説明

ヘッドマウントディスプレイ

【課題】小型の構成で眼幅調整を行うとともに、左右方向に広い外界視野を確保する。
【解決手段】映像表示ユニット1R・1Lの各光学瞳ER・ELは、各光学瞳ER・ELの中心を含む顔に正対する鉛直断面内で、長軸方向が眼幅方向に対して90度よりも小さい角度で傾斜した斜め偏平形状となっている。これにより、駆動機構9によって映像表示装置1を上下方向に移動させることにより、上記鉛直断面内で眼幅方向の異なる位置に観察者の瞳を位置させて映像を観察することが可能となり、眼幅調整を容易に行うことができる。また、駆動機構9は、左右の光学ユニットをともに同じ方向(上方向または下方向)に駆動するので、左右方向でかつ互いに逆方向に駆動する従来の構成に比べて眼幅調整機構を小型化することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、映像表示装置を観察者の眼前に位置させて映像を観察するヘッドマウントディスプレイ(以下、HMDとも称する)に関するものである。
【背景技術】
【0002】
両眼で映像を観察するHMDにおいては、各表示ユニットによって形成される各光学瞳の位置に観察者の両眼を位置させることにより、各表示ユニットにて表示される映像の虚像を観察することができる。このとき、観察者の眼幅は観察者ごとに異なり、各光学瞳の大きさには限りがあるため、眼幅の異なる複数の観察者が良好に映像を観察するためには、各光学瞳の眼幅方向の位置を調整する必要がある。この点、例えば特許文献1の装置では、左右の接眼レンズの位置を眼幅方向に移動させる眼幅調整機構を設けて眼幅調整を行っている。また、例えば特許文献2の装置では、眼幅調整機構によって左右の表示ユニット自体を眼幅方向に移動させて眼幅調整を行っている。
【0003】
【特許文献1】特開平5−276467号公報
【特許文献2】特開2003−307701号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところが、従来の眼幅調整機構では、左右の光学系またはユニットの移動方向が眼幅方向であり、しかも、左右で互いに逆方向であるため、眼幅方向の移動量が大きくなりやすく、そのような大きな移動量を確保するために、眼幅調整機構が大型化せざるを得ず、装置全体が大型化する。また、特許文献2のように両眼の間に配置される眼幅調整機構が大型であれば、左右方向の外界視野を広く確保することができなくなる。
【0005】
本発明は、上記の問題点を解決するためになされたものであって、その目的は、小型の構成で眼幅調整を行うことができるとともに、左右方向に広い外界視野を確保することができる小型のHMDを提供することにある。
【課題を解決するための手段】
【0006】
本発明のHMDは、映像表示装置と、上記映像表示装置を観察者の眼前で支持する支持手段とを備え、上記映像表示装置が、映像を表示する表示素子と、上記表示素子からの映像光を反射させて光学瞳に導く反射光学素子とを備えたヘッドマウントディスプレイであって、上記光学瞳は、その光学瞳の中心を含む顔に正対する鉛直断面内で、長軸方向が眼幅方向に対して90度よりも小さい角度で傾斜した斜め偏平形状であり、上記支持手段は、上記映像表示装置を上記面内で眼幅方向とは垂直な方向に移動させる駆動手段を備えていることを特徴としている。
【0007】
本発明のHMDにおいて、上記光学瞳の長軸方向と眼幅方向との相対角度をθとすると、
0°<θ<45°
であることが望ましい。
【0008】
本発明のHMDにおいて、上記駆動手段は、観察者の鼻と当接する鼻当てと、上記鼻当てを(眼幅方向とは垂直な)上下方向に移動させる鼻当て駆動部とを有していてもよい。
【0009】
本発明のHMDにおいて、上記反射光学素子は、体積位相型で反射型のホログラム光学素子であってもよい。
【0010】
本発明のHMDにおいて、上記表示素子の表示面の中心と上記光学瞳の中心とを光学的に結ぶ軸を光軸とし、上記ホログラム光学素子に対して、上記表示素子側より入射する光軸と、上記光学瞳側に射出する光軸とを含む面を、光軸入射面とすると、眼幅方向に垂直な鉛直面と上記光軸入射面との相対角度をαとしたとき、
0°<α<90°
であってもよい。
【0011】
本発明のHMDにおいて、
0°<α<45°
であることが望ましい。
【0012】
本発明のHMDにおいて、上記表示素子からの映像光は、赤、緑、青の少なくともいずれかの波長域を含む光であってもよい。
【0013】
本発明のHMDにおいて、上記映像表示装置は、上記表示素子からの映像光を内部で全反射させて導光する光学部材をさらに有しており、上記ホログラム光学素子は、上記光学部材内部を導光される上記表示素子からの映像光を回折反射させて光学瞳に導く構成であってもよい。
【0014】
