を計測初期の段階で簡易かつ正確に計測して取得することができるようにする。
【解決手段】FBGセンサ23から得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部38と、デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算処理部42とを備え、FBG反射パルスの反射時間を算出する機能を有するものとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種物理量を計測するファイバブラッググレーティング(FBG:Fiber Bragg Grating)センサ(以下、「FBGセンサ」という。」からの反射光波長の変化量から物理量を計測するファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法に関する。
【背景技術】
【0002】
近年では多数の方式の光ファイバセンシングシステムが開発されており、社会インフラ等の健全性監視などへの適用を想定した設計がなされ、計測時間や計測精度を考慮しつつ測定点や測定範囲などがより大規模化する方向にも技術が向けられている。
【0003】
その方式の一つであるFBGセンサを用いたセンシングシステムは、これまでの光センシングに共通の利点を継承しており、従来の光ファイバセンシングの課題であった測定・応答時間の遅さ、感度不足といった点を克服できる技術として期待されている。
【0004】
図10は、従来のFBG物理量計測装置を示している。このFBG物理量計測装置1は、光源2に光ファイバ3の一端を接続し、この光ファイバ3に複数のFBGセンサ4を設けた構成である。この光ファイバ3は、光幹線3aに複数の光分岐器5を設けて構成され、各光分岐器5からは光分岐路3bが分岐する。そして、FBGセンサ4は各光分岐路3bに設けられる。この際、各FBGセンサ4は、互いに反射するFBG反射光の特定波長帯が相互に影響しないように各光分岐器5からの距離に応じて異なる特定波長帯となるように構成される。
【0005】
また、光源2側の光分岐器5aには、反射光用光ファイバ3cが接続され、この反射光用光ファイバ3cの端部には光検出器6が接続される。さらに、この光検出器6と光源2は制御部7と接続され、制御部7は信号処理装置8と接続される。
【0006】
このようなFBG物理量計測装置1では、光ファイバ3により多数のFBGセンサ4を設けて、多数点における物理量を計測することを可能とするために、光源2から各FBGセンサ4に照射する光の波長を可変として複数の波長帯域のFBG反射光をFBGセンサ4から受光して物理量を求める波長多重方式と、光をパルス光として複数のFBGセンサ4からのFBG反射光の時間差を利用して複数のFBGセンサ4における物理量を求める時間多重方式とによる信号処理が行われる。
【0007】
すなわち、光源2の広帯域光源9から広帯域の連続光が出射され、制御部7のスキャン実行部10により波長可変フィルタ11が制御されて所定の波長帯域の連続光が選択的に透過せしめられる。さらに、スキャン実行部10からの指令信号によりトリガ信号印加部12から光パルス化装置13にトリガ信号が印加され、波長可変フィルタ11を透過した所定の波長帯域の連続光はパルス光に変換されて光幹線3a、光分岐器5および光分岐路3bを経由して各FBGセンサ4に照射される。
【0008】
このため、各FBGセンサ4からは温度や歪み等の物理量に応じた波長帯のFBG反射光がそれぞれ反射され、光分岐路3b、光分岐器5および光幹線3aを経由して光源2側の光分岐器5aにおいて受光される。そして、光検出器6において各FBG反射光は波長ごとに走査され、各FBG反射光のスペクトルがそれぞれ得られて、制御部7に受信データとして与えられる。
【0009】
制御部7に与えられたFBG反射光の受信データは、パルス積分回路14においてノイズ処理された後、ゲート信号発生部15において時間ゲートが与えられることにより着目するFBGセンサ4からのパルスが抽出される。さらに、着目するFBGセンサ4からのパルスはAD変換装置16においてデジタライズされてスキャン部を介して信号処理装置8の波長中心計算部17に与えられる。
【0010】
そして、信号処理装置8の波長中心計算部17において各FBG反射光の波長領域中心が求められ、物理量変換部18により各FBG反射光の波長領域中心が物理量に変換される。
【0011】
このようなFBGセンサ4を用いた物理量のセンシングは、FBGセンサ4のファイバコア中に作られたブラッグ回折格子のピッチの変化に伴う光の反射波長の変化に基づいて行われる。センシングの対象となる物理量としては、温度や歪の他、振動、圧力、水位計測等の物理量が挙げられ、FBGセンサ4のブラッグ回折格子のピッチ変化を各物理量に変換するメカニズムがFBG物理量計測装置1に設けられてセンサが構成される。
【0012】
ところで、FBGセンサを用いた物理量センシングの原理は、光ファイバコアに書き込まれたブラッグ回折格子のピッチ変化によって反射波長が等比変化する現象に基づいている。
【0013】
また、FBGセンサの接続点数は物理量レンジと、その反射波長帯に依存する。物理量レンジを広くとれば接続点数は減少し、逆に狭くとれば接続点数を増加することができ、これらは常にトレードオフの関係にある。この課題に対して、波長多重と時間多重による多重化技術を利用し、FBGセンサの接続点を一つのシステムで数百点規模まで拡大した方法がある。
【0014】
これら多重化技術を用いたシステム例として、システム全体の測定時間の短縮を考慮し、波長多重によって弁別された複数個のFBGセンサの反射パルス列をAD変換器で一括してデジタルデータに変換した後、計算機で演算処理する測定方法が知られている(例えば、特許文献1参照)。
【0015】
しかし、この例では、FBGセンサ数が増加し、かつパルスどうしの時間間隔が長くなってくると、取り込むデータ量も多くなり、また、FBGセンサ数が増加すると必然的に光量が分散されるため反射パルス光量も微弱となりS/Nの低下を招き、結果として計測精度が確保できなくなる。計測精度確保のためには、数百〜数千回程度の平均化処理が必要となるため、データ量は更に多くなる。測定は連続して行うため、場合によっては計算機の処理能力が飽和してしまう場合もあり、処理するデータ量はできるだけ少なくする必要がある。
【0016】
これを解決した例として、パルス個々に時間ゲートを設けて、必要なパルスのみをデジタルデータに変換後、プログラム可能な論理デバイス(PLD;Programmable Logic Device)を用いたリアルタイム平均化処理によるデータ圧縮を行い、計算機で演算処理するデータ量(計算機に転送するデータ量)をあらかじめ最小にしておく方法が知られている(例えば、特許文献2参照)。
【特許文献1】特開2000−74742号公報
【特許文献2】特開2002−352369号公報
【発明の開示】
【発明が解決しようとする課題】
【0017】
上述の従来技術においては、FBG反射光のパルス個々に時間ゲートを設ける際に、必要な個々のパルスの正確な戻り時間を知るための具体的手段が開示されていない。
【0018】
すなわち、必要な個々のパルスの正確な戻り時間を知るためには、あらかじめ設計段階で光ファイバ長さやFBGセンサの接続位置を決定しておけば良いと考えられが、光ファイバケーブル類を実際に敷設する場合、現場状況に応じて光ファイバ長さを変えることもあり、あらかじめ設計した通りにならないケースが多々ある。また、光ファイバ自身の長さにおいても、その製作過程で数%程度の誤差が生じるため、やはり設計通りにならない。
【0019】
別の方法として、OTDR(Optical Time Domain Reflectometer)を用いた方法がある。しかし、従来のOTDRの光源はLD(laser diode)等が一般的であり、このLDの波長帯域は広いものでも例えば1550nm±20nm程度しかないため、FBGセンサがC−Lバンド(例えば1530〜1600nm)の波長帯域を全て使用している場合などでは不適当である。また、技術的に測定系を広帯域化することは可能であるが、OTDR本来の使用用途からは不要な機能であり需要もないため必然的に高価なものになる。
【0020】
本発明は、このような事情に鑑みてなされたものであり、FBGセンサの反射光パルスの反射時間情報を計測初期の段階で簡易かつ正確に計測して取得することができるファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法を提供することを目的とする。
【課題を解決するための手段】
【0021】
請求項1に係る発明では、光ファイバと、この光ファイバ上に設けられた複数のファイバブラッググレーティングセンサ(FBGセンサ)と、これらFBGセンサに所要の波長帯域の光を照射させるための波長可変フィルタを備えた光源と、前記FBGセンサからの反射光を受光して受信データを取得する光検出器と、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えたファイバブラッググレーティング装置において、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部と、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算処理部とを備え、前記FBG反射パルスの反射時間を算出する機能を有することを特徴とするファイバブラッググレーティング物理量計測装置を提供する。
【0022】
請求項2に係る発明では、検出下限における前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組のピークレベルを閾値として、前記FBG反射パルスより算出した微係数ピーク組から前記閾値を超える前記微係数ピーク組のみを閾値判定する微係数判定処理部を備えたファイバブラッググレーティング物理量計測装置を提供する。
【0023】
請求項3に係る発明では、微係数ピーク組のピークレベルの相対比率を予め定めた閾値で比較判定する微係数レベル比率判定部を備えたファイバブラッググレーティング物理量計測装置を提供する。
【0024】
請求項4に係る発明では、微係数ピーク組の時間間隔を前記FBG反射パルスの時間幅をもとにした閾値で比較判定する微係数時間幅判定部を備えたファイバブラッググレーティング物理量計測装置を提供する。
【0025】
請求項5に係る発明では、デジタルデータ列組および微係数ピーク列組の処理部を、プログラム可能な論理デバイス(PLD)内に収めたファイバブラッググレーティング物理量計測装置を提供する。
