説明

フォトクロミック組成物、画像表示媒体及び画像形成装置

【課題】光により画像の形成・消去が可能であり、さらに、画像保持性に優れた書き換え型の多色画像表示媒体と多色画像方法を提供する。
【解決手段】下記一般式(1)で表わされるフォトクロミック化合物および長鎖アルキル化合物を含むフォトクロミック組成物。


(ただし、R、R、は独立して炭素数18以上の長鎖炭化水素基である。Zは存在しないか、あるいは−CHOCO−等。XはO、S等。R〜Rは水素等を示す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フォトクロミック組成物、画像表示媒体及び画像形成及び消去装置に関し、詳しくは、光照射と熱処理により画像を繰り返し形成することが可能なフォトクロミック化合物、画像表示媒体及びこれを用いた画像形成及び消去装置に関するものである。
【背景技術】
【0002】
フォトクロミック化合物を用いてカラー画像を形成する方法としては、例えば特許文献1において、254nmの紫外光照射で黄橙色、313nmの紫外光照射で赤色、365nmの紫外光照射で青紫色に発色するフォトクロミック性ジアリールエテン化合物を3種類混合して、それぞれの波長の紫外光を照射する方法が提案されている。
フルカラー画像を形成するためには、3原色(青、緑、赤またはイエロー、マゼンタ、シアン)を発色する3種類以上のフォトクロミック化合物の消・発色を光で制御しなければならないが、上記の方法では3種類の紫外光波長域によって各材料の発色の有無が選択できることが必要であり、つまり紫外域での吸収帯に重なりがない3種類以上のフォトクロミック化合物が必要であり、さらにそれらの化合物が発色状態において上記3原色を示さなければならないが、そのような化合物の系は実際には見あたらない。
また、実用化には発色特性だけではなく、繰り返し耐久性、熱・湿安定性なども考慮しなければならず、これらの全てを満たす材料を開発するのは大変困難である。
【0003】
また、特許文献2においては、発色状態でイエロー、マゼンタ、シアンを示す3種類のフォトクロミック性フルギド化合物に対して、366nmの紫外光で全フォトクロミック化合物を発色させた後に、カラーポジフィルム越しに白色光を照射することにより、各フォトクロミック性フルギド化合物を、必要に応じて選択的に消色してカラー画像を得る方法が提案されている。
この方法では、紫外光源が1種類だけで対応できるという利点があるものの、形成したい画像のカラーポジフィルムが必要であり、その都度これを準備するのは全く実際的でなく、近年のオフィスワークにおけるカラー画像出力に用いるには全く適切ではない。
さらにこのようにして形成した画像、は照明光によって徐々に消色して画像が失われてしまう。
【0004】
また、フォトクロミック化合物を画像表示媒体に用いた場合において、形成後の画像を可視光下で長時間保持させることは、超えなければならない問題の一つである。
これまでにフォトクロミック化合物の発色状態の保存は以前から検討されている。
用途は光記録材料であるが、特許文献3及び特許文献4はスピロピラン化合物の発色状態(フォトメロシアニン)を会合させ、保存安定性を高めている。
しかし、スピロピラン化合物は一般的に発消色の繰り返し耐久性や消色状態及び発色状態の保存安定性などの各種耐久性において、充分な強度を確保することができない傾向がある。
【0005】
【特許文献1】特開平5−271649号公報
【特許文献2】特開平7−199401号公報
【特許文献3】特開昭62−147455号公報
【特許文献4】特開昭62−146979号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、上記従来技術の状況及び問題を鑑みてなされたものであり、光により画像の形成が行なえ、光または熱処理により画像の消去が可能であり、かつ画像の形成と消去の繰り返し耐久性に優れ、さらに、画像保持性に優れた書き換え型の多色画像表示媒体と多色画像方法を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
即ち、上記課題は本発明の下記(1)〜(13)によって解決される。
(1)「下記一般式(1)で表わされるフォトクロミック化合物および長鎖アルキル化合物を含むフォトクロミック組成物。
【0008】
【化1】

(ただし、R、R、は独立して炭素数18以上の長鎖炭化水素基である。Zは存在しないか、あるいは−CHOCO−、−NHCO−、−O−、−OCO−の中から選択される1つである。XはO、S、C(CHのいずれかである。R〜Rは独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子求引基であり、R〜R12は独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子供与基である。Rは水素であるかまたは置換基である。)」、
(2)「前記第(1)項に記載のフォトクロミック組成物による表示層が支持基体上に形成されていることを特徴とする画像表示媒体」、
(3)「会合状態における色相が異なる2種以上のフォトクロミック化合物を表示層中に含むことを特徴とする前記第(2)項に記載の画像表示媒体」、
(4)「会合状態においてイエローの色相を示す第1のフォトクロミック化合物と、マゼンタの色相を示す第2のフォトクロミック化合物と、シアンの色相を示す第3のフォトクロミック化合物とを表示層中に含むことを特徴とする前記第(2)項に記載の画像表示媒体」、
(5)「前記表示層が、前記第1のフォトクロミック化合物のみを含む表示層と、前記第2のフォトクロミック化合物のみを含む表示層と、前記第3のフォトクロミック化合物のみを含む表示層が積層された構造であることを特徴とする前記第(4)項に記載の画像表示媒体」、
(6)「前記第(2)項乃至第(5)項のいずれかに記載の画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置」、
(7)「前記第(2)項乃至第(5)項のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面に部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に昇温する加熱手段と、を備えることを特徴とする画像形成装置」、
(8)「前記第(2)項乃至第(5)項のいずれかに記載の画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置」、
(9)「前記第(2)項乃至第(5)項のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置」、
(10)「前記第(2)項乃至第(5)項のいずれかに記載の画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置」、
(11)「前記第(2)項乃至第(5)項のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に紫外光を照射する紫外光照射手段と、発色安定化に発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、消色に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置」、
(12)「前記第(2)項乃至第(5)項のいずれかに記載の画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2加熱手段とを備えることを特徴とする画像形成装置」、
(13)「前記第(2)項乃至第(5)項のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置」。
【発明の効果】
【0009】
本発明によれば、保存安定性や書き換えに対する繰り返し耐久性に優れ、光に対する十分な安定性の付与が可能となる画像形成材料、画像表示媒体が得られ、さらにフルカラー表示が可能となる。
さらに、本発明によれば、保存安定性や書き換えに対する繰り返し耐久性に優れ、色相が異なる複数の色の表示が可能となり、且つ形成画像の発色保持性の向上が図れる。
さらに、本発明によれば、上記の効果に加え、各表示層間での材料の混合脂染みのない適正な積層構造が得られ、各表示層について適切な色表示が可能となる。
さらに、本発明によれば、シート型を含むメディアに対して、保存安定性や書き換えに対する繰り返し耐久性に優れ、光に対する十分な安定性の付与が可能となるモノクロ画像、または多色画像の形成および消去が可能な装置が得られる。
さらに、本発明によれば、光ディスク型メディアに対して、保存安定性や書き換えに対する繰り返し耐久性に優れ、光に対する十分な安定性の付与が可能となるモノクロ画像、または多色画像の形成および消去が可能な装置が得られる。
【発明を実施するための最良の形態】
【0010】
本発明の実施の形態について、図面を参照しながら詳細に説明する。
なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。
まず、本発明が関わるところの、フォトクロミック化合物を含む表示層を基体上に形成した画像表示媒体、及びそれに対して光照射によりカラー画像を形成する方法の基本的なメカニズムについて説明する。
【0011】
図1は、本発明に用いられる画像表示媒体(1)の構成を示す模式図である。
この画像表示媒体(1)は、支持基体(10)上に、発色状態における極大吸収波長が異なる、つまり発色状態において認識される色が異なる、2種類以上のフォトクロミック化合物を含む表示層が形成される。
図1に示したものは、極大吸収波長が異なる3種類のフォトクロミック化合物を含む表示層(11)、(12)、(13)が積層されて形成される。
第1のフォトクロミック化合物を含む表示層(11)は、図2の(A)で示す極大吸収波長の特性を有し、第2のフォトクロミック化合物を含む表示層(12)は、図2の(B)で示す極大吸収波長の特性を有し、第3のフォトクロミック化合物を含む表示層(13)は、図2の(C)で示す極大吸収波長の特性を有するものでそれぞれ構成されている。
【0012】
これに、紫外光照射によって表示層に含有される全種類のフォトクロミック化合物を発色させた後、発色した各々のフォトクロミック化合物の可視域吸収帯に対応した波長域(極大吸収波長付近の波長域)の光をそれぞれ所定の領域に照射して対応する特定のフォトクロミック化合物を選択的に消色することにより、所望のカラー画像が得られる。
図1に示す例においては、波長Aの光に対して、第1の表示層(11)が消色し、波長Bの光に対して、第2の表示層(12)が消色し、波長Cの光に対して第3の表示層(13)が消色する。
【0013】
もう少し詳しく説明すれば、発色状態における極大吸収波長が異なるということは、つまり認識される色が異なるということであり、この極大吸収波長は、表示に用いたい色に対応して設定されればよく、また当該フォトクロミック化合物の種類も、表示に用いたい色の数に対応して設定されればよい。