本発明のHMDにおいて、上記ホログラム光学素子は、軸非対称な正の光学パワーを有しており、上記表示素子からの映像光を光学瞳に導く接眼光学系の少なくとも一部を構成していてもよい。
【0015】
本発明のHMDにおいて、上記映像表示装置は、観察者の左右の眼に対応する左眼用表示ユニットと右眼用表示ユニットとを有しており、上記両方の表示ユニットは、それぞれ、上記表示素子と上記反射光学素子とを備えており、上記両方の表示ユニットの各光学瞳は、眼幅方向に垂直な面に対して対称となる形状であることが望ましい。
【発明の効果】
【0016】
本発明によれば、光学瞳が斜め偏平形状であるので、駆動手段によって映像表示装置を上下方向(光学瞳の中心を含む顔に正対する鉛直断面内で眼幅方向(左右方向)に垂直な方向)に移動させることにより、眼幅方向の異なる位置に観察者の瞳を位置させて映像を観察することが可能となる。つまり、装置の上下移動によって左右方向の眼幅の調整ができ、眼幅調整が容易になる。また、例えば両眼に対応して表示ユニットを設けた場合でも、左右ともに同じ方向(上方向または下方向)に駆動する構成にできるので、左右駆動に比べて駆動手段を小型化できる。したがって、小型の構成で眼幅調整を行うことができ、装置を小型化することができる。
【0017】
また、従来の左右駆動の眼幅調整機構に比べて、本発明の駆動手段は上記のように小型化できるので、両眼の間に駆動手段を配置しても左右方向の視野が駆動手段で遮られることがなく、左右方向に広い外界視野を確保することができる。
【発明を実施するための最良の形態】
【0018】
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
【0019】
(映像表示装置について)
まず、本実施形態のHMDが備える映像表示装置について説明する。図2は、上記映像表示装置1の概略の構成を示す断面図である。映像表示装置1は、観察者の左右の眼に対応する左眼用の映像表示ユニット1L(左眼用表示ユニット)と、右眼用の映像表示ユニット1R(右眼用表示ユニット)とで構成されている。映像表示ユニット1R・1Lは、それぞれ、映像表示部11と、接眼光学系21とを有して構成されている。映像表示部11は、光源12と、一方向拡散板13と、集光レンズ14と、LCD15とを有している。
【0020】
ここで、以下での説明の便宜上、方向を以下のように定義しておく。まず、LCD15の表示面の中心と、接眼光学系21によって形成される光学瞳E(射出瞳、観察瞳)の中心とを光学的に結ぶ軸を光軸とする。そして、接眼光学系21の後述する光学素子24を構成するホログラム光学素子(HOE)に対して、LCD15側より入射する光軸と、光学瞳E側に射出する光軸とを含む面を、光軸入射面とする。このとき、上記HOEより光学瞳E側に射出する光軸の方向をZ方向とし、光軸入射面内でZ方向に垂直な方向をY方向とする。Y方向とZ方向に直交する方向(すなわち光軸入射面に垂直な方向)をX方向とする。
【0021】
なお、本実施形態では、後述するように、映像表示ユニット1R・1Lは、観察者の眼幅方向に垂直な鉛直面に対して傾いて配置されており、このため、HOEの光軸入射面は鉛直面と所定角度をなしている。したがって、観察者がHMDを装着したときの眼幅方向はX方向と所定角度をなしており、眼幅方向に垂直な上下方向はY方向と所定角度をなしている。
【0022】
光源12は、中心波長が例えば635nm、520nm、465nmとなる3つの波長帯域の光を発する赤(R)、緑(G)、青(B)の一体型のLEDで構成されている。光源12のRGBの各発光部は、X方向に並んで配置されている。
【0023】
一方向拡散板13は、光源12からの照明光を拡散させるものであるが、その拡散度は方向によって異なっている。より詳細には、一方向拡散板13は、光源12のRGBの各発光部が並ぶ方向(X方向)には、入射光を約40゜拡散させ、それに垂直な方向には、入射光を約0.2゜拡散させる。集光レンズ14は、一方向拡散板13にて拡散された光を集光する照明光学系である。集光レンズ14は、上記拡散光が効率よく光学瞳Eを形成するように配置されている。
【0024】
LCD15は、映像信号に基づいて光源12からの光を各画素ごとに変調することにより、映像を表示する表示素子であり、例えば透過型の液晶表示素子で構成されている。本実施形態では、映像表示ユニット1R・1Lを鉛直面に対して傾けて配置しているため、各光学瞳Eの位置で観察される映像(虚像)の上下左右を映像表示ユニット1R・1L間で同じにすべく、各LCD15は表示面の中心を回転中心として回転して配置されている。
【0025】
一方、接眼光学系21は、LCD15からの映像光を光学瞳Eに導く一方、外界光を透過させて光学瞳Eに導くことで、光学瞳の位置にて、表示映像の虚像とともに外界像をシースルーで観察させる。この接眼光学系21は、接合プリズム(接合光学部材)で構成され、テレセントリックな光学系を構成している。具体的には、接眼光学系21は、光学部材である接眼プリズム22と偏向プリズム23とを、光学素子24を挟んで接合してなっている。