【0026】
請求項6に係る発明では、前記AD変換処理部の前段にローパスフィルタを設けたファイバブラッググレーティング物理量計測装置を提供する。
【0027】
請求項7に係る発明では、光ファイバと、この光ファイバ上に設けられた複数のFBGセンサと、これらFBGセンサに所要の波長帯域の光を照射させるための波長可変フィルタを備えた光源と、前記FBGセンサからの反射光を受光して受信データを取得する光検出器と、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えたファイバブラッググレーティング装置において、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部と、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する前記FBG反射パルスの反射時間を算出する時間演算処理部と、前記FBG反射光に対して部分詳細スキャンモードの波長走査範囲について予め設定された所要の詳細走査点数で波長走査を実行させるように前記波長可変フィルタを制御する部分詳細スキャン部と、前記FBG反射光に対して前記部分詳細スキャンモードの波長走査範囲よりもスキャン範囲が広くかつ前記部分詳細スキャンモードのスキャン間隔よりも広いスキャン間隔としたプリスキャンモードによる波長走査のスキャン条件を設定するプリスキャンパラメータ設定部と、このプリスキャンパラメータ設定部により設定されたスキャン条件で前記プリスキャンモードによる波長走査を前記部分詳細スキャンモードによる波長走査に先だって実行させるように前記波長可変フィルタを制御する一方、前記プリスキャンモードによる波長走査で得られた受信データから前記FBG反射光の波長領域中心を求め、求めた波長領域中心の両側に前記部分詳細スキャンモードにおける詳細走査点数を確保できるような区間を前記部分詳細スキャンモードにおける波長走査範囲として決定するプリスキャン部と、前記部分詳細スキャンモードによる波長走査で得られた受信データから前記FBG反射光の波長領域中心を求める波長中心計算部と、前記波長中心計算部により求められた前記FBG反射光の波長領域中心を物理量に変換する物理量変換部とを有することを特徴とするファイバブラッググレーティング物理量計測装置を提供する。
【0028】
請求項8に係る発明では、光ファイバ上に設けられた複数の前記FBGセンサからの反射光を受光して受信データを取得するステップと、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測するステップと、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換ステップと、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算ステップ処理部とを備え、前記FBG反射パルスの反射時間を算出することを特徴とするファイバブラッググレーティング物理量計測方法を提供する。
【発明の効果】
【0029】
本発明によれば、全FBGセンサの反射光パルスの反射時間情報を計測初期の段階で簡易かつ正確に計測して取得することができる。
【0030】
また、本発明によれば、デジタルデータを用いた処理により、全てデジタル回路で実行することが可能となる。したがって、処理回路を高速に処理することができ、出力データを必要最低限の情報のみに圧縮することが可能となり、計算機への転送データ量やソフトウエア負荷を軽減し、システム全体の処理速度を向上することができる。
【0031】
さらに、本発明によれば、物理量の測定精度を確保しつつ、より短時間で多点における物理量を計測することができる。
【発明を実施するための最良の形態】
【0032】
以下、本発明に係るファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法の実施形態について、図面を参照して説明する。
【0033】
[第1実施形態(図1〜図6)]
図1は本発明に係るファイバブラッググレーティング物理量計測装置の第1実施形態を概略的に示す構成図である。
【0034】
まず、全体の構成について説明する。図1に示すように、このファイバブラッググレーティング(FBG)物理量計測装置20は、光源21に光ファイバ22の一端を接続し、この光ファイバ22に複数のFBGセンサ23を設けた構成である。この光ファイバ22は、光幹線22aに複数の光分岐器24を設けて構成され、各光分岐器24からは光分岐路22bが分岐する。そして、FBGセンサ23は各光分岐路22bに直列に設けられる。光幹線22aには、光遅延装置24が設けられている。
【0035】
また、光源21側の光分岐器24aには、反射光用光ファイバ22cが接続され、この反射光用光ファイバ22cの端部には光検出器25が接続される。さらに、この光検出器25と光源21は共通の制御部26と接続され、制御部26は信号処理装置27と接続される。
【0036】
FBGセンサ23は、ファイバコア中にブラッグ回折格子を設けて構成され、温度、歪、振動、圧力、水位計測等の物理量に依存してブラッグ回折格子のピッチが変化するため、物理量に応じた特定波長帯のFBG反射光を反射する性質を有する。このため、FBG反射光の波長から物理量を求めることができる。そして、各FBGセンサ23は、互いに反射するFBG反射光の特定波長帯が相互に影響しないように各光分岐器24からの距離に応じて異なる特定波長帯となるように構成される。
【0037】
光源21は、広帯域光源28、波長可変フィルタ29および光パルス化装置30で構成される。広帯域光源28および波長可変フィルタ29は、温度に敏感な光学機器に対して十分安定な温度範囲を提供する温度調整部31に設けられる。広帯域光源28は、広帯域の連続光(CW:Continuous Wave)を生成する機能を、波長可変フィルタ29は、広帯域光源28から広帯域連続光を受けて所定の波長帯域の光を選択的に透過させる機能を、光パルス化装置30は、波長可変フィルタ29から所定の波長帯域の光を受けてパルス光に変換する機能をそれぞれ有する。そして、光源21は、所定の波長帯域のパルス光を光ファイバ22に設けられた各FBGセンサ23に照射することができるように構成される。
【0038】
光検出器25は、FBGセンサ23からのFBG反射光を受光して光−電気変換するとともに増幅整形して必要な信号強度と帯域幅の電気パルス信号として受信データを得る機能と、得られた受信データを制御部26に与える機能とを有する。
【0039】
制御部26は、トリガ信号印加部32、プリスキャン部33、部分詳細スキャン部34、プリスキャンパラメータ設定部35、パルス積分回路36、ゲート信号発生部37、AD変換装置38を備え、FBG反射光の波長走査範囲、すなわち波長可変フィルタ29が透過させる光の波長帯域や光パルス化装置30により生成されるパルス光の送信タイミングを光検出器25から受けた受信データに基づいて制御する機能を有する。この際、制御部26は、プリスキャンモードおよび部分詳細スキャンモードの2種類の制御モードにより波長可変フィルタ29および光パルス化装置30を制御するように構成される。
【0040】
トリガ信号印加部32は、光パルス化装置30にトリガ信号を与えることにより、光源21から出射されるパルス光のタイミングを制御する機能と、トリガ信号のタイミング情報をゲート信号発生部37に与える機能とを有する。
【0041】
プリスキャン部33は、プリスキャンモードによる波長走査を実行させるように波長可変フィルタ29を制御して各FBG7に所要の波長帯域の光を照射させる機能と、トリガ信号印加部32にプリスキャンモードによる波長走査のタイミング情報を与えることにより光パルス化装置30を制御させる機能とを有する。
【0042】
また、プリスキャン部33は、プリスキャンモードによる波長走査で得られた受信データを光検出器25からパルス積分回路36、ゲート信号発生部37およびAD変換装置38を介して受けて、着目するFBG7からのFBG反射光の波長領域中心を求める機能と求めた波長領域中心の両側に予め設定された所要の詳細走査点数を確保できるような区間を部分詳細スキャンモードにおける波長走査範囲として決定する機能とを有する。
【0043】
部分詳細スキャン部34は、プリスキャン部33により決定された部分詳細スキャンモードにおける波長走査範囲について部分詳細スキャンモードによる波長走査を実行させるように波長可変フィルタ29を制御して各FBG7に所要の波長帯域の光を照射させる機能と、トリガ信号印加部32に部分詳細スキャンモードによる波長走査のタイミング情報を与えることにより光パルス化装置30を制御させる機能とを有する。また、部分詳細スキャン部34は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを信号処理装置27に与える機能を有する。
【0044】
プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査の際のスキャン範囲や走査点の間隔(スキャン間隔)等のスキャン条件を設定する機能と、設定したスキャン条件をプリスキャン部33に与える機能とを有する。
【0045】
この際、プリスキャンモードによる波長走査の際のスキャン範囲は、部分詳細スキャンモードにおける波長走査範囲よりも広く、かつ、プリスキャンモードによる波長走査における走査点の間隔(スキャン間隔)は部分詳細スキャンモードによる波長走査における走査点の間隔(スキャン間隔)よりも広い間隔とされる。
【0046】
このような構成において、本実施形態では、予めAD変換開始トリガを正確に設定するための手段として、データ記憶部41および時間演算処理部42が設けられている。すなわち、本実施形態では上述の光ファイバ22と、この光ファイバ22上に設けられた複数のFBGセンサ23と、これらFBGセンサ23に所要の波長帯域の光を照射させるための波長可変フィルタ29を備えた光源21と、FBGセンサ23からの反射光を受光して受信データを取得する光検出器25と、受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えている。
【0047】
このようなファイバブラッググレーティング装置において、FBGセンサ23から得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部としてのAD変換装置38と、デジタルデータ列組を微分計算してFBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算処理部42とを備え、これにより、FBG反射パルスの反射時間を算出する機能を有する構成となっている。なお、デジタルデータ列組および微係数ピーク列組の処理部は、プログラム可能な論理デバイス(PLD)内に収められている。