発色状態における色相がそれぞれイエロー、マゼンタ、シアンとなるフォトクロミック化合物を用いることにより、カラー表示の3原色が構成され、例えば可視光照射工程で各フォトクロミック化合物の消色の程度を調整することで、各フォトクロミック化合物により得られる色の濃度を制御することが可能となり、前述の画像表示方法により色再現範囲が広い多色表示が可能となる。
【0014】
以上は、発色状態における極大吸収波長が異なる、2種類以上のフォトクロミック化合物を含む表示層からなる画像表示媒体に対して、画像を形成する場合について述べた。
1種類のフォトクロミック化合物のみを含む表示層からなる画像表示媒体を対象とする場合は、発色の色相は1つでその濃度が異なる、いわゆるモノクロ画像が形成されることになるが、その表示層に含まれるフォトクロミック化合物の発色の程度を制御して画像を形成するという基本的な方法については、上記カラー画像の形成の場合と同様である。
また、表示層に含まれるフォトクロミック化合物が1種類の場合でも、発色状態における極大吸収波長が異なる2種類以上の場合でも、全てのフォトクロミック化合物が消色している状態に対して、所定の領域に紫外光を照射して発色させることによってモノクロの画像を形成することができる。
【0015】
本発明は、以上に述べたフォトクロミック化合物を含む表示層を基体上に形成した画像表示媒体、及びそれに対して光照射により画像を形成する方法をもとに、光照射によりカラー画像が形成でき、かつ画像の書き換えが可能であり、さらに形成した画像が光に対して充分な安定性を有するような実用性に優れる画像表示媒体及び画像形成方法について検討した結果、得られたものである。
【0016】
以下、本発明をさらに詳細に説明する。
本発明の特徴の一つは、下記一般式(1)で表わされるフォトクロミック化合物及び長鎖アルキル化合物を含むフォトクロミック組成物を構成することである。
【0017】
【化2】

(ただし、R、R、は独立して炭素数18以上の長鎖炭化水素基である。Zは存在しないか、あるいは−CHOCO−、−NHCO−、−O−、−OCO−の中から選択される1つである。XはO,S,C(CHのいずれかである。R〜Rは独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子求引基であり、R〜R12は独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子供与基である。Rは水素であるかまたは置換基である。)
【0018】
[スピロオキサジン系フォトクロミック化合物]
一般式(1)で表わされるスピロオキサジン系のフォトクロミック化合物は、紫外光照射によりスピロ構造から平面構造に変化して発色し、加熱によって安定な会合状態を形成して、可視光を照射しても消色が起こらなくなる。
従来よく報告されているフォトクロミック化合物に比べて、ここで示した一般式(1)のフォトクロミック化合物は、二本の長鎖構造と電子求引基及び電子供与基を有している。
〜R12のいずれか一つに電子供与基、R〜Rのいずれか一つに電子求引基を導入することにより、発色状態のスピロオキサジンがイオン的な構造を取りやすくなり、そのイオンの相互作用により発色分子同士が会合状態を形成しやすくなる。
【0019】
〜Rの電子求引基としてはハロゲン原子、アルデヒド基、エステル基、カルボン酸基、アシル基、ケトン基、スルホン酸基、シアノ基、ニトロ基などがある。
〜R12の電子供与基としてはアルキル基、シクロアルキル基、アリール基、アルコキシ基、アミド基、ヒドロキシル基、アミノ基、複素環、などがある。
【0020】
一般式(1)において、Zは存在しないか、あるいは−CHOCO−、−NHCO−、−O−、−OCO−、中から選択される1つであり、Zが存在しない場合はRが直接フォトクロミック化合物に結合している。
【0021】
一般式(1)のR、Rの長鎖構造の長さについては、長鎖構造の二本のいずれかが18よりも短い場合には長期間における会合状態の保持ができない。よって二本の長鎖の炭素数は18以上であることが好ましい。
一方、長さの上限については特別な制限はないが、長すぎると溶媒に対する溶解性が損なわれる傾向があるため、概ね炭素数100以下であることが好ましい。
【0022】
本発明のもう一つの特徴は、上記画像表示媒体の表示層が、会合状態における色相が異なる2種以上のフォトクロミック化合物を含むように構成することである。
【0023】
さらに、本発明のもう一つの特徴は、会合状態における極大吸収波長が異なる、2種以上の一般式(1)で表わしたフォトクロミック化合物及び長鎖アルキル化合物を含む表示層を支持基板上に形成して画像表示媒体を構成したことである。
【0024】
このように会合状態における極大吸収波長が異なる2種以上の一般式(1)で表わされるフォトクロミック化合物を用いることによって、色相が異なる複数の色の表示が可能となる。
【0025】
さらに、本発明のもう一つの特徴は、表示層が、会合状態における色相がイエローを示すフォトクロミック化合物と、会合状態における色相がマゼンタを示すフォトクロミック化合物と、会合状態における色相がシアンを示すフォトクロミック化合物をすべて含有するものであることである。
これによりカラー表示に必要な3原色が構成され、それぞれのフォトクロミック化合物発消色状態を制御して組み合わせることにより、フルカラー画像の形成が可能となる。
上記したように、一般式(1)で表わされるフォトクロミック化合物は紫外光照射によりメロシアニン構造に変化して発色し、加熱により安定な会合状態を形成して、可視光を照射しても消がほとんど起こらなくなるが、会合状態形成の前後で吸収特性が変化するために色相が若干変化する。これを考慮して会合状態が形成された状態での色相に着目してフォトクロミック化合物を設定する必要がある。
【0026】
前記各フォトクロミック化合物の会合状態において、イエロー、マゼンタ、シアンの3原色が構成されるため、多色表示が可能となる。
会合状態における色相がイエローを示す一般式(1)で表わされるフォトクロミック化合物としては、例えば、8’−ブロモ−5−メトキシ−1−オクタデシル−5’−ドコサネイトスピロ[2H−ベンゾ[d]オキサゾール−2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]または、8’−ブロモ−1,3−ジヒドロ−3,3−ジメチル−5−ジメチルアミノ−1−オクタデシル−5’−ドコサノイルオキシメチルスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]が挙げられる。
【0027】
会合状態における色相がマゼンタを示す一般式(1)で表わされるフォトクロミック化合物としては、例えば、8’−ブロモ−1,3−ジヒドロ−3,3−ジメチル−5−メトキシ−1−オクタデシル−5’−ドコサノイルオキシメチルスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]または、8’−ブロモ−1,3−ジヒドロ−3,3,5−トリメチル−1−オクタデシル−5’−ドコサシルオキシスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]が挙げられる。
【0028】
会合状態における色相がシアンを示す一般式(1)で表わされるフォトクロミック化合物としては、例えば8’−シアノ−1,3−ジヒドロ−3,3−ジメチル−5−メトキシ−1−オクタデシル−5’−ドコサノイルオキシメチルスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]または、1,3−ジヒドロ−3,3−ジメチル−8’−ニトロ−1−オクタデシル−5−フェニル−5’−ドコサノイルオキシメチルスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]または、5−メトキシ−8’−ニトロ−1−オクタデシル−5’−ドコサンアミドスピロ[2H−ベンゾ[d]チアゾール−2,3’−[3H]ナフト[2,1−b][1,4]オキサジン]が挙げられる。
【0029】
[長鎖アルキル化合物]
長鎖アルキル化合物はポリマー媒体中でフォトクロミック化合物の会合形成の効率を向上させる作用が実験結果として確認されている。
長鎖アルキルの構造としては、分子間の凝集力をコントロールするため、炭素数は12以上が望ましい。例えばn−ヘキサデカン、n−ペンタデカン、n−ヘプタデカン、n−オクタデカン、n−ノナデカン、n−エイコサン、n−ドコサンなどが挙げられる。
また、他の長鎖アルキル化合物の候補としては、エステル結合を有している長鎖アルキル化合物の使用は可能です。ステアリン酸メチルでも、良好な会合状態が形成できることが確認されている。
【0030】
[その余の材料]
表示層を構成する材料としてはフォトクロミック化合物、長鎖アルキル化合物の他に、バインダー材料があるが、フォトクロミック化合物のフォトクロミズム機能に悪影響を与えることなく、またフォトクロミック化合物及び長鎖アルキル化合物と相溶性がよく、成膜可能であり、硬化後の透明性に優れる樹脂材料を用いることが好ましい。
このような材料としては、例えば、ポリスチレン、ポリエステル、ポリメタクリル酸メチル、塩化ビニル−塩化ビニリデン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルフェノールなどが挙げられる。
【0031】
本発明におけるフォトクロミック組成物を、一般式(1)で表わしたフォトクロミック化合物/長鎖アルキル化合物/ポリマーで構成する場合のそれぞれの割合については、ポリマー100重量部に対して、フォトクロミック化合物は0.1〜50重量部、長鎖アルキル化合物は10〜200重量部となるようにするが望ましい。
【0032】
本発明のもう一つの特徴は、上記フォトクロミック組成物を表示層として支持基体上に形成して画像表示媒体を構成することである。
支持基体の材料としては、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリカーボネート、フェノキシ樹脂、芳香族ポリエステル、フェノール樹脂、エポキシ樹脂等、あるいはこれらに白色顔料を含ませて成形された不透明材料、及び紙などの材料を用いることができる。
支持基体の形状としては、シート状、カード状、フィルム状のものに限らず、例えばブロック状のものでもよく、形状は限定されない。
【0033】
表示層を形成する方法としては、塗布法のほかに蒸着法も挙げられるが、塗布法が簡便であり、当該フォトクロミック化合物、当該長鎖構造化合物及びポリマー材料を共に溶媒に溶かして、印刷法、スピンコート法などの方法により塗布し、乾燥して成膜すればよい。
表示層は必ずしも支持基体の全体に形成する必要はなく、一部に形成してもよい。