【0026】
接眼プリズム22と偏向プリズム23とは、接着剤で接合されている。接眼プリズム22は、平行平板の下端部を楔状にし、その上端部を厚くした形状で構成されており、LCD15からの映像光を内部で全反射させて導光する。この接眼プリズム22は、面22a・22b・22cを有している。面22aは、映像表示部11からの映像光が入射する入射面であり、面22b・22cは互いに対向する面である。このうち、面22bは、全反射面兼射出面となっている。
【0027】
偏向プリズム23は、平行平板の上端部を接眼プリズム22の下端部に沿った形状とすることによって、接眼プリズム22と一体となって略平行平板となるように構成されている。接眼プリズム22に偏向プリズム23を接合させない場合、外界光が接眼プリズム22の楔状の下端部を透過するときに屈折するので、接眼プリズム22を介して観察される外界像に歪みが生じる。しかし、接眼プリズム22に偏向プリズム23を接合させて一体的な略平行平板を形成することで、外界光が接眼プリズム22の楔状の下端部を透過するときの屈折を偏向プリズム23でキャンセルすることができる。その結果、シースルーで観察される外界像に歪みが生じるのを防止することができる。
【0028】
光学素子24は、接眼プリズム22内部で導光されたLCD15からの映像光を反射させて光学瞳Eに導く反射光学素子であり、例えば体積位相型で反射型のHOEで構成されている。このHOEは、特定の入射角で入射する例えば465±10nm、520±10nm、635±10nmの3つの波長帯域の光を回折させる。光学素子24は、接眼プリズム22の下端部の傾斜面に貼り付けられており、この結果、接眼プリズム22と偏向プリズム23とで挟まれている。2つの透明部材(接眼プリズム22、偏向プリズム23)の間にHOEを形成することにより、HOEが外気に触れることがないので、光学性能を安定に保つことが可能となる。
【0029】
このような映像表示ユニット1R・1Lの構成により、映像表示部11の光源12から出射された光は、一方向拡散板13にて拡散され、集光レンズ14にて集光されてLCD15に入射する。LCD15に入射した光は、映像信号に基づいて各画素ごとに変調され、映像光として出射される。このとき、LCD15には、その映像自体が表示される。
【0030】
LCD15からの映像光は、接眼光学系21の接眼プリズム22の内部にその上端面(面22a)から入射し、対向する2つの面22b・22cで複数回全反射されて、光学素子24に入射する。光学素子24に入射した光はそこで反射され、面22bを介して射出され、光学瞳Eに達する。光学瞳Eの位置では、観察者は、LCD15に表示された映像の拡大虚像を観察することができる。
【0031】
一方、接眼プリズム22、偏向プリズム23および光学素子24は、外界光をほとんど全て透過させるので、観察者は外界像を観察することができる。したがって、LCD15に表示された映像の虚像は、外界像の一部に重なって観察されることになる。以上のことから、光学素子24は、映像表示部11から提供される映像(映像光)と外界像(外界光)とを同時に観察者の眼に導くコンバイナとして機能していると言える。
【0032】
以上のように、接眼光学系21は、体積位相型で反射型のHOEからなる光学素子24を含んで構成されている。体積位相型で反射型のHOEは、回折効率が高く、しかも、回折効率ピークの半値波長幅が狭い。したがって、このようなHOEを用い、LCD15からの映像光をHOEにて回折反射させて光学瞳Eに導く構成とすることにより、明るい映像を観察させることができる。また、外界光の透過率も高くなるので、明るい外界像を観察させることができる。
【0033】
また、接眼プリズム22内での全反射を用いて映像光を導光する構成なので、通常の眼鏡レンズと同程度に厚さを薄く(例えば3mm程度に)することができ、接眼プリズム22を小型軽量にできるとともに、外界光の透過率が高くなり、外界を良好に観察することができる。また、LCD15を接眼光学系21の一端部側に配置する、つまり、視野の周辺に配置することが可能となり、広い外界視野角を確保することができる。
【0034】
また、HOEはLCD15にて表示された映像を拡大する、軸非対称な正の光学パワーを有しており、接眼光学系21の少なくとも一部を構成しているので、接眼光学系21を小型に構成しながら、装置を構成する各光学部材の配置の自由度を高めて、装置を小型軽量にできるとともに、良好に収差補正された映像を観察することが可能となる。
【0035】