【0048】
時間演算処理部42は、データ記憶部41を介してAD変換装置38に接続されており、時系列データ組生成部43、平均化処理部44、平滑微分演算処理部45および遅延時間演算処理部46を備えている。
【0049】
時系列データ組生成部43では、データファイルを参照して設定された各パラメータに基づいてFBG反射パルスのAD変換が行われ、FBG反射パルスデータが指定平均回数になるまで記憶される。
【0050】
平均化処理部44では、記憶されたFBG反射パルスが読出され、データ平均化演算処理が行われる。平滑微分演算処理部45では、各FBG反射パルスの時間軸に対する最大値が抽出され、平滑化1次微分演算が行われる。
【0051】
遅延時間演算処理部46では、平滑化されたFBG反射パルスの微係数デジタルデータ列組の微分計算が行われ、FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報が算出される。
【0052】
この時間演算処理部42の作用を、図2および図3も参照して説明する。図2は、本実施形態によるタイミング時間を示す作用説明図であり、図3は、本実施形態による反射パルスを平滑化微分して得られた微係数を示す説明図である。
【0053】
広帯域光源28より出力される連続光は、波長可変フィルタ29により所定の波長帯だけが透過され、光パルス化装置30によりパルス光に変換される。パルス光はファイバ22のラインを伝播し、光分岐器24aを介して2つの幹線である光ファイバ22aに送り出される。枝状に分岐した各光ファイバ22aのラインには、FBGセンサ23が互いの反射波長帯が干渉しないように直列に複数個接続されており、送り出されたパルス光は、パルス光の波長帯とFBGセンサ23の反射波長帯が合致する場合には反射される。
【0054】
反射されたパルス光は、元来た光ファイバ22bのラインを通り、光分岐器24aを介して光検出器25で光パルスから電気パルスへと変換される。すなわち、各分岐の光ファイバ22aのラインに接続されたFBGセンサ23で反射された複数のパルス光は、各分岐の光ファイバ22aのライン間に接続された光遅延装置47によってあらかじめ設定した時間遅延により、設定された時間間隔のパルス列となり、光検出器25および制御部26を介し、データ記憶部41に記憶されるとともに、時間演算処理部42にそれぞれ到達する。
【0055】
制御部26は、連続光をパルス光に変換するタイミングや波長可変フィルタ29の波長走査および光検出器へのパルス受信タイミング等を制御する。すなわち、制御部26は、光検出器で受信したパルス列を光−電変換し、時間ゲートを用いてパルスデータのみを取り出し、更にデジタルデータに変換する。デジタルデータは時間演算処理部において、S/N向上のため必要回数の平均化処理を施され、最終的には、1パルス=1データとして、最小の転送データ量に圧縮される。
【0056】
図2に示すように、本実施形態では、基準クロックパルスc1に基づき、全てのFBGセンサ23の反射光パルス列c4は、次のパルス光c2が送り出されるまでに時間演算処理部42に到達する。すなわち、パルス光はあらかじめ所定の波長帯に設定した波長可変フィルタ29を透過し、反射波長の重なった複数のFBGセンサ23で反射する。反射光パルス列c4は、所定の時間間隔を有して光検出器25で受光されるとともに、電気パルス列に変換される。
【0057】
更に、AD変換処理部38で電気パルス列がデジタルデータに変換され、時間情報を加えたデジタルデータ列組となる。本実施形態では図2に示すように、光パルス化装置30のオフセット時間T1と、AD変換開始トリガc3までの設計遅延時間T2を加算した時間をAD変換動作開始時間Taとおき、AD変換装置38のサンプリング速度に応じた時間情報をTaに加算する。
【0058】
AD変換動作の停止時刻は、例えば次のパルス光c2の送出タイミングとすれば、反射パルス列c4の全てのパルスを余すことなくデジタルデータに変換することができる。これらの処理は必要回数繰り返され、時間演算処理部42により前述したデジタルデータ列組の平均化処理が行われ、これによりS/Nが向上する。
【0059】
なお、ここで述べているAD変換開始トリガc3とは、設計上最短時間の反射パルスが戻ってこられない時間としている。また、AD変換装置38がAD変換開始トリガc2を受信して実際にAD変換動作を開始するまでのオフセット時間は常数として扱われ、特に明記してないが設計遅延時間T2に加算してある。
【0060】
平均化処理されたデジタルデータ列組は時間演算処理部42に送られ、図3に示すように、例えば平滑化微分する計算処理でFBG反射パルスdのパルス波形の立上り急峻部傾きd1がプラス側、立下り急峻部傾きd2がマイナス側に、それぞれピークh1、h2を示す微係数ピークe1,e2と時間情報とを、そのままスライドさせて加えた微係数ピーク列組eが得られる。この際、例えば多項式フィッティングなどを用いることで、より正確に微係数ピークを算出することもできる。
【0061】
続いて、微係数ピーク列組の個々のパルスに対するピーク間の中間値を算出し、図2に示すように、AD変換動作開始時間Taを基点として、その中間値に相当する時間Tf1〜Tfnを求める。または、時間Tf1〜Tfnは前述した微係数ピーク列組eのどちらかのピークに相当する時間としてもよい。
【0062】
この時間Tf1〜Tfnを用いてAD変換開始トリガ時間、すなわち個々のFBG反射パルスの遅延時間を設定することができる。この際、例えばパルスのピーク平坦部d3のみをAD変換するには、全ての反射パルスは一つのパルス光より反射されるため、全ての反射パルスの時間幅は一定であるということを利用し、時間Tf1〜Tfnより反射パルスの時間幅から導出した適切な時間(常数として扱われる)を減算してAD変換開始トリガ時間とし、かつ、パルス平坦部の時間幅(これも常数として扱われる)からAD変換器のサンプリング回数を設定すればよい。
【0063】
図4は、以上の作用を示すフローチャートである。
【0064】
まず、データファイルを参照してFBG反射パルスデータの各パラメータが設定され(S101)、AD変換装置38によるAD変換が開始される(S102)。AD変換された時系列データは、データ記憶部41としてのSDRAMに記憶され(S103)、その後AD変換が停止される(S104)。このAD変換処理は、指定平均回数まで行われる(S105)。
【0065】
次に、SDRAMからFBG反射パルスデータが読み出され(S106)、平均化処理部44により、データ平均化演算処理が行われる(S107)。データ平均化演算処理は指定された波長走査数まで行われ(S108、S109)、これにより所定数nのグループ測定が完了する(S110)。
【0066】
平滑微分演算処理部45では、各FBG反射パルスの時間軸に対する最大値が抽出され(S111)、上述の平滑化1次微分演算が行われる(S112)。そして、遅延時間演算処理部46において微係数の閾値判定が行われ(S113)、その後、微係数の比較判定処理が行われる(S114)。
【0067】
以上の処理に基づき、図2に示したADトリガ時間の演算が行われ(S115)、この演算結果がデータファイルに上書され(S116)、指定されたファイバラインの全グループについて完了した場合に(S117、S118)、反射時間校正完了となる。
【0068】
本実施形態のファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法によれば、時間演算処理部42において、波長走査毎に平均化処理されたデジタルデータ列組が平滑化微分により計算され、反射パルス波形の立上りおよび立下りの急峻部傾きに対する微係数のレベルが算出される。そして、波長走査毎に算出した微係数データ列組に対して閾値を判定処理が行われ、各FBGセンサへのAD変換開始トリガ時間を正確に知ることができる。
【0069】
したがって、FBG反射光のパルス個々に時間ゲートを設ける際に、必要な個々のパルスの正確な戻り時間を知るための具体的手段を得ることができ、光ファイバケーブル類を実際に敷設する場合の現場状況に応じた光ファイバ長さの変更や、設計通でない場合、あるいは製作過程で誤差が生じたような場合でも、確実な時間情報を得ることができる。
【0070】
また、デジタルデータを用いた処理であることから、全てデジタル回路で実行することが可能である。このため、処理回路をPLD(Programmable Logic Device)内に構成して高速に処理することができる。これにより、出力データを必要最低限の情報のみに圧縮することが可能となり、計算機への転送データ量やソフトウエア負荷が軽減し、システム全体の処理速度を向上することができる。
【0071】
したがって、全FBGセンサの反射光パルスの反射時間情報を計測初期の段階で簡易かつ正確に計測して取得することができる。
【0072】
また、パルス列データを一括して取り込んだ場合に生じる転送データ量の膨大化やそのデータ処理に係わる処理速度低下の発生を抑制し、このようにして得られたデジタルデータを計算機などで演算処理することで所定の物理量情報が得られる。
【0073】
そして、本実施の形態によれば、OTDRなどを用いることなく全てのFBG反射パルスの反射時間情報を簡易かつ正確に求めることができ、FBG反射パルスの反射時間情報を簡易かつ正確に求め後は、波長走査を高精度で実行することができる。
【0074】
図5は図1に示したプリスキャン部33がプリスキャンモードによる波長走査を実行させる際のスキャン間隔と、部分詳細スキャン部34が部分詳細スキャンモードによる波長走査を実行させる際のスキャン間隔との関係を示す概念図である。
【0075】
図5において、縦軸は光検出器25において受光されたFBG反射光の光強度Yiを示し、横軸は光検出器25において受光されたFBG反射光の波長Xiを示す。また図2中において、実線は着目するFBG7からのFBG反射光のスペクトルA1を、点線は部分詳細スキャンモードによる波長走査の走査点A2を、一点鎖線はプリスキャンモードによる波長走査の走査点A3を、二点鎖線は着目するFBG7の設計波長範囲A4をそれぞれ示す。
【0076】