表示層の好ましい厚みについては、フォトクロミック組成物中に含まれるフォトクロミック化合物の濃度等によっても異なるが、およそ0.1〜10μm程度が好ましい。
【0034】
本発明のもう一つの特徴は、前記表示層において、会合状態における色相がイエローを示す一般式(1)で表わされるフォトクロミック化合物及び長鎖アルキル化合物を含む第一の表示層と、会合状態における色相がマゼンタを示す一般式(1)で表わされるフォトクロミック化合物及び長鎖アルキル化合物を含む第二の表示層と、会合状態の色相がシアンを示す一般式(1)で表わされるフォトクロミック化合物及び長鎖アルキル化合物を含む第三の表示層が積層された構造であることである。
【0035】
各層間に中間層を設けてもよい。各層を積層する過程で、積層膜の形成方法によっては各層の境界近傍を中心として、各層の構成要素が混合してしまう場合があるため、中間層を設けることによりこのような混合を防ぎ、結果として各層での会合形成変化を適切に維持した状態で表示層を形成することが可能となる。
中間層を形成する材料としては、透明であるか、あるいは着色していてもその程度が小さく、表示層の形成に好適に用いられる塗布法で使用する有機溶媒に対し、ある程度の耐性を有するものが好ましく、シリコーン樹脂やPVA(ポリビニルアルコール)等が挙げられる。形成方法は、表示層と同様であってどのような方法でもよいが、塗布法が簡便である。
【0036】
次に、上記画像表示媒体及びそれを、例えば、シート状の印刷体や光ディスクのレーベル記録面に印刷面を形成したものに対して、画像を形成及び消去する装置に関して説明する。それに際して、まずは、画像を形成及び消去する方法について説明する(モノクロ画像を形成する方法)。
上記画像表示媒体(表示層に含まれるフォトクロミック化合物が1種でも2種類以上でも)に対し、画像データに従い部分的に紫外光を照射する工程と、会合に必要な所定温度に昇温する工程を施すことでモノクロ画像を形成することが可能となる。
また、消去に必要な所定温度に昇温する工程を施すことで画像の消去を行なうことが可能となる。
【0037】
まず、表示層に含まれる全てのフォトクロミック化合物が消色している状態を初期状態として、これに形成したい画像に対応させたデータに基づき部分的に紫外光を照射して発色させることによりモノクロ画像が形成される。
次に、表示層を、例えば40℃程度の温度に昇温させることにより、表示層中に含まれるフォトクロミック化合物が会合状態を形成して、前記モノクロ画像は安定化し、照明などの光に長時間晒しても画像が薄くなったり、消えてしまうことがなくなる。
そして、この画像を消去したい場合は、表示層を、例えば100℃程度の温度に昇温させることにより表示層中に含まれるフォトクロミック化合物の会合状態が解けるとともに消色して画像は消去される。
【0038】
部分的に紫外光を照射する方法としては、ランプ状のUV光源とアレイ型あるいは面型のシャッターを組み合わせる方法、それ自体で照射のON/OFFを制御できるUVアレイ光源を用いる方法、あるいはUVレーザースキャンなどが挙げられる。
【0039】
会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロゲンヒーター、セラミックヒーター、石英管ヒーターなどをはじめとする従来のヒーター類を用いることができ、前記ヒーター類の加熱温度や、画像表示媒体との近接距離と時間、あるいは当接圧と時間などの条件により、画像表示媒体の感光層の加熱温度、加熱時間などを調整できる。
したがって、これらは、消去に必要な所定温度に昇温させる手段としても用いることができる。
【0040】
(多色画像を形成する方法)
上記画像表示媒体に対し、紫外光を照射することによって表示層に含有される全てのフォトクロミック化合物を発色させる工程と、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を画像データに基づき照射してフォトクロミック化合物を選択的に消色する工程と、会合に必要な所定温度に昇温する工程を施すことで、表示層に含まれるフォトクロミック化合物が1種類の画像表示媒体に対してはモノクロ画像が形成され、表示層に含まれるフォトクロミック化合物が2種類以上の画像表示媒体に対しては多色画像を形成することができる。
【0041】
まず、表示層全面に紫外光を照射して表示層に含まれる全てのフォトクロミック化合物を発色させる。
次に形成したい画像に対応させて、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を、画像データに基づき部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像が形成される。
次に、表示層を、例えば40℃程度の温度に昇温させることにより、表示層中に含まれるフォトクロミック化合物が会合状態を形成して前記画像は安定化し、照明などの光に長時間晒しても画像が薄くなったり消えてしまうことがなくなる。
そしてこの画像を消去したい場合は、表示層を例えば80℃程度の温度に昇温させることにより、表示層中に含まれるフォトクロミック化合物の会合状態が解けるとともに消色して画像は消去される。
【0042】
表示層全面に紫外光を照射する方法としては、水銀ランプやキセノンランプなどに光学フィルタを組み合わせて所望の波長域の紫外光を取り出して用いてもよいし、LEDやLDなどの特定波長域の光を発する発光素子を用いてもよい。
可視光を部分的に照射する方法としては、白色光光源に光学フィルタを組み合わせた構成のランプ類を用いてもよいし、LEDやLDなどの特定波長域の光を発する発光素子を用いてもよい。
所望の領域にのみ照射する方法としては、例えば微小な領域ごとに照射のON/OFFが制御できる発光面を連続して並べて形成した光源アレイと、画像表示媒体とを相対的に移動させながら光源アレイの各発光面の照射のON/OFFを制御することによっても可能となる。
会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロンヒーター、セラミックヒーター、石英管ヒーターなどをはじめとする従来のヒーター類を用いることができ、前記ヒーター類の加熱温度や、画像表示媒体との近接距離と時間、あるいは当接圧と時間などの条件により、画像表示媒体の感光層の加熱温度、加熱時間などを調整できる。したがってこれらは、消去に必要な所定温度に昇温させる手段としても用いることができる。
【0043】
本発明のもう一つの特徴は、上記画像表示媒体に対し、画像データに対応して部分的に紫外光を照射する紫外光照射手段、及び画像安定化に必要な所定温度に表示層を昇温する加熱手段を備えた装置を構築することである。
【0044】
本発明における画像表示媒体に用いる支持基体はシート状に限らずどんな形状でもよいが、ここではシート状の画像表示媒体を例にとって、モノクロ画像の形成及び消去が可能な装置の構成例及び動作を図3を用いて説明する。
図3は、本発明の画像形成装置の第1の実施形態を示し、シート状の画像表示媒体にモノクロ画像形成を行なう画像形成装置の一例を示す模式図である。
【0045】
本発明にかかるシート状の画像表示媒体(1)が画像形成装置(20)のシート載置台(30)上にセットされる。画像表示媒体(1)は、支持基体(10)上に本発明にかかるフォトクロミック化合物を含む表示層が設けられている。支持基体(10)の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体(1)は白色を呈している。
【0046】
画像表示媒体(1)が挿入口(21)から搬送ローラ(22)によって画像形成装置(20)内に搬送される。紫外光照射手段(24)により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。この紫外光照射手段(24)は、ランプ状のUV光源とアレイ型あるいは面型のシャッターを組み合わせる方法、それ自体で照射のON/OFFを制御できるUVアレイ光源を用いる方法、あるいはUVレーザースキャンなどで構成される。
【0047】
紫外光照射手段(24)により、表示層にモノクロ画像が形成された画像表示媒体(1)は、搬送ローラ(22)により、更に送られ、加熱手段(25)により、会合に必要な所定温度に昇温して画像が安定化される。
会合に必要な所定温度に昇温させる手段としては、ヒートローラー、サーマルヘッド、ハロゲンヒーター、セラミックヒーター、石英管ヒーターなどが用いられる。
【0048】
加熱手段(25)により、画像の安定化処理が終わった画像表示媒体(1)は、搬送ローラ(23)により、搬送され、排出口(29)より排出され、排紙トレイ(27)上に排出される。
例えば、このような構成で装置を作製することで、モノクロ画像の形成が可能となる。
【0049】
次に、上記表示層が形成された光ディスクレーベル記録面に対し、部分的に紫外光を照射する紫外光照射手段、及び画像安定化に必要な所定温度に昇温する加熱手段を備えて、光ディスクレーベル記録面に画像を形成する装置につき説明する。
【0050】
近年、情報記録メデイアとして、CDやDVDのような光ディスクが普及している。
CDとしては、再生専用のCD−ROM、追記可能なCD−R、書き換え可能なCD−RW等があり、DVDとしては、再生専用のDVD−ROM、追記可能なDVD−R、書き換え可能なDVD−RAM、DVD−RW等がある。記録型光ディスクは、例えば、追記可能な、或いは書き換え可能な光ディスクは情報記録層を有している。
この情報記録層の側の面とは逆の反対側のレーベル記録面には、インクジェットプリンタや手書きで文字や画像を記録できるレーベル記録面を有する光ディスクが普及している。
【0051】
インクジェットプリンタや手書きで、文字や画像を一旦レーベル記録面に記録すると、この画像等を消去することができない。
書き換え可能な光ディスクにおいては、内容を書き換えた際に、レーベル記録面も対応して書き換えられることが望まれる。
そこで、レーベル記録面に本発明にかかる画像表示媒体からなる記録層を設ければ、画像形成及び消去が容易に行なえる。
そこで、本発明は、光ディスクレーベル記録面に対し、部分的に紫外光を照射する紫外光照射手段、及び画像安定化に必要な所定温度に昇温する加熱手段を備えて、光ディスクレーベル記録面に画像を形成するとともに、必要に応じて消去も可能にした装置を提供するものである。
【0052】
図4を用いて、光ディスクレーベル記録面に画像を形成する装置の構成例及びその動作の概略を説明する。
図4は、本発明の画像形成装置の第2の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。図4を用いて、光ディスクレーベル記録面に画像を形成する装置の構成例及びその動作の概略を説明する。
例えば、既存の光ディスクドライブ装置のように、光ディスク(100)を固定し、さらに回転の制御が可能な装置をベースに用いる。光ディスク(100)の情報記録面と反対側の面に光ディスクレーベル記録面(100a)が設けられる。この光ディスクレーベル記録面(100a)には、本発明にかかる上記画像記録媒体が設けられている。この場合、光ディスクの基板が支持基体(10)を構成することになる。