また、光学素子24は、上述したように特定入射角の特定波長の光のみを回折させる体積位相型で反射型のHOEで構成されているので、LCD15からの映像光が、接眼プリズム22、偏向プリズム23および光学素子24を透過する外界光に影響を与えることがない。それゆえ、観察者は、光学素子24を介してLCD15の表示映像の虚像を観察しながら、接眼プリズム22、偏向プリズム23および光学素子24を介して外界像を通常通りかつ明瞭に観察することができる。
【0036】
なお、接眼光学系21の反射面に埋設する光学素子24には、ハーフミラーや多層膜等を用いることもできるが、中でも上述した体積位相型で反射型のHOEを用いることがより望ましい。体積位相型で反射型のHOEは、波長選択性・角度選択性がともに高いことから、ある限られた波長域の光に対してのみ回折反射作用を及ぼすので、特定波長域の反射光とそれ以外の波長の透過光とを合成するコンバイナ素子としてHOEを有効に用いることができる。
【0037】
なお、HOEを作製するためのホログラム感光材料としては、フォトポリマー、銀塩材料、重クロム酸ゼラチンなどを用いることができるが、中でもドライプロセスで容易に製造可能なフォトポリマーを用いることが望ましい。
【0038】
(光学瞳の形状について)
本実施形態では、映像表示ユニット1R・1Lの各光学瞳Eは、それぞれ、各光学瞳Eの中心を含む、観察者の顔に正対する鉛直断面内で、斜めに偏平した形状となっている。以下、このような形状となる理由について説明するが、まず、光学瞳Eが偏平形状となる理由について説明する。
【0039】
図3(a)は、光軸入射面内での再生光線(映像光線)の光路を模式的に示す説明図であり、図3(b)は、再生時(映像観察時)の光学瞳Eの形状を模式的に示す説明図である。なお、図3(a)(b)では、光軸入射面と眼幅方向に垂直な鉛直面とは一致しているとする。したがって、上記の鉛直面には、光学素子24(HOE)の中心と光学瞳Eの中心とを結ぶ光軸が含まれる。
【0040】
HOEからなる光学素子24を光軸入射面内で鉛直方向から角度φ(°)だけ傾けて配置し、映像光を光学素子24に対して上方向から入射させ、光学素子24にて瞳方向に反射させると、光学瞳Eは光軸入射面に垂直な方向(左右方向)に長い横長の楕円形状となる。これは、HOEの特性(波長選択性および角度選択性)と、映像光の波長範囲が制限されていることによる。より詳しくは、以下の通りである。
【0041】
図4(a)は、コンバイナとしてのHOEを作製するためのホログラム感光材料24aを露光するときの露光光線の光路を模式的に示す説明図であり、図4(b)は、上記露光によって作製されたHOE(光学素子24)を用いて再生するときの再生光線(映像光線)の光路を模式的に示す説明図である。図4(a)に示すように、光学素子24は、光学素子24から表示素子(LCD15)に向かう方向と同じ方向の露光光線1(波長λa)と、光学瞳Eから光学素子24に向かう方向と同じ方向の露光光線2(波長λa)とを用いてホログラム感光材料24aを露光することにより作製される。
【0042】
一方、再生時は、図4(b)に示すように、露光光線1と逆向きの表示素子からの再生光線(映像光線)が光学素子24に入射し、光学瞳Eの方向に回折反射される。ここで、表示素子の画面中央の光を考えた場合、露光光線2の点光源位置と等しい光学瞳Eの中心には、露光光線2と同じ波長の光が光学素子24で回折反射されて入射するが、光学瞳Eの中心から上下方向にずれた位置には、露光光線2との角度差が大きくなり、光学素子24で回折反射されて入射する光の波長が露光光線2とは異なる。
【0043】
つまり、光学瞳Eの中心を含む顔に正対する鉛直断面内で、瞳中心から上下方向にずれた位置に入射する映像光については、光学素子24からの映像光の射出方向が露光光線2の入射方向とずれる光軸入射面内での角度差が大きく、波長シフトが大きくなる。これに対して、上記鉛直断面内で、瞳中心から左右方向にずれた位置に入射する映像光については、光学素子24からの映像光の射出方向が露光光線2の入射方向とずれる光軸入射面内での角度差が小さく、波長シフトが小さくなる。
【0044】
そして、映像光は、一般に、ある限定された波長範囲の光で構成されているので、その波長範囲の影響により、映像光の射出方向が露光光線の入射方向とずれる角度差が大きくなる上下方向が、左右方向よりも光学瞳Eが小さくなり、結果として横長の瞳形状となる。なお、限定された波長範囲の映像光としては、以下の(1)または(2)等によって得ることができ、このようにして得られる映像光と光学素子24とを組み合わせることにより、細長い光学瞳Eを得ることができる。
(1)光源12としてRGBのLEDのような、比較的狭い波長範囲の光源を用いる。
(2)白色LEDのような広い波長範囲の光源12を用いる場合でも、LCD15とし
てカラーフィルタを有する液晶表示素子を用い、RGBのカラーフィルタの透過
波長範囲を制限する。