図5に示すように、プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査のスキャン範囲A5を、例えばFBG7の設計波長範囲A4全体として設定する。さらに、プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6を、FBG反射光の波長領域中心A7、すなわちFBG反射光のスペクトルA1の最大値を求めることができる間隔に設定する。このため、プリスキャンパラメータ設定部35が設定するプリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6は、FBG反射光のスペクトルA1上に少なくとも2つの走査点A3が存在するような間隔であればよい。換言すれば、プリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6は、FBG反射光のスペクトルA1における分布幅A1dの半値以下であればよい。
【0077】
一方、部分詳細スキャンモードによる波長走査は、プリスキャンモードによる波長走査で求められた波長領域中心A7から両側に物理量計測の要求精度に応じた走査点の数が確保できる区間として決定された波長走査範囲A8について実行される。この際、部分詳細スキャンモードによる波長走査の走査点の間隔(スキャン間隔)A9は、物理量計測の要求精度に応じた間隔とされる。
【0078】
図5は、FBG反射光のスペクトルA1上にプリスキャンモードによる波長走査の2つの走査点A3がある場合において、2走査点A3上の受信データに基づいて求めたFBG反射光の波長領域中心A7から両側に部分詳細スキャンモードによる波長走査の波長走査範囲A8を決定した場合の例である。
【0079】
一方、制御部26のパルス積分回路36は、ボックスカー積分器やゲーテッドインテグレータ等の回路で構成され、光検出器25からFBG反射光の電気パルス信号として出力された受信データを受けて受信データのパルス波高に比例したパルス面積を得ることによりノイズ低減処理を実行する機能と、FBG反射光のパルス列で構成されるノイズ低減処理後の受信データをゲート信号発生部37に与える機能とを有する。
【0080】
ゲート信号発生部37は、時間ゲートを設定することによりパルス積分回路36から受けたFBG反射光のパルス列から着目するFBG7からのFBG反射光の電気パルス信号を抽出する機能と、抽出したFBG反射光の電気パルス信号を受信データとしてAD変換装置38に与える機能とを有する。すなわち、ゲート信号発生部37は、トリガ信号印加部32から受けたトリガ信号のタイミング情報に基づいて、着目するFBG7からのFBG反射光が光検出器25において受光されるタイミングに対応するように所要の遅延時間を伴う時間ゲート信号を発生させて、時間ゲート信号がアクティブな間における電気パルス信号のみを検出するように構成される。
【0081】
AD変換装置38は、ゲート信号発生部37から着目するFBG7からのFBG反射光の受信データを受けてAD変換してプリスキャン部33または部分詳細スキャン部34に与える機能を有する。
【0082】
一方、信号処理装置27は、波長中心計算部39と物理量変換部40とを有する。波長中心計算部39は、制御部26の部分詳細スキャン部34から部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを受けて、着目するFBG7からのFBG反射光の波長領域中心を求める機能を備える。波長中心計算部39がFBG反射光の波長領域中心を求める方法としては、例えばFBG反射光の受信データであるスペクトルの分布を二次式等の高次式にフィッティングしてスペクトルの変曲点や最大値を求める方法が挙げられる。
【0083】
物理量変換部40はFBG反射光の波長領域中心を物理量に変換する機能を備える。また、FBG物理量計測装置20により経時的に変換する物理量をダイナミック計測する場合には、物理量変換部40には、次の波長走査の開始指令を制御部26に与える機能が備えられる。
【0084】
次に、FBG物理量計測装置20の作用について説明する。
【0085】
図6は図5に示したFBG物理量計測装置20により物理量を計測する際の手順を示すフローチャートであり、図中Sに数字を付した符号はフローチャートの各ステップを示す。
【0086】
まず、ステップS1において、プリスキャンパラメータ設定部35が、プリスキャンモードによる波長走査のスキャン範囲Rを着目するFBG7の設計波長範囲全体に設定する。さらに、プリスキャンパラメータ設定部35により、プリスキャンモードによる波長走査のスキャン間隔が、スキャン範囲Rを設定値Nで割った値に設定される。ここで、設定値Nは、スキャン間隔R/Nの値がFBG反射光のスペクトルの分布幅の半値以下となるように設定される。そして、プリスキャンパラメータ設定部35は設定したプリスキャンモードによる波長走査のスキャン範囲Rおよびスキャン間隔R/Nをプリスキャン部33に与える。
【0087】
次に、ステップS2において、プリスキャンモードによる波長走査が任意数回実行される。すなわち、プリスキャン部33が、プリスキャンパラメータ設定部35から受けたプリスキャンモードによる波長走査のスキャン範囲Rについて波長走査を実行させるように波長可変フィルタ29を制御する。さらに、プリスキャン部33は、光源21から出射されるパルス光のタイミングを制御するようにトリガ信号印加部32にトリガ信号の印加指令を与える。
【0088】
一方、広帯域光源28からは連続光が波長可変フィルタ29に与えられる。そして、波長可変フィルタ29は、スキャン範囲Rに相当する波長帯の連続光を選択的に透過させて光パルス化装置30に与える。光パルス化装置30は、トリガ信号印加部32から受けたトリガ信号に対応するタイミングで、スキャン範囲Rの波長帯の連続光をパルス光に変換して光ファイバ22内に送信する。
【0089】
このため、スキャン範囲Rの波長帯のパルス光は、光幹線22aを伝播して各光分岐器24において分岐し、それぞれ光分岐路22bを伝播して光分岐路22b上に直列に設けられたFBGセンサ23に照射される。ここで、パルス光の波長帯は、着目するFBGセンサ23の設計波長範囲に設定されているため、着目するFBGセンサ23と同一の設計波長範囲の各FBGセンサ23から、温度等の物理量に応じた波長帯のFBG反射光が生じる。
【0090】
FBGセンサ23において生じたFBG反射光は、再び光分岐路22b、光分岐器24、光幹線22aを伝播して光源21側の光分岐器24aから反射光用光ファイバ22cに導かれる。そして、反射光用光ファイバ22cに導かれたFBG反射光は、光検出器25において受光され、光−電気変換により電気信号の受信データとなって制御部26のパルス積分回路36に与えられる。
【0091】
パルス積分回路36は、光検出器25からFBG反射光の電気パルス信号として出力された受信データを受けて受信データのパルス波高に比例したパルス面積を得ることによりノイズ低減処理を実行した後、受信データをゲート信号発生部37に与える。
【0092】
そして、ゲート信号発生部37は、トリガ信号印加部32から受けたタイミング情報に基づいて、着目するFBG7の位置に応じて一定の遅延時間を伴う時間ゲート信号を設定することによりパルス積分回路36から受けたFBG反射光のパルス列から着目するFBG7からのFBG反射光の電気パルス信号を抽出し、抽出したFBG反射光の電気パルス信号を受信データとしてAD変換装置38に与える。
【0093】
さらに、AD変換装置38は、ゲート信号発生部37から受けた受信データをAD変換してプリスキャン部33に与える。
【0094】
尚、計算精度を維持するためにプリスキャンモードによる波長走査が複数回実行される場合には、同様な手順により繰り返しFBG反射光の受信データがプリスキャン部33に与えられる。
【0095】
次に、ステップS3において、プリスキャン部33は、計算精度を維持するために十分なFBG反射光の受信データが得られると、FBG反射光の波長領域中心を求め、求めた波長領域中心の両側に予め設定された所要の詳細走査点数を確保できるような区間を部分詳細スキャンモードにおける波長走査範囲として決定する。そして、プリスキャン部33は、決定した部分詳細スキャンモードにおける波長走査範囲を部分詳細スキャン部34に与える。
【0096】
このため、ステップS4において、部分詳細スキャンモードによる波長走査が任意数回実行される。すなわち、部分詳細スキャン部34が、部分詳細スキャンモードにおける波長走査範囲について波長走査を実行させるように波長可変フィルタ29を制御する。さらに、部分詳細スキャン部34は、光源21から出射されるパルス光のタイミングを制御するようにトリガ信号印加部32にトリガ信号の印加指令を与える。
【0097】
一方、広帯域光源28から連続光が波長可変フィルタ29に与えられる。そして、波長可変フィルタ29は、部分詳細スキャンモードにおける波長走査範囲に相当する波長帯の連続光を選択的に透過させて光パルス化装置30に与え、光パルス化装置30は、部分詳細スキャンモードにおける波長走査範囲の波長帯の連続光をパルス光に変換して光ファイバ22内に送信する。
【0098】
このためプリスキャンモードによる波長走査の場合と同様に、部分詳細スキャンモードにおける波長走査範囲についてのFBG反射光の受信データが部分詳細スキャン部34に与えられる。さらに、部分詳細スキャン部34は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを信号処理装置27の波長中心計算部39に与える。
【0099】
このため、ステップS5において、波長中心計算部39は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データに基づいて、着目するFBG7からのFBG反射光の波長領域中心を求めて物理量変換部40に与える。
【0100】
さらに、ステップS6において、物理量変換部40は、波長中心計算部39から受けたFBG反射光の波長領域中心を物理量に変換する。このため、着目するFBGセンサ23近傍における温度等の物理量を求めることができる。そして、物理量変換部40は、次の波長走査の開始指令を制御部26や光源21に与え、再びステップS2からステップS6までの手順により各時刻における物理量が計測される。
【0101】
以上のようなFBG物理量計測装置20によれば、着目するFBGセンサ23の設計波長範囲全体を物理量の要求精度に応じたスキャン間隔で走査することなく要求精度の物理量を取得することができる。このため、FBG物理量計測装置20によれば、物理量の測定精度を確保しつつより短時間で多点における物理量を計測することが可能となり、物理量の測定速度や測定インターバルを高速化させることができる。