そして、この光ディスクレーベル記録面(100a)に対向して加熱手段(110)及び紫外光照射手段(111)を設ける。
【0053】
画像の記録は、まず、光ディスク(100)を図中矢印方向に回転させ、紫外光照射手段(111)により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。次に、加熱手段(110)により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像の形成が可能となる。
【0054】
光ディスクレーベル記録面(100a)への画像の形成は、基本的には、上記したように行なわれるが、実際には、光ディスクの回転速度、ディスクの径方向に対応する紫外光の照射タイミングなどを画像データに応じて制御する必要がある。
【0055】
次に、上記光ディスクドライブ装置に本発明の画像記録装置を設けた装置の構成例につき、図5のブロック図に従い説明する。
光ディスクレーベル記録面(100a)に本発明の画像記録媒体を設けた光ディスク(100)に対して、光ディスクを再セットすることなく、レーベル記録面への画像形成を行なうことができる画像記録装置を設けた光ディスク装置を提供する。
【0056】
図5は、本発明の第2の実施の形態における画像記録装置を設けた光ディスク装置の構成を示すブロック図である。
図5において、(120)はドライブ機構部、(123)はスピンドルモータ、(124)は光ピックアップ、(127)はフィード部、(111)は紫外光照射手段、(125)は、加熱手段、(128)は第1アナログ処理部、(129)はサーボ処理部、(130)は第1モータ駆動部、(131)はコントローラ、(132)はレーザ駆動部、(133)はディジタル信号処理部、(134)はバッファメモリ、(137)は照射手段駆動部、(100)は光ディスクである。
【0057】
上記のように構成された本発明の一実施の形態における光ディスク装置の動作について説明する。
図5において、ドライブ機構部(120)は、光ディスク(100)を回転させるスピンドルモータ(123)と、光ディスク(100)の情報記録面に対して情報の記録又は再生を行なう光ピックアップ(124)と、光ディスクレーベル記録面(100a)に対して紫外線を照射することにより可視画像の形成を行なう紫外光照射手段(111)と、光ピックアップ(124)が搭載されたキャリッジを光ディスク(100)の半径方向に移動させるためのフィード部(127)と、会合に必要な所定温度に昇温して画像を安定化させる加熱手段(125)とによって構成されたものである。
【0058】
第1アナログ信号処理部(128)は、ドライブ機構部(120)の内部に設けられた光ピックアップ(124)の内部の光センサ(図示せず)からの信号出力を基に、フォーカスエラー信号とトラッキングエラー信号とを生成し、サーボ処理部(129)に出力する。
【0059】
サーボ処理部(129)は、光ピックアップ(124)の対物レンズとキャリッジとの相対的な位置関係を示すレンズ位置信号を生成し、第1モータ駆動部(130)に出力する。第1モータ駆動部(130)は、光ピックアップ(124)とスピンドルモータ(123)とフィード部(127)を駆動する。
また、サーボ処理部(129)はON/OFF回路、演算回路、フィルタ回路、増幅回路等によって構成され、光ビームスポットが光ディスク(100)の情報トラックに追従するように光ピックアップ(124)の対物レンズをフォーカス/トラッキング制御し、さらにトラッキングエラー信号の低域成分を用いて、対物レンズが概略中立位置を保持するようにフィード制御を行なう。
【0060】
フィード部(127)は、フィードモータ、ギヤ、スクリューシャフト(図示せず)等から構成され、フィードモータを回転させることによってキャリッジが光ディスク(100)の半径方向に移動するようになっている。
【0061】
ディジタル信号処理部(133)は、第1アナログ信号処理部(128)から送られてきたアナログ信号をディジタル信号に変換し、コントローラ(131)、レーザ駆動部(132)、照射手段駆動部(137)、バッファメモリ(134)の各部に送出する。
【0062】
コントローラ(131)は、このように構成されたサーボ部の全体のコントロールを行なうものであり、第1アナログ信号処理部(128)、サーボ処理部(129)、第1モータ駆動部(130)、ディジタル信号処理部(133)、照射手段駆動部(137)は照射手段駆動部の各部から送られる信号が入力され、これらの信号の演算処理等を行ない、この演算処理の結果(信号)を各部に送出し、各部にて駆動、処理を実行させ、各部の制御を行なうものである。
【0063】
第1モータ駆動部(130)は、スピンドルモータ(123)から得られる逆起電流を利用してスピンドルモータ(123)の回転数に応じた周波数のFGパルス信号をディジタル信号処理部(133)内にあるPLL回路に出力する。
【0064】
PLL回路は、FGパルス信号を逓倍し、可視画像形成のために用いられるPLLクロック信号を生成する。例えば、スピンドルモータ(123)が1回転、すなわち光ディスクが1回転している間にn個のFGパルスを生成するものである場合に、PLL回路はFGパルスを逓倍したPLLクロック信号を生成する。
【0065】
ディジタル信号処理部(133)は、PLLクロック信号毎、つまりある一定角度分だけ光ディスクが回転する毎に1つの座標の階調度を示す画像形成に必要なデータをバッファメモリ(134)から読み出して、照射手段駆動部(137)に点灯制御信号を送る。
【0066】
この実施形態における紫外光照射手段(111)は、光ディスク(100)の半径方向にライン状に複数の照射部を有して構成される。
このライン状の紫外光照射手段(111)としては、ランプ状のUV光源とアレイ型のシャッターを組み合わせたものや、それ自体で照射のON/OFFを制御できるUVアレイ光源が用いられる。シャッターを用いたものでは、シャッターの開閉を画像データに対応して、照射手段駆動部(137)が制御する。また、UVアレイ光源を用いた場合には、照射手段駆動部(137)がON/OFFを制御する。
【0067】
ところで、図6のレーベル記録面の記録トラックの概念図に示すように、光ディスク(100)は外周方向に従って記録するドット数が多くなる。ライン状の紫外光照射手段(126)を用いた場合、内周側と外周側では記録するドット数が異なる。このため、内周側の紫外光照射手段(126)のドットに対応する光発光部は、外周側の発光部に比べて、点灯されるドットが少なくなる。
図6の例によれば、まずL3、L2ラインに対応するドットを点灯させる。この時L1ラインは、点灯されていない。続いて、L3ラインの1ドット分光ディスク(100)が回転されると、L3ラインに対応するドットを点灯させる。この時L1、L2ラインは、点灯されていない。続いて、3ラインの1ドット分光ディスク(100)が回転されると、L1、L2、L3ラインに対応するドットを点灯させる。更に、L3ラインの1ドット分光ディスク(100)が回転されると、L2、L3ラインに対応するドットを点灯させる。この時L1ラインは、点灯されていない。
このように、この例では、L3ラインの4ドットの点灯する間に、L2ラインは3ドット、L1ラインは1ドットと点灯制御され、内周側と外周側において記録するドット数を異ならせて記録するように、制御される。
【0068】
次に、光ディスク(100)のレーベル記録面への画像記録動作につき説明する。
光ディスク装置は、光ディスク(100)が挿入されると、スピンドルモータ(123)を回転させ、起動処理を開始し、フォーカスサーボ、トラッキングサーボをかけ、ディスク判別を行なう。
次に、使用者の指示により、光ディスクレーベル記録面(100a)への可視画像記録動作を行なう。光ディスクレーベル記録面(100a)への画像記録動作では、最初にディスク回転速度の設定が行なわれる。
【0069】
光ディスク(100)の回転速度の設定は,使用者の各種入力情報がホスト装置からディジタル信号処理部(133)を介してコントローラ(131)に伝えられ、コントローラ(131)はその情報を基に、サーボ処理部(129)を介して第1モータ駆動部(130)へ指示を出し、スピンドルモータ(123)を動作させる。
また、コントローラ(131)は、照射手段駆動部(137)を介して、紫外光照射手段(111)へ情報を伝え、紫外光照射手段(111)の点灯制御動作を開始する。
【0070】
次に、コントローラ(131)は、スピンドルモータ(123)の動作状況から各記録位置線速度検出を行なう。記録位置線速度検出は、紫外光照射手段(126)の各照射部の半径位置とスピンドルモータ(123)の回転速度から計算される。
【0071】
続いて、光ディスク(100)のレーベル記録面(100a)への画像記録動作が開始される。光ディスク(100)のレーベル記録面(100a)への画像記録動作は、使用者から既に受け取っている情報を基に、まずコントローラ(131)がディジタル信号処理部(133)に指示を出し、それが照射手段駆動部(137)を介して、紫外光照射手段(111)の順に伝わり、紫外光照射手段(111)の所望の照射部が点灯することにより行なわれる。
【0072】
光ディスク1が1回転することにより、光ディスク(100)のレーベル記録面(100a)に画像が記録される。ここで、紫外光照射手段(111)の記録パワーの出力に限界がある場合には、同一箇所に複数回の記録動作を行ない、重ねて記録を行なうために、光ディスク(100)を数回転させ、同じ箇所に重ね記録するように構成すればよい。
【0073】
そして、光ディスク(100)のレーベル記録面(100a)に画像が記録した後、画像を安定化させる動作に入る。
画像の安定化は、加熱手段(110)を会合に必要な所定温度に昇温し、スピンドルモータ(123)を駆動させ、光ディスク(100)を回転させ、加熱手段(110)の下を通過させる。1度の通過により会合に必要な所定温度まで昇温される場合には、光ディスク1の回転は1度でよいが、加熱手段(110)のパワーによれば、複数回、光ディスク(100)を回転させ安定化させればよい。
【0074】
次に、本発明の第3の実施形態につき説明する。
第3の実施形態は、図7に示すように、上記画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段(24)と、画像安定化に必要な所定温度に表示層を昇温する第二加熱手段(25b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第一加熱手段(25a)を備えたものである。
【0075】
図7は、本発明の第3の実施形態を示し、シート状の画像表示媒体にモノクロ画像形成及び消去を行なう画像形成装置の一例を示す模式図である。