なお、映像光は、ある限られた波長範囲の光で構成されていればよく、RGBのいずれかの波長域の光だけで構成されていてもよい。つまり、LCD15からの映像光としては、RGBの少なくともいずれかの波長域を含む光であればよいと言うことができる。
【0045】
光学瞳Eが横長形状になることは、以下の具体的な計算モデルを参照することにより、さらに容易に理解することができる。
【0046】
<計算モデル条件>
・光学素子24を構成するHOEは、平面である。
・光軸入射面内で鉛直方向に対して30度傾くようにHOEが配置されている。
・HOEは、HOEの垂線に対して30度の入射角で入射する平行光と、上記垂線に対して−30度の反射角で反射する平行光とを用いて作製されている。
・HOEの中心と光学瞳Eとの距離は、15mmである。
・HOEを作製したときの露光レーザ波長は、Kr+ 647.1nmである。
・ホログラム感光材料の収縮は、厚み方向に2%とする。
・HOEの回折半値幅は考慮しない。
・光学瞳Eの中心から上下方向にそれぞれ±1.5mmずれた位置への入射波長を計算する。
・再生光源は、RGB3色1チップのLEDであり、例えばRの発光ピーク波長は635nm、強度半値幅は20nmとする。
【0047】
図5(a)は、光学瞳Eの中心およびそこから±1.5mmの上下端に入射する光線の回折ピーク波長を示す説明図であり、図5(b)は、再生光源の強度分布を示す説明図である。上記の計算モデル条件では、図5(a)に示すように、光学瞳Eの中心に入射する映像光線の波長は、635nmとなり、光学瞳Eの中心から上下±1.5mmの位置に入射する映像光線の波長は、それぞれ、665nm、593nmとなっている。また、上記のモデル条件では、図5(b)で示すRの照明光について、発光強度の半値波長幅は625〜645nmとなる。つまり、上下±1.5mmの光学瞳Eの形成に必要な波長域593〜665nmよりも、Rの照明光の半値波長幅は狭い。したがって、光学瞳Eの上下方向のサイズは、3mm以下に制限される。一方、光学瞳Eの左右方向については映像光の入射角度差が小さいので、3mmよりも十分に大きい瞳サイズ(例えば8mm)を確保することができ、結果として、光学瞳Eが横長の偏平形状となる。
【0048】
映像表示ユニット1R・1Lの各光学瞳Eを斜め偏平形状とするためには、各映像表示ユニット1R・1Lを回転させればよい。図6は、本実施形態の映像表示ユニット1Lの回転前後における正面図と瞳形状の模式的な説明図とを示している。映像表示ユニット1Lの光軸入射面Qを、眼幅方向に垂直な鉛直面Pに対して90度よりも小さい角度αだけ傾斜させることにより、観察者の左眼に対応する横長の光学瞳Eは、長軸方向が眼幅方向に対して角度θ(=α)だけ傾斜した斜め偏平形状となる。同様に、映像表示ユニット1Rの光軸入射面を鉛直面に対して90度よりも小さい角度αだけ傾斜させることにより、観察者の右眼に対応する横長の光学瞳は、長軸方向が眼幅方向に対して角度θ(=α)だけ傾斜した斜め偏平形状となる。
【0049】
このとき、一方の映像表示ユニット(例えば映像表示ユニット1R)の光軸入射面の鉛直面からの回転方向と、他方の映像表示ユニット(例えば映像表示ユニット1L)の光軸入射面の鉛直面からの回転方向とを逆にすることにより、映像表示ユニット1R・1Lの各光学瞳Eは、眼幅方向に垂直な鉛直面P0(図1(c)参照)に対して対称な形状となる。本実施形態では、映像表示ユニット1R・1Lの各光学瞳をそれぞれER・ELとすると、図7に示すように、各光学瞳ER・ELの上端同士の間隔が下端同士の間隔よりも狭くなるように、映像表示ユニット1R・1Lを互いに逆方向に回転して配置している。これにより、映像表示ユニット1R・1Lの各映像表示部11が近づきすぎて互いに干渉するのを容易に避けることができる。
【0050】
なお、各映像表示部11が互いに干渉しないのであれば、各光学瞳ER・ELの上端同士の間隔が下端同士の間隔よりも広くなるように、映像表示ユニット1R・1Lを互いに逆方向に回転して配置してもよい。
【0051】
以上のように、眼幅方向に垂直な鉛直面とHOEの光軸入射面との相対角度をα(°)として、
0°<α<90°
を満足することにより、HOEの波長選択性および映像光の波長制限によって、斜めに偏平形状の光学瞳Eを容易に形成することが可能となる。特に、
0°<α<45°
とすれば、眼幅方向に長い斜めの光学瞳Eを形成することが可能となるので、後述する映像表示装置1の上下方向の移動時に、上下方向の少ない移動量で眼幅方向に大きな眼幅調整量をとることができる。
【0052】
また、LCD15からの映像光は、RGBの少なくともいずれかの波長域を含む光であり、映像光の波長域が制限されているので、このような映像光を、波長選択性を有するHOEを介して光学瞳Eに導くことにより、光学瞳Eの形状を確実に偏平にすることができる。