【0102】
[第2実施形態(図2、図3、図7および図8)]
図7は、本発明に係るファイバブラッググレーティング物理量計測装置の第2実施形態を概略的に示す構成図である。
【0103】
図7に示すように、このファイバブラッググレーティング(FBG)物理量計測装置20は、光源21に光ファイバ22の一端を接続し、この光ファイバ22に複数のFBGセンサ23を設けた構成である。この光ファイバ22は、光幹線22aに複数の光分岐器24を設けて構成され、各光分岐器24からは光分岐路22bが分岐する。そして、FBGセンサ23は各光分岐路22bに直列に設けられる。光幹線22aには、光遅延装置24が設けられている。
【0104】
また、光源21側の光分岐器24aには、反射光用光ファイバ22cが接続され、この反射光用光ファイバ22cの端部には光検出器25が接続される。さらに、この光検出器25と光源21は共通の制御部26と接続され、制御部26は信号処理装置27と接続される。
【0105】
FBGセンサ23は、ファイバコア中にブラッグ回折格子を設けて構成され、温度、歪、振動、圧力、水位計測等の物理量に依存してブラッグ回折格子のピッチが変化するため、物理量に応じた特定波長帯のFBG反射光を反射する性質を有する。このため、FBG反射光の波長から物理量を求めることができる。そして、各FBGセンサ23は、互いに反射するFBG反射光の特定波長帯が相互に影響しないように各光分岐器24からの距離に応じて異なる特定波長帯となるように構成される。
【0106】
光源21は、広帯域光源28、波長可変フィルタ29および光パルス化装置30で構成される。広帯域光源28および波長可変フィルタ29は、温度に敏感な光学機器に対して十分安定な温度範囲を提供する温度調整部31に設けられる。広帯域光源28は、広帯域の連続光(CW:Continuous Wave)を生成する機能を、波長可変フィルタ29は、広帯域光源28から広帯域連続光を受けて所定の波長帯域の光を選択的に透過させる機能を、光パルス化装置30は、波長可変フィルタ29から所定の波長帯域の光を受けてパルス光に変換する機能をそれぞれ有する。そして、光源21は、所定の波長帯域のパルス光を光ファイバ22に設けられた各FBGセンサ23に照射することができるように構成される。
【0107】
光検出器25は、FBGセンサ23からのFBG反射光を受光して光−電気変換するとともに増幅整形して必要な信号強度と帯域幅の電気パルス信号として受信データを得る機能と、得られた受信データを制御部26に与える機能とを有する。
【0108】
制御部26は、トリガ信号印加部32、プリスキャン部33、部分詳細スキャン部34、プリスキャンパラメータ設定部35、パルス積分回路36、ゲート信号発生部37、AD変換装置38を備え、FBG反射光の波長走査範囲、すなわち波長可変フィルタ29が透過させる光の波長帯域や光パルス化装置30により生成されるパルス光の送信タイミングを光検出器25から受けた受信データに基づいて制御する機能を有する。この際、制御部26は、プリスキャンモードおよび部分詳細スキャンモードの2種類の制御モードにより波長可変フィルタ29および光パルス化装置30を制御するように構成される。
【0109】
トリガ信号印加部32は、光パルス化装置30にトリガ信号を与えることにより、光源21から出射されるパルス光のタイミングを制御する機能と、トリガ信号のタイミング情報をゲート信号発生部37に与える機能とを有する。
【0110】
プリスキャン部33は、プリスキャンモードによる波長走査を実行させるように波長可変フィルタ29を制御して各FBG7に所要の波長帯域の光を照射させる機能と、トリガ信号印加部32にプリスキャンモードによる波長走査のタイミング情報を与えることにより光パルス化装置30を制御させる機能とを有する。
【0111】
また、プリスキャン部33は、プリスキャンモードによる波長走査で得られた受信データを光検出器25からパルス積分回路36、ゲート信号発生部37およびAD変換装置38を介して受けて、着目するFBG7からのFBG反射光の波長領域中心を求める機能と求めた波長領域中心の両側に予め設定された所要の詳細走査点数を確保できるような区間を部分詳細スキャンモードにおける波長走査範囲として決定する機能とを有する。
【0112】
部分詳細スキャン部34は、プリスキャン部33により決定された部分詳細スキャンモードにおける波長走査範囲について部分詳細スキャンモードによる波長走査を実行させるように波長可変フィルタ29を制御して各FBG7に所要の波長帯域の光を照射させる機能と、トリガ信号印加部32に部分詳細スキャンモードによる波長走査のタイミング情報を与えることにより光パルス化装置30を制御させる機能とを有する。また、部分詳細スキャン部34は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを信号処理装置27に与える機能を有する。
【0113】
プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査の際のスキャン範囲や走査点の間隔(スキャン間隔)等のスキャン条件を設定する機能と、設定したスキャン条件をプリスキャン部33に与える機能とを有する。
【0114】
この際、プリスキャンモードによる波長走査の際のスキャン範囲は、部分詳細スキャンモードにおける波長走査範囲よりも広く、かつ、プリスキャンモードによる波長走査における走査点の間隔(スキャン間隔)は部分詳細スキャンモードによる波長走査における走査点の間隔(スキャン間隔)よりも広い間隔とされる。
【0115】
このような構成において、本実施形態では、予めAD変換開始トリガを正確に設定するための手段として、データ記憶部41、時間演算処理部42および微係数判定処理部48が設けられている。すなわち、本実施形態では上述の光ファイバ22と、この光ファイバ22上に設けられた複数のFBGセンサ23と、これらFBGセンサ23に所要の波長帯域の光を照射させるための波長可変フィルタ29を備えた光源21と、FBGセンサ23からの反射光を受光して受信データを取得する光検出器25と、受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えている。
【0116】
また、FBGセンサ23から得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部としてのAD変換装置38と、デジタルデータ列組を微分計算してFBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算処理部42とを備えている。
【0117】
時間演算処理部42は、データ記憶部41を介してAD変換装置38に接続されており、時系列データ組生成部43、平均化処理部44、平滑微分演算処理部45および遅延時間演算処理部46を備えている。
【0118】
時系列データ組生成部43では、データファイルを参照して設定された各パラメータに基づいてFBG反射パルスのAD変換が行われ、FBG反射パルスデータが指定平均回数になるまで記憶される。
【0119】
平均化処理部44では、記憶されたFBG反射パルスが読出され、データ平均化演算処理が行われる。平滑微分演算処理部45では、各FBG反射パルスの時間軸に対する最大値が抽出され、平滑化1次微分演算が行われる。
【0120】
遅延時間演算処理部46では、平滑化されたFBG反射パルスの微係数デジタルデータ列組の微分計算が行われ、FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報が算出される。
【0121】
さらに、検出下限におけるFBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組のピークレベルを閾値として、FBG反射パルスより算出した微係数ピーク組から閾値を超える微係数ピーク組のみを閾値判定する微係数判定処理部48を備えている。
【0122】
この微係数判定処理部48は、微係数レベルの閾値を判定する微係数レベル閾値判定部49と、微係数ピーク組のピークレベルの相対比率を予め定めた閾値で比較判定する微係数レベル比率判定部50と、微係数ピーク組の時間間隔をFBG反射パルスの時間幅をもとにした閾値で比較判定する微係数時間幅判定部51とを備えている。なお、デジタルデータ列組および微係数ピーク列組の処理部は、プログラム可能な論理デバイス(PLD)内に収められている。
【0123】
時間演算処理部42および微係数判定処理部48の作用を、図2および図3も参照して説明する。図2は、本実施形態によるタイミング時間を示す作用説明図であり、図3は、本実施形態による反射パルスを平滑化微分して得られた微係数を示す説明図である。
【0124】
広帯域光源28より出力される連続光は、波長可変フィルタ29により所定の波長帯だけが透過され、光パルス化装置30によりパルス光に変換される。パルス光はファイバ22のラインを伝播し、光分岐器24aを介して2つの幹線である光ファイバ22aに送り出される。枝状に分岐した各光ファイバ22aのラインには、FBGセンサ23が互いの反射波長帯が干渉しないように直列に複数個接続されており、送り出されたパルス光は、パルス光の波長帯とFBGセンサ23の反射波長帯が合致する場合には反射される。
【0125】
反射されたパルス光は、元来た光ファイバ22bのラインを通り、光分岐器24aを介して光検出器25で光パルスから電気パルスへと変換される。すなわち、各分岐の光ファイバ22aのラインに接続されたFBGセンサ23で反射された複数のパルス光は、各分岐の光ファイバ22aのライン間に接続された光遅延装置47によってあらかじめ設定した時間遅延により、設定された時間間隔のパルス列となり、光検出器25および制御部26を介し、データ記憶部41に記憶されるとともに、時間演算処理部42にそれぞれ到達する。
【0126】
制御部26は、連続光をパルス光に変換するタイミングや波長可変フィルタ29の波長走査および光検出器へのパルス受信タイミング等を制御する。すなわち、制御部26は、光検出器で受信したパルス列を光−電変換し、時間ゲートを用いてパルスデータのみを取り出し、更にデジタルデータに変換する。デジタルデータは時間演算処理部において、S/N向上のため必要回数の平均化処理を施され、最終的には、1パルス=1データとして、最小の転送データ量に圧縮される。
【0127】