本発明にかかるシート状の画像表示媒体(1)が画像形成装置(20)のシート載置台(30)上にセットされる。画像表示媒体(1)は、支持基体(10)上に本発明にかかるフォトクロミック化合物を含む表示層が設けられている。支持基体(10)の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体(1)は白色を呈している。
【0076】
画像表示媒体(1)が挿入口(21)から搬送ローラ(22)によって画像形成装置(20)内に搬送される。必要に応じて第一加熱手段(25a)により表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段(24)により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。
【0077】
紫外光照射手段(24)により、表示層にモノクロ画像が形成された画像表示媒体(1)は、搬送ローラ(22)により、更に送られ、第二加熱手段(25b)により、会合に必要な所定温度に昇温して画像が安定化される。
第二加熱手段(25b)により、画像の安定化処理が終わった画像表示媒体(1)は、搬送ローラ(23)により搬送され、排出口(29)より排出され、排紙トレイ(27)上に排出される。
例えば、このような構成で装置を作製することで、モノクロ画像の形成及び消去が可能となる。
【0078】
上記構成例では消去用の第一加熱手段(25a)と画像安定化用の第二加熱手段(25b)をそれぞれ別に設けたが、一つの加熱手段のみを用いて消去工程及び安定化工程のそれぞれに必要な温度に加熱して使い分けてもよい。その場合、画像表示媒体(1)は搬送されながら加熱手段による消去工程及び紫外光照射手段(24)による画像形成工程を経た後に、再び加熱手段に搬送されて安定化工程が行なわれるように装置を構成することが必要となるが、様々な構成が考えられる。
【0079】
次に、本発明の第4の実施形態につき説明する。
この実施形態は、図8に示すように、上記表示層が形成された光ディスクレーベル記録面(100a)に対し、部分的に紫外光を照射する紫外光照射手段(111)と、画像安定化に必要な所定温度に表示層を昇温する第二加熱手段(125b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第一加熱手段(125a)を備えた装置を構築することである。
【0080】
装置の構成例としては、図4及び図5に示したものと同様に構成される。
図4及び図5の構成と異なるところは、画像安定化に必要な所定温度に表示層を昇温する第二加熱手段(125b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第一加熱手段(125a)を有することである。
【0081】
尚、図4及び図5に示したものと同じ構成で、同一の加熱手段を消去工程及び安定化工程に必要なそれぞれの温度に加熱することで使い分けるようにしてもよい。この場合、例えばまず必要に応じて表示層を画像の消去に必要な所定温度に昇温してディスクの回転を制御して画像を消去する。次に、紫外光照射手段により、形成したい画像に対応させて部分的に紫外光を照射して発色させることによりモノクロ画像を形成する。次に加熱手段により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像の形成及び消去が可能となる。
【0082】
次に、本発明の第5の実施形態につき説明する。
この実施形態は、図9に示すように、上記画像表示媒体(1)に対し、表示層に紫外光を照射する紫外光照射手段(24)と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段(26)、及び画像安定化に必要な所定温度に表示層を昇温する加熱手段(25)を備えて構成するものである。
【0083】
図9を用いて、この第5の実施形態の構成例及び動作を説明する。
本発明にかかるシート状の画像表示媒体(1)が画像形成装置(20)のシート載置台(30)上にセットされる。画像表示媒体(1)は、支持基体(10)上に本発明にかかるフォトクロミック化合物を含む表示層が設けられている。支持基体(10)の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体(1)は白色を呈している。
【0084】
画像表示媒体(1)が挿入口(21)から搬送ローラ(22)によって画像形成装置(20)内に搬送される。必要に応じて加熱手段(25)により表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段(24)により、表示層中に含まれる全てのフォトクロミック化合物を発色させる。
そして、搬送ローラ(22)により、発色された画像表示媒体(1)は、可視光照射手段(26)へ送られる。可視光照射手段(26)により、形成したい画像に対応させて、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射して、図1に示すように、フォトクロミック化合物を選択的に消色させる。選択的に消色させることにより、所望の画像が形成される。
【0085】
次に、加熱手段(25)により、表示層を会合に必要な所定温度に昇温して画像を安定化させ、排出口(29)から装置外に排出する。例えば、このような構成で装置を作製することでモノクロ画像または多色画像の形成が可能となる。
次に、本発明の第6の実施形態を説明する。この実施形態は図10に示すように、上記表示層が形成された光ディスクレーベル記録面(100a)に対し、表示層に紫外光を照射する紫外光照射手段(111)と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段(126)、及び画像安定化に必要な所定温度に表示層を昇温する加熱手段(110)を備えて構成される。
【0086】
図10を用いて、この第6の実施形態の装置の構成例及び動作を説明する。
例えば、既存の光ディスクドライブ装置のように、光ディスク(100)を固定し、さらに回転の制御が可能な装置をベースに用いる。光ディスク(100)の情報記録面と反対側の面に光ディスクレーベル記録面(100a)が設けられる。この光ディスクレーベル記録面(100a)には、本発明にかかる上記画像記録媒体が設けられている。この画像記録媒体(1)としては、カラー表示が可能に構成する。図1に示すように、画像表示媒体(1)は、第一、第二、第三の感光層(11)、(12)、(13)を有するものと同様に構成されている。
なお、第1の感光層(11)は、極大吸収波長が400nm以上500nm未満の範囲にある上記フルギド化合物を含む層、第2の感光層(12)は、極大吸収波長が500nm以上600nm未満の範囲にある上記フルギド化合物を含む層、第3の感光層(13)は、極大吸収波長が400nm以上500nm未満の範囲にある上記フルギド化合物を含む層で構成されている。このようにして形成した感光層は無色であり、支持基体(10)の色が白である。この画像表示媒体(1)は観察者には白と認識される。
【0087】
そして、この光ディスクレーベル記録面(100a)に対向して加熱手段(110)、紫外光照射手段(111)、可視光照射手段(126)を設ける。可視光照射手段(126)は、カラー表示を行なうために、それぞれの極大吸収波長に対応した3種類の可視光を照射することができるように構成されている。例えば、3種類の発光ダイオードアレイで構成される。
例えば、第1の発光ダイオードアレイとしては、中心波長460nm、半値幅10nmの可視光照射し、第2の発光ダイオードアレイとしては、中心波長560nm、半値幅10nmの可視光を照射し、発光ダイオードアレイとしては、中心波長660nm、半値幅10nmの可視光を照射できるように構成すればよい。上記3種類の発光ダイオードアレイを対応する画像データに基づき照射することにより、照射された可視光に吸収波長を有する表示層が選択的に消色され、カラー画像が表示される。
【0088】
まず、光ディスク(100)を図中矢印方向に回転させ、紫外光照射手段(111)により、形成したい画像に対応させて部分的に紫外光を照射して発色させると、3つの表示層が全て発色し、黒色となる。
次に、可視光照射手段(126)により、形成したい画像に対応させて発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。
その後、加熱手段(110)により、会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像または多色画像の形成が可能となる。
【0089】
次に、上記装置を光ディスクドライブ装置に適用した第6の実施形態につき、図11のブロック図に従い説明する。
基本構成は図5に示したものと同じであるが、図5に示したものは紫外光照射手段(111)の照射により、画像記録を行なっていたが、この図11に示すものは、可視光照射手段(126)にて、画像データに基づく画像記録を行なっている。
尚、図5と同じ構成についは同じ符号を付し、説明の重複を避けるために、ここでは、その説明を省略する。
【0090】
図11は、本発明の第6実施の形態における画像記録装置を設けた光ディスク装置の構成を示すブロック図である。
図11において、(120)はドライブ機構部、(123)はスピンドルモータ、(124)は光ピックアップ、(127)はフィード部、(111a)は紫外光照射手段、(126)は、可視光照射手段、(125)は、加熱手段、(128)は第1アナログ処理部、(129)はサーボ処理部、(130)は第1モータ駆動部、(131)はコントローラ、(132)はレーザ駆動部、(133)はディジタル信号処理部、(134)はバッファメモリ、(137a)は可視光駆動部、(100)は光ディスクである。
【0091】
図5にした実施形態は、紫外光照射手段にて、画像データの記録を行なっている。このため、画素ドットに対応してオンオフ可能なように構成されている。これに対し、図11に示す実施形態においては、紫外光照射手段(111a)は、画素ドットに関係なく、画像表示媒体(1)全体を発色させればよい。このため、水銀ランプ等で光ディスク(100)の半径方向をライン状に照射できるようなものであればよい。
そして、この実施形態においては、画像データに基づく光照射は、可視光照射手段(126)にて行なう。このため、上記したように、可視光照射手段(126)は、カラー表示を行なうために、それぞれの極大吸収波長に対応した3種類の可視光を照射することができるように構成されている。
この実施形態においては、第1の発光ダイオードアレイとして、中心波長460nm、半値幅10nmの可視光照射が可能なもの、第2の発光ダイオードアレイとして、中心波長560nm、半値幅10nmの可視光を照射が可能なもの、発光ダイオードアレイとして、中心波長660nm、半値幅10nmの可視光を照射が可能なものを用意し、この3つの発光ダイオードアレイで可視光照射手段(126)を構成している。この可視光照射手段(126)は、可視光駆動部(137a)から与えられ駆動信号により、画像データに対応した発光ダイオードアレイの各ドットの点灯制御が行なわれる。