【0053】
なお、本実施形態では、光学瞳Eを偏平した楕円形状としているが、このような形状のほうが、例えば長方形状とした場合に比べて、必要な領域に光線を集中させることができるので、照明光の利用効率が高くなり、光学瞳Eの位置にて明るい映像を観察することができる。
【0054】
(HMDおよび眼幅調整について)
次に、上記した映像表示ユニット1R・1Lを備えたHMDと、このHMDにおける眼幅調整について説明する。図1(a)は、本実施形態に係るHMDの概略の構成を示す平面図であり、図1(b)は、HMDの正面図であり、図1(c)は、HMDの側面図である。HMDは、映像表示装置1と、それを支持する支持手段2とを有しており、全体として、一般の眼鏡のような外観となっている。また、HMDは、左右の眼幅方向に対称な形状となっている。
【0055】
映像表示装置1は、観察者に外界像をシースルーで観察させるとともに、映像を表示して観察者にそれを虚像として提供するものであり、上記した映像表示ユニット1R・1Lで構成されている。図1(b)で示す映像表示ユニット1R・1Lにおいて、眼鏡の右眼用レンズおよび左眼用レンズに相当する部分は、接眼プリズム22および偏向プリズム23(ともに図2参照)の貼り合わせによって構成されている。
【0056】
支持手段2は、映像表示ユニット1R・1Lを観察者の右眼および左眼の前でそれぞれ支持するものであり、ブリッジ3と、フレーム4と、テンプル5と、鼻当て6と、ケーブル7と、鼻当て駆動部8とを有している。なお、フレーム4、テンプル5、鼻当て6およびケーブル7は、左右一対設けられているが、これらを左右で区別する場合は、右フレーム4R、左フレーム4L、右テンプル5R、左テンプル5L、右鼻当て6R、左鼻当て6L、右ケーブル7R、左ケーブル7Lのように表現するものとする。
【0057】
ブリッジ3は、映像表示ユニット1R・1Lを連結するとともに、鼻当て駆動部8を支持している。右テンプル5Rは、右フレーム4Rに回動可能に支持されており、この右フレーム4Rを介して映像表示ユニット1Rと(ブリッジ3との連結側とは反対側で)連結されている。同様に、左テンプル5Lは、左フレーム4Lに回動可能に支持されており、この左フレーム4Lを介して映像表示ユニット1Lと(ブリッジ3との連結側とは反対側で)連結されている。鼻当て6は、観察者の鼻と当接する部分であり、鼻当て駆動部8に支持されている。
【0058】
ケーブル7は、外部信号(例えば映像信号、制御信号)や電力を映像表示ユニット1R・1Lに供給するための配線である。右ケーブル7Rは、右テンプル5Rおよび右フレーム4Rに沿って設けられて映像表示ユニット1Rと接続されており、左ケーブル7Lは、左テンプル5Lおよび左フレーム4Lに沿って設けられて、映像表示ユニット1Lと接続されている。
【0059】
鼻当て駆動部8は、鼻当て6を眼幅方向とは垂直な上下方向に移動させるものである。ここで、図8(a)(b)は、鼻当て駆動部8の概略の構成を示す断面図であり、それぞれ、鼻当て6が下方および上方に位置する状態を示している。鼻当て駆動部8は、上下方向に延びるレール8a(案内部材)と、ツマミ8b(固定部)とを有して構成されている。鼻当て6をレール8aに沿って上下方向にスライドさせてツマミ8bを回して固定することにより、鼻当て6を上下方向の所定位置で固定することができる。これにより、支持手段2にて支持された映像表示装置1(映像表示ユニット1R・1L)を鼻当て6に対して相対的に上下方向に移動させることができる。したがって、上記した鼻当て6と鼻当て駆動部8とで、光学瞳Eの中心を含む顔に正対する鉛直断面内で眼幅方向とは垂直な上下方向に映像表示装置1を移動させる駆動機構9(駆動手段)が構成されていると言える。なお、鼻当て6におけるレール8aとの摺動部は、レール8aからの鼻当て6の抜けが防止される形状で形成されている。
【0060】
観察者がHMDを使用するときは、右テンプル5Rおよび左テンプル5Lを観察者の右側頭部および左側頭部に接触させるとともに、鼻当て6を観察者の鼻に当て、一般の眼鏡をかけるようにHMDを観察者の頭部に装着する。この状態で、映像表示ユニット1R・1Lにて映像を表示し、各光学瞳ER・ELの位置に観察者の右眼および左眼を位置させると、観察者は、映像表示ユニット1R・1Lの各表示映像を虚像として右眼および左眼でそれぞれ観察できるとともに、この映像表示ユニット1R・1Lを介して外界像をシースルーで観察することができる。
【0061】
このように、映像表示装置1は、支持手段2によって観察者の眼前で支持されるので、観察者は映像表示装置1から提供される映像をハンズフリーで観察することができる。また、観察者の観察方向が一方向に定まるので、観察者は暗環境でも表示映像を探しやすいという利点もある。
【0062】