図2に示すように、本実施形態では、基準クロックパルスc1に基づき、全てのFBGセンサ23の反射光パルス列c4は、次のパルス光c2が送り出されるまでに時間演算処理部42に到達する。すなわち、パルス光はあらかじめ所定の波長帯に設定した波長可変フィルタ29を透過し、反射波長の重なった複数のFBGセンサ23で反射する。反射光パルス列c4は、所定の時間間隔を有して光検出器25で受光されるとともに、電気パルス列に変換される。
【0128】
更に、AD変換処理部38で電気パルス列がデジタルデータに変換され、時間情報を加えたデジタルデータ列組となる。本実施形態では図2に示すように、光パルス化装置30のオフセット時間T1と、AD変換開始トリガc3までの設計遅延時間T2を加算した時間をAD変換動作開始時間Taとおき、AD変換装置38のサンプリング速度に応じた時間情報をTaに加算する。
【0129】
AD変換動作の停止時刻は、例えば次のパルス光c2の送出タイミングとすれば、反射パルス列c4の全てのパルスを余すことなくデジタルデータに変換することができる。これらの処理は必要回数繰り返され、時間演算処理部42により前述したデジタルデータ列組の平均化処理が行われ、これによりS/Nが向上する。
【0130】
ところで本実施形態では、波長帯の異なる複数のFBG反射パルスが時間的に重なって戻ってこないように、あらかじめ波長可変フィルタ2で所定のFBGセンサ反射波長帯のみを透過させて波長弁別しているが、実際には同じ反射波長帯であっても、製造ばらつきや敷設場の雰囲気温度の違いなどから、幾つかのFBG反射パルスは波長可変フィルタ29のフィルタ範囲を外れてしまい計測できない場合がある。よって、反射パルス列全てを取得するために反射パルス個々の波長ばらつきを考慮して、波長可変フィルタ2は所定の波長範囲を適切な波長間隔で走査し、その都度、得られた反射パルスを第1実施形態と同様に時間と電圧のデジタルデータ組列に変換処理し、これを必要回数繰り返し、S/N向上のため前述したデジタルデータ列組を平均化処理する。
【0131】
すなわち、波長走査毎に平均化処理されたデジタルデータ列組は時間演算処理部42に送られ、平滑化微分による計算処理によって先に図3で示した微係数ピークと時間情報をそのままスライドさせて加えた微係数ピーク列組として処理される。微係数判定処理部48では、あらかじめ検出下限レベルにおける反射パルス波形の立上りおよび立下りの急峻部傾きに対する微係数のピークレベルを計算により算出し、その値を閾値として記憶しておき、波長走査毎に算出した微係数データ列組に対してこの閾値を超える微係数ピークを取り出す微係数レベル閾値判定部49の判定処理で、閾値を超えた微係数ピークと時間情報からなる微係数ピーク列組に置き換えられる。更に、微係数レベル比較判定部50により、これら置き換えられたそれぞれの微係数データ列組から時間軸に対して相対レベルで最大ピークとなる微係数のみを取得し、最終的に微係数時間判定部51で最大ピークと時間情報とからなる微係数ピーク列組が得られる。この判定処理によって反射パルスと例えば基準クロックと同期したハム・ノイズなどによって算出された微係数のピーク部を弁別することができる。
【0132】
また、反射パルス形状は図4に示すように矩形波に近く、パルスの立上りおよび立下りにおける急峻部の傾き形状は近似しており、急峻部の傾きに対するこれら微係数ピークの相対レベル(微係数ピークレベル)h1、h2を比較すれば、その比率は1に近い値となる。これを利用して、微係数レベル閾値判定部49で閾値判定された微係数ピーク列組を微係数レベル比率判定部50に送り、ここで先の微係数ピークレベルh1、h2を相対比較し、適切な例えば比率1:1±0.1以内であれば正常という閾値をあらかじめ設定しておき、判定処理することで、抽出した微係数ピークがパルスより算出したものであると言う信頼性をより高めることができる。
【0133】
また、判定結果が否定的であった場合、FBGセンサ23や光ファイバ22などに問題があることが予想され、異常検知手段としても適用することができる。
【0134】
更に、第1実施形態で述べたように、全ての反射パルスの幅が一定時間長さであることを利用して、微係数レベル閾値判定部49あるいは微係数レベル比率判定部50で判定処理された微係数ピーク列組を微係数時間幅判定部51に送り、ここであらかじめパルス幅の実測時間値を記憶しておき、この記憶した時間に対して例えば閾値として200n秒±10n秒と設定し、反射パルスに対応する微係数ピーク列組のピークの時間間隔をこの閾値と比較し、閾値以内であれば正常と判定することで抽出した微係数ピークがパルスより算出したものであると言う信頼性をより高めることができる。また、判定結果が否定的であった場合には、FBGセンサ24や光ファイバ22などに問題があることが予想され、異常検知手段としても適用することができる。
【0135】
そして、これらデジタルデータを用いた処理は、全てデジタル回路で実行することが可能である。このため、処理回路をPLD(Programmable Logic Device)内に構成して高速に処理することができる。これにより、出力データを必要最低限の情報のみに圧縮することが可能となり、計算機への転送データ量やソフトウエア負荷が軽減し、システム全体の処理速度を向上することができる。
【0136】
なお、ここで述べているAD変換開始トリガc3とは、設計上最短時間の反射パルスが戻ってこられない時間としている。また、AD変換装置38がAD変換開始トリガc2を受信して実際にAD変換動作を開始するまでのオフセット時間は常数として扱われ、特に明記してないが設計遅延時間T2に加算してある。
【0137】
平均化処理されたデジタルデータ列組は時間演算処理部42に送られ、図3に示すように、例えば平滑化微分する計算処理でFBG反射パルスdのパルス波形の立上り急峻部傾きd1がプラス側、立下り急峻部傾きd2がマイナス側に、それぞれピークh1、h2を示す微係数ピークe1,e2と時間情報とを、そのままスライドさせて加えた微係数ピーク列組eが得られる。この際、例えば多項式フィッティングなどを用いることで、より正確に微係数ピークを算出することもできる。
【0138】
続いて、微係数ピーク列組の個々のパルスに対するピーク間の中間値を算出し、図2に示すように、AD変換動作開始時間Taを基点として、その中間値に相当する時間Tf1〜Tfnを求める。または、時間Tf1〜Tfnは前述した微係数ピーク列組eのどちらかのピークに相当する時間としてもよい。
【0139】
この時間Tf1〜Tfnを用いてAD変換開始トリガ時間、すなわち個々のFBG反射パルスの遅延時間を設定することができる。この際、例えばパルスのピーク平坦部d3のみをAD変換するには、全ての反射パルスは一つのパルス光より反射されるため、全ての反射パルスの時間幅は一定であるということを利用し、時間Tf1〜Tfnより反射パルスの時間幅から導出した適切な時間(常数として扱われる)を減算してAD変換開始トリガ時間とし、かつ、パルス平坦部の時間幅(これも常数として扱われる)からAD変換器のサンプリング回数を設定すればよい。
【0140】
図8は、以上の作用を示すフローチャートである。
【0141】
まず、データファイルを参照してFBG反射パルスデータの各パラメータが設定され(S201)、AD変換装置38によるAD変換が開始される(S202)。AD変換された時系列データは、データ記憶部41としてのSDRAMに記憶され(S203)、その後AD変換が停止される(S204)。このAD変換処理は、指定平均回数まで行われる(S205)。
【0142】
次に、SDRAMからFBG反射パルスデータが読み出され(S206)、平均化処理部44により、データ平均化演算処理が行われる(S207)。データ平均化演算処理は指定された波長走査数まで行われ(S208、S209)、これにより所定数nのグループ測定が完了する(S210)。
【0143】
平滑微分演算処理部45では、各FBG反射パルスの時間軸に対する最大値が抽出され(S211)、上述の平滑化1次微分演算が行われる(S212)。そして、遅延時間演算処理部46において微係数の閾値判定が行われ(S213)、その後、微係数の比較判定処理が行われる(S214)。
【0144】
そして、微係数判定処理部48では、検出下限レベルにおける反射パルス波形の立上りおよび立下りの急峻部傾きに対する微係数のピークレベルを計算により算出し、その値を閾値として設定して記憶され(S215)、波長走査毎に算出した微係数データ列組に対してこの閾値を超える微係数ピークを取り出す微係数レベル閾値判定部49の判定処理で、閾値を超えた微係数ピークと時間情報からなる微係数ピーク列組に置き換えられる。
【0145】
更に、微係数レベル比較判定部50により、これら置き換えられたそれぞれの微係数データ列組から時間軸に対して相対レベルで最大ピークとなる微係数のみを取得し、最終的に微係数時間判定部51で最大ピークと時間情報とからなる微係数ピーク列組が得られる。この判定処理によって反射パルスと例えば基準クロックと同期したハム・ノイズなどによって算出された微係数のピーク部を弁別することができる(S216)。
【0146】
また、上述したように、反射パルス形状は矩形波に近く、パルスの立上りおよび立下りにおける急峻部の傾き形状は近似しているので、急峻部の傾きに対するこれら微係数ピークの相対レベル(微係数ピークレベル)h1、h2が比較され、その比率は1に近い値となることを利用して、微係数レベル閾値判定部49において、時間軸に対して相対レベルで最大となる微係数が抽出される(S217)。
【0147】
そして、閾値判定された微係数ピーク列組が微係数レベル比率判定部50に送られ、ここで先の微係数ピークレベルh1、h2が相対比較判定され(S217)、例えば比率1:1±0.1以内であれば正常という閾値設定に基づいて判定処理が行われる(S218、S219)。これにより、抽出した微係数ピークがパルスより算出したものであると言う信頼性をより高めることができる。
【0148】
以上の処理に基づき、図2に示したADトリガ時間の演算が行われ(S220)、この演算結果がデータファイルに上書され(S221)、指定されたファイバラインの全グループについて完了した場合に(S222、S223)、反射時間校正完了となる。
【0149】
本実施形態のファイバブラッググレーティング物理量計測装置およびファイバブラッググレーティング物理量計測方法によれば、時間演算処理部42において、波長走査毎に平均化処理されたデジタルデータ列組が平滑化微分により計算され、反射パルス波形の立上りおよび立下りの急峻部傾きに対する微係数のレベルが算出される。そして、波長走査毎に算出した微係数データ列組に対して閾値を判定処理が行われ、各FBGセンサへのAD変換開始トリガ時間を正確に知ることができる。
【0150】