【0092】
次に、光ディスク(100)のレーベル記録面への画像記録動作につき説明する。
光ディスク装置は、光ディスク(100)が挿入されると、スピンドルモータ(123)を回転させ、起動処理を開始し、フォーカスサーボ、トラッキングサーボをかけ、ディスク判別を行なう。
次に、使用者の指示により、光ディスクレーベル記録面(100a)への可視画像記録動作を行なう。光ディスクレーベル記録面(100a)への画像記録動作では、最初にディスク回転速度の設定が行なわれる。
【0093】
光ディスク(100)の回転速度の設定は,使用者の各種入力情報がホスト装置からディジタル信号処理部(133)を介してコントローラ(131)に伝えられ、コントローラ(131)はその情報を基に、サーボ処理部(129)を介して第1モータ駆動部(130)へ指示を出し、スピンドルモータ(123)を動作させる。
また、コントローラ(131)は、照射手段駆動部(137)を介して、紫外光照射手段(111a)、可視光照射手段(126)へ情報を伝え、紫外光照射手段(111a)、可視光照射手段(126)の点灯制御動作を開始する。
【0094】
次に、コントローラ(131)は、スピンドルモータ(123)の動作状況から各記録位置線速度検出を行なう。記録位置線速度検出は、可視光照射手段(126)の各照射部の半径位置とスピンドルモータ(123)の回転速度から計算される。
【0095】
続いて、光ディスク(100)のレーベル記録面(100a)への画像記録動作が開始される。光ディスク(100)のレーベル記録面(100a)への画像記録動作は、まず、紫外光照射手段(111a)により、光ディスクレーベル記録面(100a)に紫外線を照射する。
紫外線照射により、3つの表示層が全て発色し、黒色となる。紫外光照射手段(111a)は、光ディスク(100)が、紫外光照射手段(111a)において、1回転したことを検出すると、その照射が停止する。このように制御することで、可視光照射手段(126)で消色されたドットが再発色することを防止している。
【0096】
そして、使用者から既に受け取っている情報を基に、まずコントローラ(131)がディジタル信号処理部(133)に指示を出し、それが可視光駆動部(137a)を介して、可視光照射手段(126)の順に伝わり、可視光照射手段(126)の所望の発光ダイオードが点灯することにより、照射された可視光に吸収波長を有する表示層が選択的に消色され、カラー画像又はモノクロ画像が表示される。
【0097】
光ディスク(1)が1回転することにより、光ディスク(100)のレーベル記録面(100a)に画像が記録される。ここで、可視光照射手段(126)の記録パワーの出力に限界がある場合には、同一箇所に複数回の記録動作を行なう重ね記録を行なうために、光ディスク(100)を数回転させ、同じ箇所に重ね記録するように構成すればよい。
【0098】
そして、光ディスク(100)のレーベル記録面(100a)に画像が記録した後、画像を安定化させる動作に入る。
画像の安定化は、加熱手段(110)を会合に必要な所定温度に昇温し、スピンドルモータ(123)を駆動させ、光ディスク(100)を回転させ、加熱手段(110)の下を通過させる。
1度の通過により会合に必要な所定温度まで昇温される場合には、光ディスク(1)の回転は1度でよいが、加熱手段(110)のパワーによれば、複数回、光ディスク(100)を回転させ安定化させればよい。
加熱手段(110)はセラミックヒータを用い、画像表示媒体の表示層をそれぞれ100℃及び50℃に昇温できるように、画像表示媒体の搬送速度によってその温度が制御されるように構成している。
【0099】
次に、本発明の第7の実施形態は、図12に示すように、上記画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段(24)と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段(26)、画像安定化に必要な所定温度に表示層を昇温する第一加熱手段(25b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第二加熱手段(25a)を備えたものである。
【0100】
図12は、本発明の第7の実施形態を示し、シート状の画像表示媒体に多色画像形成又はモノクロ画像形成及び消去を行なう画像形成装置の一例を示す模式図である。
本発明にかかるシート状の画像表示媒体(1)が画像形成装置(20)のシート載置台(30)上にセットされる。画像表示媒体(1)は、支持基体(10)上に本発明にかかるフォトクロミック化合物を含む3つの表示層が積層して設けられている。支持基体(10)の色は白色であり、フォトクロミック化合物が発色していない状態においては、画像表示媒体(1)は白色を呈している。
【0101】
画像表示媒体(1)が挿入口(21)から搬送ローラ(22)によって画像形成装置(20)内に搬送される。必要に応じて第一加熱手段(25a)により表示層を画像の消去に必要な所定温度に昇温して画像を消去する。そして、紫外光照射手段(24)により、紫外光を照射して、表示層に含まれる全てのフォトクロミック化合物を発色させる。
【0102】
可視光照射手段(26)により、発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。
表示層に画像が形成された画像表示媒体(1)は、搬送ローラ(22)により、更に送られ、第二加熱手段(25b)により、会合に必要な所定温度に昇温して画像が安定化される。
【0103】
第二加熱手段(25b)により、画像の安定化処理が終わった画像表示媒体(1)は、搬送ローラ(23)により、搬送され、排出口(29)より排出され、排紙トレイ(27)上に排出される。
例えば、このような構成で装置を作製することで、カラー画像又はモノクロ画像の形成及び消去が可能となる。
【0104】
上記構成例では消去用の第一加熱手段(25a)と画像安定化用の第二加熱手段(25b)をそれぞれ別に設けたが、一つの加熱手段のみを用いて消去工程及び安定化工程のそれぞれに必要な温度に加熱して使い分けてもよい。その場合、画像表示媒体(1)は搬送されながら加熱手段による消去工程及び紫外光照射手段(24)による画像形成工程を経た後に、再び加熱手段に搬送されて安定化工程が行なわれるように装置を構成することが必要となるが、様々な構成が考えられる。
【0105】
次に、本発明の第8の実施形態につき説明する。
この実施形態は、図13に示すように、上記表示層が形成された光ディスクレーベル記録面(100a)に対し、表示層に紫外光を照射する紫外光照射手段(111)と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段(126)と、画像安定化に必要な所定温度に表示層を昇温する第二加熱手段(125b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第一加熱手段(125a)を備えた装置を構築することである。
【0106】
装置の構成例としては、図10及び図11に示したものと同様に構成される。
図10及び図11の構成と異なるところは、画像安定化に必要な所定温度に表示層を昇温する第二加熱手段(125b)、及び形成された画像の消去に必要な所定温度に表示層を昇温する第一加熱手段(125a)を有することである。
【0107】
装置の構成例としては図12に示したのと同様の構成で、同一の加熱手段を消去工程及び安定化工程に必要なそれぞれの温度に加熱することで使い分けるようにしてもよい。この場合、例えばまず必要に応じて表示層を画像の消去に必要な所定温度に昇温して光ディスク(100)の回転を制御して画像を消去する。
次に、紫外光照射手段(111)により、表示層中に含まれる全てのフォトクロミック化合物を発色させ、次に可視光照射手段(126)により、形成したい画像に対応させて発色した各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を部分的に照射してフォトクロミック化合物を選択的に消色することにより、所望の画像を形成する。
次に、加熱手段により会合に必要な所定温度に昇温して画像を安定化させることでモノクロ画像または多色画像の形成が可能となる。
加熱手段については、図13に示すように消去工程用及び安定化工程用の専用の加熱手段を1つずつ設ける構成としてもよい。
【実施例】
【0108】
以下、本発明を実施例に基づいて具体的に説明する。
(実施例1)
フォトクロミック化合物として8’−シアノ−1,3−ジヒドロ−3,3−ジメチル−5−メトキシ−1−オクタデシル−5’−ドコサノイルオキシメチルスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン](以下、「PC1」と記す。)を用い、長鎖アルキル化合物としてn−エイコサンを用い、バインダーとしてポリメタクリル酸メチルを用いた。
20重量部のPC1に対し、n−ドコサンを20重量部添加し、ポリメタクリル酸メチルを80重量部添加した。溶媒としてトルエンを用い、塗布液を調製して石英基板上にキャスト膜を作製した。
【0109】
光照射前の吸収スペクトルを測定したところ、300〜400nmの範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ青に発色し、吸収スペクトルの極大吸収波長は605nmであった。これをヒートローラーにより40℃に加熱処理したところ、色相がシアンに変化し、吸収スペクトルの極大吸収波長は628nmであった。
これを再びヒートローラーにより一時的に80℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
【0110】
上記と同様の処方によるキャスト膜を白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
【0111】
次に、この画像表示媒体の表示層に366nmの紫外光を再び照射して発色反応を飽和させた後、ヒートローラーにより40℃に加熱処理した後、中心波長630nm、半値幅10nmの可視光を照度1mW/cmで1000時間照射したが、表示層に変化はなく消色しなかった。つまり可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。その後、ヒートローラーにより一時的に今度は80℃に加熱処理すると、表示層は無色に戻った。
また、この画像表示媒体に366nmの紫外光を照射し発色させ、ヒートローラーにより40℃に加熱処理し会合させ、その後80℃のヒートローラ−で消色するサイクルを100回繰り返したが、劣化は全く生じず、良好な繰り返し耐久性が確認された。
【0112】
(実施例2〜10、比較例1〜13)