また、上述したように、映像表示ユニット1R・1Lの各光学瞳ER・ELは、それぞれ、各光学瞳ER・ELの中心を含む顔に正対する鉛直断面内で、長軸方向が眼幅方向に対して90度よりも小さい角度θ(図6参照)で傾斜した斜め偏平形状となっている。したがって、駆動機構9によって映像表示装置1を上下方向に移動させることにより、上記鉛直断面内で眼幅方向の異なる位置に観察者の瞳を位置させて映像を観察することが可能となる。つまり、映像表示装置1の上下移動により眼幅を調整することが可能となる。
【0063】
例えば、図7において、眼幅距離をD1、D2、D3(単位はmm)とし、D1>D2>D3としたとき、眼幅距離D1の観察者は、右側用の光学瞳ERの下端の位置R1に右眼を位置させ、左眼用の光学瞳ELの下端の位置L1に左眼を位置させることにより、映像を観察することができる。また、眼幅距離D2の観察者は、右側用の光学瞳ERの中央の位置R2に右眼を位置させ、左眼用の光学瞳ELの中央の位置L2に左眼を位置させることにより、映像を観察することができ、眼幅距離D3の観察者は、右側用の光学瞳ERの上端の位置R3に右眼を位置させ、左眼用の光学瞳ELの上端の位置L3に左眼を位置させることにより、映像を観察することができる。
【0064】
以上のように、本実施形態では、光学瞳E(ER・EL)が上記鉛直断面内で斜め偏平形状であるので、駆動機構9によって映像表示装置1を上下方向に移動させることにより、眼幅方向の異なる位置に観察者の瞳を位置させて映像を観察することが可能となり、眼幅調整を容易に行うことができる。また、駆動機構9は、左右の光学ユニットをともに同じ方向(上方向または下方向)に駆動するので、左右方向でかつ互いに逆方向に駆動する従来の構成に比べて眼幅調整機構(駆動機構9)を小型化することができる。したがって、小型の構成で眼幅調整を行うことができ、装置全体を小型化することができる。
【0065】
また、駆動機構9を小型化できるので、両眼の間に駆動機構9を配置しても、左右方向に広い外界視野を確保することができる。さらに、駆動機構9は左右の光学ユニットを同時に上下方向に移動させるので、各光学ユニットを別々に移動させる構成の場合よりも駆動機構9の小型化が容易である。
【0066】
また、図6に示した、上記鉛直断面内における光学瞳Eの長軸方向と眼幅方向との相対角度θは、0°<θ<45°であることが望ましい。この場合は、眼幅方向に細長い光学瞳Eを45°以下の角度で回転させた斜め瞳となるので、上下方向の少ない移動量で左右方向の眼幅の調整量を大きくとることができる。したがって、45°<θ<90°としたときのような縦長の斜め瞳を形成する場合に比べて、眼幅調整機構である駆動機構9をさらに小型化することが可能となる。
【0067】
また、図7に示したように、両方の映像表示ユニット1R・1Lの各光学瞳ER・ELは、左右方向に対称に形成されている、つまり、眼幅方向に垂直な面(図1(b)の鉛直面P0)に対して対称となる形状で形成されている。この場合、2つの光学瞳ER・ELの間隔が、上方に向かうほど狭くなる(または広くなる)ので、両眼表示が可能な映像表示装置を上下方向に移動させることで、眼幅調整を確実に行うことができる。
【0068】
また、駆動機構9を構成する鼻当て6は、観察者の鼻と単に当接するだけなので小型化することが容易であり、鼻当て駆動部8も鼻当て6の上下駆動の採用で小型化できる。つまり、鼻当て駆動部8は、鼻当て6を単に上下方向にスライドさせることによって、映像表示ユニット1R・1Lを左右ともに同じ方向(上方向または下方向)に駆動することができるので、左右方向でかつ互いに逆方向に駆動する従来の眼幅調整機構に比べて、鼻当て駆動部8を小型化することができる。したがって、このような小型の鼻当て6および鼻当て駆動部8により、小型の駆動機構9を確実に実現することができる。さらに、鼻当て6の上下移動により眼幅を調整する構成とすることにより、観察者の両眼の瞳位置を同時に調整可能で、眼幅調整が容易となる。
【0069】
なお、以上では、両眼で映像を観察可能なHMDにおける眼幅調整について説明したが、片眼で映像を観察するHMDにも、上述した本発明の構成を適用することが可能である。つまり、片眼で映像を観察するHMDにおいて、斜めに偏平形状の光学瞳Eを形成し、映像表示装置1の上下移動によって眼幅の異なる観察者ごとに瞳位置を調整することが可能である。
【産業上の利用可能性】
【0070】
本発明は、頭部搭載型の映像表示装置に利用可能である。
【図面の簡単な説明】
【0071】
【図1】(a)(b)(c)は、それぞれ、本発明の実施の一形態に係るHMDの概略の構成を示す平面図、正面図および側面図である。
【図2】上記HMDが備える映像表示装置の概略の構成を示す断面図である。
【図3】(a)は、光軸入射面内での再生光線(映像光線)の光路を模式的に示す説明図であり、(b)は、再生時の光学瞳の形状を模式的に示す説明図である。