したがって、FBG反射光のパルス個々に時間ゲートを設ける際に、必要な個々のパルスの正確な戻り時間を知るための具体的手段を得ることができ、光ファイバケーブル類を実際に敷設する場合の現場状況に応じた光ファイバ長さの変更や、設計通でない場合、あるいは製作過程で誤差が生じたような場合でも、確実な時間情報を得ることができる。
【0151】
また、デジタルデータを用いた処理であることから、全てデジタル回路で実行することが可能である。このため、処理回路をPLD(Programmable Logic Device)内に構成して高速に処理することができる。これにより、出力データを必要最低限の情報のみに圧縮することが可能となり、計算機への転送データ量やソフトウエア負荷が軽減し、システム全体の処理速度を向上することができる。
【0152】
したがって、全FBGセンサの反射光パルスの反射時間情報を計測初期の段階で簡易かつ正確に計測して取得することができる。
【0153】
また、パルス列データを一括して取り込んだ場合に生じる転送データ量の膨大化やそのデータ処理に係わる処理速度低下の発生を抑制し、このようにして得られたデジタルデータを計算機などで演算処理することで所定の物理量情報が得られる。
【0154】
そして、本実施の形態によれば、OTDRなどを用いることなく全てのFBG反射パルスの反射時間情報を簡易かつ正確に求めることができ、FBG反射パルスの反射時間情報を簡易かつ正確に求め後は、波長走査を高精度で実行することができる。この作用を、上述の図5および図6を参照して説明する。
【0155】
図5は、第1実施形態と同様に、図7に示したプリスキャン部33がプリスキャンモードによる波長走査を実行させる際のスキャン間隔と、部分詳細スキャン部34が部分詳細スキャンモードによる波長走査を実行させる際のスキャン間隔との関係を示す概念図として適用することができる。
【0156】
図5において、縦軸は光検出器25において受光されたFBG反射光の光強度Yiを示し、横軸は光検出器25において受光されたFBG反射光の波長Xiを示す。また図2中において、実線は着目するFBG7からのFBG反射光のスペクトルA1を、点線は部分詳細スキャンモードによる波長走査の走査点A2を、一点鎖線はプリスキャンモードによる波長走査の走査点A3を、二点鎖線は着目するFBG7の設計波長範囲A4をそれぞれ示す。
【0157】
図5に示すように、プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査のスキャン範囲A5を、例えばFBG7の設計波長範囲A4全体として設定する。さらに、プリスキャンパラメータ設定部35は、プリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6を、FBG反射光の波長領域中心A7、すなわちFBG反射光のスペクトルA1の最大値を求めることができる間隔に設定する。このため、プリスキャンパラメータ設定部35が設定するプリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6は、FBG反射光のスペクトルA1上に少なくとも2つの走査点A3が存在するような間隔であればよい。換言すれば、プリスキャンモードによる波長走査の走査点の間隔(スキャン間隔)A6は、FBG反射光のスペクトルA1における分布幅A1dの半値以下であればよい。
【0158】
一方、部分詳細スキャンモードによる波長走査は、プリスキャンモードによる波長走査で求められた波長領域中心A7から両側に物理量計測の要求精度に応じた走査点の数が確保できる区間として決定された波長走査範囲A8について実行される。この際、部分詳細スキャンモードによる波長走査の走査点の間隔(スキャン間隔)A9は、物理量計測の要求精度に応じた間隔とされる。
【0159】
図5は、FBG反射光のスペクトルA1上にプリスキャンモードによる波長走査の2つの走査点A3がある場合において、2走査点A3上の受信データに基づいて求めたFBG反射光の波長領域中心A7から両側に部分詳細スキャンモードによる波長走査の波長走査範囲A8を決定した場合の例である。
【0160】
一方、制御部26のパルス積分回路36は、ボックスカー積分器やゲーテッドインテグレータ等の回路で構成され、光検出器25からFBG反射光の電気パルス信号として出力された受信データを受けて受信データのパルス波高に比例したパルス面積を得ることによりノイズ低減処理を実行する機能と、FBG反射光のパルス列で構成されるノイズ低減処理後の受信データをゲート信号発生部37に与える機能とを有する。
【0161】
ゲート信号発生部37は、時間ゲートを設定することによりパルス積分回路36から受けたFBG反射光のパルス列から着目するFBG7からのFBG反射光の電気パルス信号を抽出する機能と、抽出したFBG反射光の電気パルス信号を受信データとしてAD変換装置38に与える機能とを有する。すなわち、ゲート信号発生部37は、トリガ信号印加部32から受けたトリガ信号のタイミング情報に基づいて、着目するFBG7からのFBG反射光が光検出器25において受光されるタイミングに対応するように所要の遅延時間を伴う時間ゲート信号を発生させて、時間ゲート信号がアクティブな間における電気パルス信号のみを検出するように構成される。
【0162】
AD変換装置38は、ゲート信号発生部37から着目するFBG7からのFBG反射光の受信データを受けてAD変換してプリスキャン部33または部分詳細スキャン部34に与える機能を有する。
【0163】
一方、信号処理装置27は、波長中心計算部39と物理量変換部40とを有する。波長中心計算部39は、制御部26の部分詳細スキャン部34から部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを受けて、着目するFBG7からのFBG反射光の波長領域中心を求める機能を備える。波長中心計算部39がFBG反射光の波長領域中心を求める方法としては、例えばFBG反射光の受信データであるスペクトルの分布を二次式等の高次式にフィッティングしてスペクトルの変曲点や最大値を求める方法が挙げられる。
【0164】
物理量変換部40はFBG反射光の波長領域中心を物理量に変換する機能を備える。また、FBG物理量計測装置20により経時的に変換する物理量をダイナミック計測する場合には、物理量変換部40には、次の波長走査の開始指令を制御部26に与える機能が備えられる。
【0165】
次に、FBG物理量計測装置20の作用について説明する。
【0166】
図6は図5に示したFBG物理量計測装置20により物理量を計測する際の手順を示すフローチャートであり、図中Sに数字を付した符号はフローチャートの各ステップを示す。
【0167】
まず、ステップS1において、プリスキャンパラメータ設定部35が、プリスキャンモードによる波長走査のスキャン範囲Rを着目するFBG7の設計波長範囲全体に設定する。さらに、プリスキャンパラメータ設定部35により、プリスキャンモードによる波長走査のスキャン間隔が、スキャン範囲Rを設定値Nで割った値に設定される。ここで、設定値Nは、スキャン間隔R/Nの値がFBG反射光のスペクトルの分布幅の半値以下となるように設定される。そして、プリスキャンパラメータ設定部35は設定したプリスキャンモードによる波長走査のスキャン範囲Rおよびスキャン間隔R/Nをプリスキャン部33に与える。
【0168】
次に、ステップS2において、プリスキャンモードによる波長走査が任意数回実行される。すなわち、プリスキャン部33が、プリスキャンパラメータ設定部35から受けたプリスキャンモードによる波長走査のスキャン範囲Rについて波長走査を実行させるように波長可変フィルタ29を制御する。さらに、プリスキャン部33は、光源21から出射されるパルス光のタイミングを制御するようにトリガ信号印加部32にトリガ信号の印加指令を与える。
【0169】
一方、広帯域光源28からは連続光が波長可変フィルタ29に与えられる。そして、波長可変フィルタ29は、スキャン範囲Rに相当する波長帯の連続光を選択的に透過させて光パルス化装置30に与える。光パルス化装置30は、トリガ信号印加部32から受けたトリガ信号に対応するタイミングで、スキャン範囲Rの波長帯の連続光をパルス光に変換して光ファイバ22内に送信する。
【0170】
このため、スキャン範囲Rの波長帯のパルス光は、光幹線22aを伝播して各光分岐器24において分岐し、それぞれ光分岐路22bを伝播して光分岐路22b上に直列に設けられたFBGセンサ23に照射される。ここで、パルス光の波長帯は、着目するFBGセンサ23の設計波長範囲に設定されているため、着目するFBGセンサ23と同一の設計波長範囲の各FBGセンサ23から、温度等の物理量に応じた波長帯のFBG反射光が生じる。
【0171】
FBGセンサ23において生じたFBG反射光は、再び光分岐路22b、光分岐器24、光幹線22aを伝播して光源21側の光分岐器24aから反射光用光ファイバ22cに導かれる。そして、反射光用光ファイバ22cに導かれたFBG反射光は、光検出器25において受光され、光−電気変換により電気信号の受信データとなって制御部26のパルス積分回路36に与えられる。
【0172】
パルス積分回路36は、光検出器25からFBG反射光の電気パルス信号として出力された受信データを受けて受信データのパルス波高に比例したパルス面積を得ることによりノイズ低減処理を実行した後、受信データをゲート信号発生部37に与える。
【0173】
そして、ゲート信号発生部37は、トリガ信号印加部32から受けたタイミング情報に基づいて、着目するFBG7の位置に応じて一定の遅延時間を伴う時間ゲート信号を設定することによりパルス積分回路36から受けたFBG反射光のパルス列から着目するFBG7からのFBG反射光の電気パルス信号を抽出し、抽出したFBG反射光の電気パルス信号を受信データとしてAD変換装置38に与える。
【0174】
さらに、AD変換装置38は、ゲート信号発生部37から受けた受信データをAD変換してプリスキャン部33に与える。
【0175】
尚、計算精度を維持するためにプリスキャンモードによる波長走査が複数回実行される場合には、同様な手順により繰り返しFBG反射光の受信データがプリスキャン部33に与えられる。
【0176】
次に、ステップS3において、プリスキャン部33は、計算精度を維持するために十分なFBG反射光の受信データが得られると、FBG反射光の波長領域中心を求め、求めた波長領域中心の両側に予め設定された所要の詳細走査点数を確保できるような区間を部分詳細スキャンモードにおける波長走査範囲として決定する。そして、プリスキャン部33は、決定した部分詳細スキャンモードにおける波長走査範囲を部分詳細スキャン部34に与える。