実施例1に用いたフォトクロミック化合物のR及びRの長鎖構造部位の炭素数が表1のようである化合物を用い、実施例1と同様の手順で白色PET上にキャスト膜を作製した。
それらのキャスト膜に紫外光を照射後、ヒートローラーにより40℃に加熱処理し、蛍光灯を照度700lxで1000時間照射した。1000時間後におけるキャスト膜の状態を表1に記載した。
【0113】
【表1】

【0114】
(実施例11)
実施例1で作製した画像表示媒体を図7で表わした装置を使用し、画像を形成した。画像表示媒体(1)を挿入口(21)から搬送ローラー(22)によって画像形成装置(20)内に搬送させ、ヒートローラー(第一加熱手段)(25a)により80℃に加熱処理し、画像を消去する。
次に、表示層に紫外光LED(紫外光照射手段)(24)を照射すると、表示層は青に発色した。次に、ヒートローラー(第二加熱手段)(25b)により40℃に加熱処理され、排出口(29)からシアンに発色した画像表示媒体が排出された。この画像表示媒体に蛍光灯を照度700lxで90日間照射したが、表示層に変化はなく消色しなかった。つまり、可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。その後、ヒートローラー(25a)により一時的に今度は80℃に加熱処理すると、表示層は無色に戻った。
【0115】
(実施例12)
フォトクロミック化合物として、5−メトキシ−8’−ニトロ−1−オクタデシル−5’−ドコサンアミドスピロ[2H−ベンゾ[d]チアゾール−2,3’−[3H]ナフト[2,1−b][1,4]オキサジン](以下、「PC2」と記す。)用い、長鎖アルキル化合物としてはn−オクタデカンを用い、バインダーとしてポリメタクリル酸メチルを用いた。
20重量部のPC2に対し、n−エイコサンを20重量部添加し、ポリメタクリル酸メチルを80重量部添加した。溶媒としてトルエンを用い、塗布液を調製して石英基板上にキャスト膜を作製した。
【0116】
光照射前の吸収スペクトルを測定したところ、300〜400nmの範囲に吸収帯が認められ、無色であった。
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ青に発色し、吸収スペクトルの極大吸収波長は611nmであった。これをヒートローラーにより40℃に加熱処理したところ、色相がシアンに変化し、吸収スペクトルの極大吸収波長は631nmであった。
これを再びヒートローラーにより一時的に80℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
【0117】
次に、上記と同様の処方によるキャスト膜を白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
【0118】
次に、この画像表示媒体の表示層に366nmの紫外光を再び照射して発色反応を飽和させた後、ヒートローラーにより40℃に加熱処理した後、中心波長630nm、半値幅10nmの可視光を照度1mW/cmで1000時間照射したが、表示層に変化はなく消色しなかった。つまり、可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。その後、ヒートローラーにより一時的に今度は80℃に加熱処理すると、表示層は無色に戻った。
また、この画像表示媒体に366nmの紫外光を照射し発色させ、ヒートローラーにより40℃に加熱処理し会合させ、その後80℃のヒートローラ−で消色するサイクルを100回繰り返したが、劣化は全く生じず、良好な繰り返し耐久性が確認された。
【0119】
(実施例13)
実施例12と同様の処方によるキャスト膜を光ディスク(100)上に形成し、さらに保護層としてPVA膜(膜厚2μm)を形成し、画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
次に、この光ディスク(100)を図8で表わした装置を使用し、画像を形成した。液晶シャッターを具備した紫外光LED(紫外光照射手段)(111)を任意に照射したところ紫外光が照射された個所が青に発色した。セラミックヒータ(第二加熱手段)(125b)により40℃に加熱処理すると、青に発色していた個所がシアンを呈した。
この光ディスク(100)に蛍光灯を照度700lxで90日間照射したが、表示層に変化はなく消色しなかった。その後、セラミックヒータ(125a)により一時的に今度は80℃に加熱処理すると、表示層は無色に戻った。
【0120】
(実施例14)
フォトクロミック化合物として8’−ブロモ−1,3−ジヒドロ−3,3,5−トリメチル−1−オクタデシル−5’−ドコサシルオキシスピロ[2H−インドールー2,3’−[3H]ナフト[2,1−b][1,4]オキサジン](以下、「PC3」と記す。)を用い、長鎖アルキル化合物としてはn−エイコサンを用い、バインダーとしてポリスチレンを用いた。
20重量部のPC3に対し、n−エイコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して石英基板上にキャスト膜を作製した。光照射前の吸収スペクトルを測定したところ、300nm〜400nm弱の範囲に吸収帯が認められ、無色であった。
【0121】
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ、青紫に発色し、吸収スペクトルの極大吸収波長は574nmであった。
これをヒートローラーによりに40℃に加熱処理したところ、色相がマゼンタに変化し、吸収スペクトルの極大吸収波長は528nmであった。これを再びヒートローラーにより一時的に80℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
【0122】
20重量部のPC3に対し、n−エイコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して、白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上にキャスト膜を形成し、その上に、20重量部のPC2に対し、n−エイコサンを20重量部添加し、そしてポリスチレンを80重量部添加し、溶媒としてトルエンを用いた塗布液によるキャスト膜を形成して画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
この画像表示媒体の表示層に366nmの紫外光を照射するとPC2、PC3、共に発色し、青緑色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長610nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は青紫を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
【0123】
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長610nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は青紫を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青を呈した。その後ヒートローラーにより40℃に加熱処理すると青紫を呈していた個所はマゼンタになり、青に呈していた個所はシアンを呈した。この画像表示媒体に蛍光灯を照度700lxで1000時間照射したが、表示層に変化はなかった。つまり可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。
【0124】
(実施例15)
実施例14で使用した画像表示媒体を図12で表わした装置を使用し、画像を形成した。画像表示媒体(1)を挿入口(21)から搬送ローラー(22)によって画像形成装置(20)内に搬送させ、ヒートローラー(第一加熱手段)(25a)により80℃に加熱処理し、画像を消去する。
次に、表示層に紫外光LED(紫外光照射手段)(24)を照射すると、表示層は青緑色に発色した。
次に液晶シャッターを具備した中心波長610nm、半値幅10nmのLEDと570nm、半値幅10nmのLED(可視光照射手段)(26)により任意の画像を形成した。続いて、ヒートローラー(第二加熱手段)(25b)により40℃に加熱処理され、排出口(29)からに任意の画像を表示した画像表示媒体が1排出された。この画像表示媒体に蛍光灯を照度700lxで1000時間照射したが、表示層に変化はなく消色しなかった。つまり可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。
【0125】
(実施例16)
フォトクロミック化合物として、8’−ブロモ−5−メトキシ−1−オクタデシル−5’−ドコサネイトスピロ[2H−ベンゾ[d]オキサゾール−2,3’−[3H]ナフト[2,1−b][1,4]オキサジン](以下、「PC4」と記す。)を用い、長鎖アルキル化合物としてはn−オクタデカンを用い、バインダーとしてポリスチレンを用いた。
20重量部のPC4に対し、n−ドコサンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して石英基板上にキャスト膜を作製した。
光照射前の吸収スペクトルを測定したところ、300nm〜400nm弱の範囲に吸収帯が認められ、無色であった。
【0126】
これに高圧水銀ランプから取り出した366nmの紫外光を照射したところ、赤に発色し、吸収スペクトルの極大吸収波長は493nmであった。これをヒートローラーによりに40℃に加熱処理したところ、色相がイエローに変化し、吸収スペクトルの極大吸収波長は460nmであった。これを再びヒートローラーにより一時的に80℃に加熱処理したところ、無色に戻り、可視域に吸収は見られなかった。
また、この画像表示媒体に366nmの紫外光を照射し発色させ、ヒートローラーにより40℃に加熱処理し会合させ、その後80℃のヒートローラ−で消色するサイクルを100回繰り返したが、劣化は全く生じず、良好な繰り返し耐久性が確認された。
【0127】
20重量部のPC4に対し、n−オクタデカンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用い塗布液を調製して、白色PET(ポリエチレンテレフタレート)基板(厚さ188μm)上にキャスト膜を形成し、PVAによる中間層を介して、その上に、20重量部のPC3に対し、n−オクタデカンを20重量部添加し、ポリスチレンを80重量部添加した。溶媒としてトルエンを用いた塗布液によるキャスト膜を形成し、さらに、PVAによる中間層を介して、その上に、20重量部のPC2に対し、n−オクタデカンを20重量部添加し、ポリスチレンを80重量部添加し、溶媒としてトルエンを用いた塗布液によるキャスト膜を形成し、さらに保護層としてPVA膜を形成して画像表示媒体を作製した。このようにして形成した表示層は無色であり、基板の色が白であるため、作製した画像表示媒体は観察者には白と認識された。