【図4】(a)は、ホログラム感光材料を露光するときの露光光線の光路を模式的に示す説明図であり、(b)は、上記露光によって作製されたHOEを用いて再生するときの再生光線(映像光線)の光路を模式的に示す説明図である。
【図5】(a)は、光学瞳の中心および上下端に入射する光線の回折ピーク波長を示す説明図であり、(b)は、再生光源の強度分布を示す説明図である。
【図6】上記映像表示装置の一方の映像表示ユニットの回転前後における正面図と瞳形状の模式的な説明図である。
【図7】上記映像表示装置の左右の映像表示ユニットの各光学瞳の形状を示す説明図である。
【図8】(a)および(b)は、上記HMDが備える鼻当て駆動部の概略の構成を示すものであって、それぞれ、鼻当てが下方および上方に位置する状態を示す断面図である。
【符号の説明】
【0072】
1 映像表示装置
1R 映像表示ユニット(右眼用表示ユニット)
1L 映像表示ユニット(左眼用表示ユニット)
2 支持手段
6 鼻当て(駆動手段)
8 鼻当て駆動部(駆動手段)
8a レール(鼻当て駆動部)
8b ツマミ(鼻当て駆動部)
9 駆動機構(駆動手段)
15 LCD(表示素子)
21 接眼光学系
22 接眼プリズム(光学部材)
24 光学素子(反射光学素子、ホログラム光学素子)
E 光学瞳

【特許請求の範囲】
【請求項1】
映像表示装置と、
上記映像表示装置を観察者の眼前で支持する支持手段とを備え、
上記映像表示装置が、
映像を表示する表示素子と、
上記表示素子からの映像光を反射させて光学瞳に導く反射光学素子とを備えたヘッドマウントディスプレイであって、
上記光学瞳は、その光学瞳の中心を含む顔に正対する鉛直断面内で、長軸方向が眼幅方向に対して90度よりも小さい角度で傾斜した斜め偏平形状であり、
上記支持手段は、上記映像表示装置を上記面内で眼幅方向とは垂直な方向に移動させる駆動手段を備えていることを特徴とするヘッドマウントディスプレイ。
【請求項2】
上記光学瞳の長軸方向と眼幅方向との相対角度をθとすると、
0°<θ<45°
であることを特徴とする請求項1に記載のヘッドマウントディスプレイ。
【請求項3】
上記駆動手段は、観察者の鼻と当接する鼻当てと、上記鼻当てを上下方向に移動させる鼻当て駆動部とを有していることを特徴とする請求項1または2に記載のヘッドマウントディスプレイ。
【請求項4】
上記反射光学素子は、体積位相型で反射型のホログラム光学素子であることを特徴とする請求項1に記載のヘッドマウントディスプレイ。
【請求項5】
上記表示素子の表示面の中心と上記光学瞳の中心とを光学的に結ぶ軸を光軸とし、上記ホログラム光学素子に対して、上記表示素子側より入射する光軸と、上記光学瞳側に射出する光軸とを含む面を、光軸入射面とすると、
眼幅方向に垂直な鉛直面と上記光軸入射面との相対角度をαとしたとき、
0°<α<90°
であることを特徴とする請求項4に記載のヘッドマウントディスプレイ。
【請求項6】
0°<α<45°
であることを特徴とする請求項5に記載のヘッドマウントディスプレイ。
【請求項7】
上記表示素子からの映像光は、赤、緑、青の少なくともいずれかの波長域を含む光であることを特徴とする請求項4から6のいずれかに記載のヘッドマウントディスプレイ。
【請求項8】
上記映像表示装置は、上記表示素子からの映像光を内部で全反射させて導光する光学部材をさらに有しており、
上記ホログラム光学素子は、上記光学部材内部を導光される上記表示素子からの映像光を回折反射させて光学瞳に導くことを特徴とする請求項4から7のいずれかに記載のヘッドマウントディスプレイ。
【請求項9】
上記ホログラム光学素子は、軸非対称な正の光学パワーを有しており、上記表示素子からの映像光を光学瞳に導く接眼光学系の少なくとも一部を構成していることを特徴とする請求項4から8のいずれかに記載のヘッドマウントディスプレイ。
【請求項10】
上記映像表示装置は、観察者の左右の眼に対応する左眼用表示ユニットと右眼用表示ユニットとを有しており、
上記両方の表示ユニットは、それぞれ、上記表示素子と上記反射光学素子とを備えており、
上記両方の表示ユニットの各光学瞳は、眼幅方向に垂直な面に対して対称となる形状であることを特徴とする請求項1から9のいずれかに記載のヘッドマウントディスプレイ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−145561(P2010−145561A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−320404(P2008−320404)
【出願日】平成20年12月17日(2008.12.17)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】