【0177】
このため、ステップS4において、部分詳細スキャンモードによる波長走査が任意数回実行される。すなわち、部分詳細スキャン部34が、部分詳細スキャンモードにおける波長走査範囲について波長走査を実行させるように波長可変フィルタ29を制御する。さらに、部分詳細スキャン部34は、光源21から出射されるパルス光のタイミングを制御するようにトリガ信号印加部32にトリガ信号の印加指令を与える。
【0178】
一方、広帯域光源28から連続光が波長可変フィルタ29に与えられる。そして、波長可変フィルタ29は、部分詳細スキャンモードにおける波長走査範囲に相当する波長帯の連続光を選択的に透過させて光パルス化装置30に与え、光パルス化装置30は、部分詳細スキャンモードにおける波長走査範囲の波長帯の連続光をパルス光に変換して光ファイバ22内に送信する。
【0179】
このためプリスキャンモードによる波長走査の場合と同様に、部分詳細スキャンモードにおける波長走査範囲についてのFBG反射光の受信データが部分詳細スキャン部34に与えられる。さらに、部分詳細スキャン部34は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データを信号処理装置27の波長中心計算部39に与える。
【0180】
このため、ステップS5において、波長中心計算部39は、部分詳細スキャンモードによる波長走査で得られたFBG反射光の受信データに基づいて、着目するFBG7からのFBG反射光の波長領域中心を求めて物理量変換部40に与える。
【0181】
さらに、ステップS6において、物理量変換部40は、波長中心計算部39から受けたFBG反射光の波長領域中心を物理量に変換する。このため、着目するFBGセンサ23近傍における温度等の物理量を求めることができる。そして、物理量変換部40は、次の波長走査の開始指令を制御部26や光源21に与え、再びステップS2からステップS6までの手順により各時刻における物理量が計測される。
【0182】
以上のようなFBG物理量計測装置20によれば、着目するFBGセンサ23の設計波長範囲全体を物理量の要求精度に応じたスキャン間隔で走査することなく要求精度の物理量を取得することができる。このため、FBG物理量計測装置20によれば、物理量の測定精度を確保しつつより短時間で多点における物理量を計測することが可能となり、物理量の測定速度や測定インターバルを高速化させることができる。
【0183】
[第3実施形態(図9)]
図9は本発明の第3実施形態として高周波ノイズなどを減衰させるローパスフィルタ60の等価回路を示す図である。
【0184】
上述した第1および第2実施形態では、AD変換処理部11は計算機をそのベースとしているため、その入力信号にはデジタル機器などから高周波ノイズが混入することがある。このため、カットする周波数帯を最適化したローパスフィルタ60をAD変換器の入力段に接続することで、電気パルス列信号(入力信号)に混在した高周波ノイズなどの影響を抑制することができる。
【0185】
本実施形態によれば、電気パルス列信号に混在した高周波ノイズなどの誤検出を抑制できるため、個々のパルスをより高精度に検出することができる。
【図面の簡単な説明】
【0186】
【図1】本発明の第1実施形態による装置を示す構成図。
【図2】本発明の第1実施形態によるタイミング時間を示す作用説明図。
【図3】本発明の第1実施形態による反射パルスを平滑化微分して得られた微係数を示す説明図。
【図4】本発明の第1実施形態によるFBG反射時間算出作用を示すフローチャート。
【図5】本発明の第1実施形態によるプリスキャンモードにおける波長走査実行時の説明図。
【図6】本発明の第1実施形態による波長走査作用を示すフローチャート。
【図7】本発明の第2実施形態による装置を示す構成を示す図。
【図8】本発明の第2実施形態によるFBG反射時間算出作用を示すフローチャート。
【図9】本発明の第3実施形態によるFBG反射時間算出用として適用されるローパスフィルタ等価回路を示す回路図。
【図10】従来例を示す構成図。
【符号の説明】
【0187】
20 ファイバブラッググレーティング(FBG)物理量計測装置
21 光源
22 光ファイバ
22a 光幹線
22b 光分岐路
22c 反射光用光ファイバ
23 FBGセンサ
24,24a 光分岐器
25 光検出器
26 制御部
27 信号処理装置
28 広帯域光源
29 波長可変フィルタ
30 光パルス化装置
31 温度調整部
32 トリガ信号印加部
33 プリスキャン部
34 部分詳細スキャン部
35 プリスキャンパラメータ設定部
36 パルス積分回路
37 ゲート信号発生部
38 AD変換装置
39 波長中心計算部
40 物理量変換部
41 データ記憶部
42 時間演算処理部
43 時系列データ組生成部
44 平均化処理部
45 平滑微分演算処理部
46 遅延時間演算処理部
47 光遅延装置
48 微係数判定処理部
49 閾値判定部
50 微係数レベル比率判定部
51 微係数時間幅判定部
60 ローパスフィルタ

【特許請求の範囲】
【請求項1】
光ファイバと、この光ファイバ上に設けられた複数のファイバブラッググレーティングセンサ(FBGセンサ)と、これらFBGセンサに所要の波長帯域の光を照射させるための波長可変フィルタを備えた光源と、前記FBGセンサからの反射光を受光して受信データを取得する光検出器と、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えたファイバブラッググレーティング装置において、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部と、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算処理部とを備え、前記FBG反射パルスの反射時間を算出する機能を有することを特徴とするファイバブラッググレーティング物理量計測装置。
【請求項2】
検出下限における前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組のピークレベルを閾値として、前記FBG反射パルスより算出した微係数ピーク組から前記閾値を超える前記微係数ピーク組のみを閾値判定する微係数判定処理部を備えた請求項1記載のファイバブラッググレーティング物理量計測装置。
【請求項3】
微係数ピーク組のピークレベルの相対比率を予め定めた閾値で比較判定する微係数レベル比率判定部を備えた請求項1記載のファイバブラッググレーティング物理量計測装置。
【請求項4】
微係数ピーク組の時間間隔を前記FBG反射パルスの時間幅をもとにした閾値で比較判定する微係数時間幅判定部を備えた請求項1から3までのいずれかに記載のファイバブラッググレーティング物理量計測装置。
【請求項5】
デジタルデータ列組および微係数ピーク列組の処理部を、プログラム可能な論理デバイス(PLD)内に収めた請求項1から4までのいずれかに記載のファイバブラッググレーティング物理量計測装置。
【請求項6】
前記AD変換処理部の前段にローパスフィルタを設けた請求項1記載のファイバブラッググレーティング物理量計測装置。
【請求項7】
光ファイバと、この光ファイバ上に設けられた複数のFBGセンサと、これらFBGセンサに所要の波長帯域の光を照射させるための波長可変フィルタを備えた光源と、前記FBGセンサからの反射光を受光して受信データを取得する光検出器と、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測する物理量計測手段とを備えたファイバブラッググレーティング装置において、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換処理部と、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する前記FBG反射パルスの反射時間を算出する時間演算処理部と、前記FBG反射光に対して部分詳細スキャンモードの波長走査範囲について予め設定された所要の詳細走査点数で波長走査を実行させるように前記波長可変フィルタを制御する部分詳細スキャン部と、前記FBG反射光に対して前記部分詳細スキャンモードの波長走査範囲よりもスキャン範囲が広くかつ前記部分詳細スキャンモードのスキャン間隔よりも広いスキャン間隔としたプリスキャンモードによる波長走査のスキャン条件を設定するプリスキャンパラメータ設定部と、このプリスキャンパラメータ設定部により設定されたスキャン条件で前記プリスキャンモードによる波長走査を前記部分詳細スキャンモードによる波長走査に先だって実行させるように前記波長可変フィルタを制御する一方、前記プリスキャンモードによる波長走査で得られた受信データから前記FBG反射光の波長領域中心を求め、求めた波長領域中心の両側に前記部分詳細スキャンモードにおける詳細走査点数を確保できるような区間を前記部分詳細スキャンモードにおける波長走査範囲として決定するプリスキャン部と、前記部分詳細スキャンモードによる波長走査で得られた受信データから前記FBG反射光の波長領域中心を求める波長中心計算部と、前記波長中心計算部により求められた前記FBG反射光の波長領域中心を物理量に変換する物理量変換部とを有することを特徴とするファイバブラッググレーティング物理量計測装置。
【請求項8】
光ファイバ上に設けられた複数の前記FBGセンサからの反射光を受光して受信データを取得するステップと、前記受信データに基づいて時分割多重と波長多重のいずれかまたは両方を適用して多数点の物理量を計測するステップと、前記FBGセンサから得られるFBG反射パルスを時間と電圧のデジタルデータ列組に変換するAD変換ステップと、前記デジタルデータ列組を微分計算して前記FBG反射パルスの立上りおよび立下りの急峻部傾きに対して得られた微係数ピーク組に相当する時間情報を算出する時間演算ステップ処理部とを備え、前記FBG反射パルスの反射時間を算出することを特徴とするファイバブラッググレーティング物理量計測方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−252251(P2006−252251A)
【公開日】平成18年9月21日(2006.9.21)
【国際特許分類】
【出願番号】特願2005−68828(P2005−68828)
【出願日】平成17年3月11日(2005.3.11)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】