この画像表示媒体の表示層に、366nmの紫外光を照射するとPC2、PC3、PC4すべてが発色し、黒色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
【0128】
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長490nm、半値幅10nmの可視光を照射したところ、PC4が選択的に消色され、照射部は青緑色を呈した。
また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫色を呈した。また、別の一部に中心波長610nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫色を呈した。また、これに白色光を照射したところ、再び表示層は無色透明になったため、画像表示媒体は白色と認識された。
【0129】
この画像表示媒体に、再び366nmの紫外光を照射して発色させた後、その一部に中心波長490nm、半値幅10nmの可視光を照射したところ、PC4が選択的に消色され、照射部は青緑色を呈した。また、別の一部に中心波長570nm、半値幅10nmの可視光を照射したところ、PC3が選択的に消色され、照射部は青紫色を呈した。
また、別の一部に中心波長610nm、半値幅10nmの可視光を照射したところ、PC2が選択的に消色され、照射部は赤紫色を呈した。その後ヒートローラーにより40℃に加熱処理すると青緑色を呈していた個所は青になり、青紫色に呈していた個所は緑色になり、赤紫色を呈していた個所は赤を呈した。この画像表示媒体に白色光(10万ルクス)を1000時間照射しても、画像表示媒体に変化はなかった。つまり可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。
【0130】
(実施例17)
実施例16と同様の手順で光ディスク(100)上にも表示層を作製した。この光ディスク(100)を図13で表わした装置を使用し、画像を形成した。まず、表示層に紫外光LED(紫外光照射手段)(111)を照射すると、表示層は黒に発色した。液晶シャッターを具備した中心波長610nm、半値幅10nmのLEDと570nm、半値幅10nmのLEDと中心波長490nm、半値幅10nmのLED(可視光照射手段)(126)により任意の画像を形成した。セラミックヒータ(第二加熱手段)(125b)により、40℃に加熱処理し、画像を定着させた。
この光ディスク(100)に蛍光灯を照度700lxで1000時間照射したが、表示層に変化はなかった。つまり可視光を長時間照射しても、会合状態が安定に保持されていることが確認された。その後、セラミックヒータ(125a)により一時的に今度は80℃に加熱処理すると、表示層は無色に戻った。
【0131】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
本発明の範囲は、上記した実施の形態の説明ではなくて、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
【産業上の利用可能性】
【0132】
本発明は、所謂電子ペーパ、CD、DVDのレーベル面などに利用することができる。
【図面の簡単な説明】
【0133】
【図1】本発明に用いられる画像表示媒体の構成を示す模式図である。
【図2】フォトクロミック化合物の吸光度と波長との関係を示す模式図である。
【図3】本発明の画像形成装置の第1の実施形態を示し、シート状の画像表示媒体にモノクロ画像形成を行なう画像形成装置を示す模式図である。
【図4】本発明の画像形成装置の第2の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。
【図5】本発明の画像形成装置の第2の実施形態を示し、光ディスクドライブ装置に本発明の画像記録装置を設けた装置を示すブロック図である。
【図6】レーベル記録面の記録トラックの概念図である。
【図7】本発明の第3の実施形態を示し、シート状の画像表示媒体にモノクロ画像形成及び消去を行なう画像形成装置を示す模式図である。
【図8】本発明の画像形成装置の第4の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。
【図9】本発明の第5の実施形態を示し、シート状の画像表示媒体にモノクロ画像形成及び消去を行なう画像形成装置を示す模式図である。
【図10】本発明の画像形成装置の第6の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。
【図11】本発明の画像形成装置の第6の実施形態を示し、光ディスクドライブ装置に本発明の画像記録装置を設けた装置を示すブロック図である。
【図12】本発明の第7の実施形態を示し、シート状の画像表示媒体に多色画像形成又はモノクロ画像形成及び消去を行なう画像形成装置を示す模式図である。
【図13】本発明の画像形成装置の第8の実施形態を示し、光ディスクレーベル記録面に画像を形成する装置を示す模式図である。
【符号の説明】
【0134】
[図1・図2について]
1 画像表示媒体
10 支持基体
11 表示層
12 表示層
13 表示層
[図3・図7・図9・図12について]
1 画像表示媒体
20 画像形成装置
21 挿入口
22 搬送ローラ
23 搬送ローラ
24 紫外光照射手段
25 加熱手段
25a 第一加熱手段
25b 第二加熱手段
26 可視光照射手段
27 排紙トレイ
29 排出口
30 シート載置台
[図4・図8・図10・図13について]
100 光ディスク
100a 光ディスクレーベル記録面
110 加熱手段
111 紫外光照射手段
125a 第一加熱手段
125b 第二加熱手段
126 可視光照射手段
[図5・図11について]
100 光ディスク
111 紫外光照射手段
111a 紫外光照射手段
120 ドライブ機構部
123 スピンドルモータ
124 光ピックアップ
125 加熱手段
126 可視光照射手段
127 フィード部
128 第1アナログ処理部
129 サーボ処理部
130 第1モータ駆動部
131 コントローラ
132 レーザ駆動部
133 ディジタル信号処理部
134 バッファメモリ
137 照射手段駆動部
137a 可視光駆動部
[図6について]
100 光ディスク

【特許請求の範囲】
【請求項1】
下記一般式(1)で表わされるフォトクロミック化合物および長鎖アルキル化合物を含むフォトクロミック組成物。
【化1】

(ただし、R、R、は独立して炭素数18以上の長鎖炭化水素基である。Zは存在しないか、あるいは−CHOCO−、−NHCO−、−O−、−OCO−の中から選択される1つである。XはO、S、C(CHのいずれかである。R〜Rは独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子求引基であり、R〜R12は独立して水素であるかまたは置換基であり、そのうちの少なくとも一つは電子供与基である。Rは水素であるかまたは置換基である。)
【請求項2】
請求項1記載のフォトクロミック組成物による表示層が支持基体上に形成されていることを特徴とする画像表示媒体。
【請求項3】
会合状態における色相が異なる2種以上のフォトクロミック化合物を表示層中に含むことを特徴とする請求項2に記載の画像表示媒体。
【請求項4】
会合状態においてイエローの色相を示す第1のフォトクロミック化合物と、マゼンタの色相を示す第2のフォトクロミック化合物と、シアンの色相を示す第3のフォトクロミック化合物とを表示層中に含むことを特徴とする請求項2に記載の画像表示媒体。
【請求項5】
前記表示層が、前記第1のフォトクロミック化合物のみを含む表示層と、前記第2のフォトクロミック化合物のみを含む表示層と、前記第3のフォトクロミック化合物のみを含む表示層が積層された構造であることを特徴とする請求項4に記載の画像表示媒体。
【請求項6】
請求項2乃至5のいずれかに記載の画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置。
【請求項7】
請求項2乃至5のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面に部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に昇温する加熱手段と、を備えることを特徴とする画像形成装置。
【請求項8】
請求項2乃至5のいずれかに記載の画像表示媒体に対し、部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置。
【請求項9】
請求項2乃至5のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に部分的に紫外光を照射する紫外光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置。
【請求項10】
請求項2乃至5のいずれかに記載の画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置。
【請求項11】
請求項2乃至5のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に紫外光を照射する紫外光照射手段と、発色安定化に発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、消色に必要な所定温度に表示層を昇温する加熱手段とを備えることを特徴とする画像形成装置。
【請求項12】
請求項2乃至5のいずれかに記載の画像表示媒体に対し、表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2加熱手段とを備えることを特徴とする画像形成装置。
【請求項13】
請求項2乃至5のいずれかに記載の表示層が形成された光ディスクを回転駆動する回転駆動手段と、前記光ディスクレーベル記録面の表示層に紫外光を照射する紫外光照射手段と、発色状態における各々のフォトクロミック化合物の極大吸収波長に対応した波長域の可視光を照射する可視光照射手段と、発色安定化に必要な所定温度に表示層を昇温する第1の加熱手段と、消色に必要な所定温度に表示層を昇温する第2の加熱手段とを備えることを特徴とする画像形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2010−59288(P2010−59288A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2008−225120(P2008−225120)
【出願日】平成20年9月2日(2008.9.2)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】