説明

ポリ乳酸の製造方法

【課題】ポリ乳酸系ポリマーを溶融させることなく、ポリマー中に残存する重合触媒を安価に、短時間で失活又は除去する方法の提供。
【解決手段】少なくとも一部が結晶化したポリ乳酸系ポリマーを、ポリ乳酸系ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることを特徴とするポリ乳酸系ポリマーの精製方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリ乳酸系ポリマーの精製方法に関する。さらに詳細には、ポリマー中に含まれる重合触媒を失活・除去させて分子量の低下を抑制した、熱に安定なポリ乳酸系ポリマーを製造する方法に関する。
【背景技術】
【0002】
近年、自然環境下及びコンポスト化過程において分解され、また再生可能な資源であるバイオマス資源を原料として利用できるバイオマスプラスチックが注目されている。とりわけ、ポリ乳酸系ポリマーは、融点が170℃前後と比較的高く、優れた透明性・生分解性を有することから、汎用プラスチックに代わる最も有望なバイオマスプラスチックである。
ポリ乳酸は、乳酸の二量体であるラクチドを開環して重合する開環重合法(特許文献1及び2参照)と、乳酸を脱水重縮合して合成する直接重縮合法(特許文献3及び4参照)により合成されている。また、直接重縮合法における溶融重合後に、固体状態で重合を進行させる固相重合法を組み合わせて高分子量のポリ乳酸を製造する方法も知られている(特許文献5参照)。
重合後のポリマーは、乳酸、ラクチド、それらのオリゴマー、重合触媒等の不純物を含み、これがポリマー中に残存したままであると、射出成形時等にポリ乳酸を加熱・溶融させた場合、ポリ乳酸の分解が生じ、ポリ乳酸の分子量が低下して成形品の物性が低いものになり、また成形自体が不可能になる、という問題が生じる。特に、重合触媒が残存していると、溶融時の分子量低下は著しい。そのため、高分子量のポリ乳酸を製造する場合、精製によりポリ乳酸中に残存する重合触媒を失活させるか、除去することが必要となる。
【0003】
従来、重合触媒の除去・失活方法としては、ポリ乳酸を良溶媒に一度溶解させた後、貧溶媒により沈殿させて回収する方法(特許文献6参照);良溶媒に溶解させたポリ乳酸溶液を塩化水素で処理し、触媒を塩素化合物に変化させた後、貧溶媒によりポリ乳酸を析出させて、触媒を失活・分離する方法(特許文献7参照);重合末期又は重合終了後に溶融状態のポリ乳酸に触媒失活剤を添加する方法(特許文献8参照)等が知られている。しかしながら、前者の方法では、大量の溶媒が必要となりコスト高となり、後者の方法では、固相重合を利用して製造したポリ乳酸では、一度ポリ乳酸を溶融する必要があるが、溶融時に熱分解が起こり分子量が急激に低下するため好ましくない。
【0004】
このように、直接重縮合法と固相重合法を組み合わせてポリ乳酸を製造する方法においては、ポリ乳酸を溶融させることなしに固体状態のまま残存する触媒を失活又は除去する必要がある。さらに、触媒失活処理を行うポリ乳酸は、ペレットのような取扱いが簡便なものが好ましい。
固体状のポリ乳酸を溶媒存在下で酸とポリ乳酸を接触させて触媒を除去する方法も知られているが(特許文献9参照)、ペレット状で結晶化の進んだポリ乳酸を触媒失活剤に浸漬させて処理を行う場合、失活剤又は除去剤のペレット内部への浸透性が問題となり、処理に時間を要するため工業的に好ましくない。また、時間を短縮するために洗浄温度を上昇させる、又は酸濃度を高くすると、酸によるポリ乳酸の分解への影響が現れ好ましくない。
【特許文献1】特公昭56−14668号公報
【特許文献2】特表平7−504939号公報
【特許文献3】国際公開第93/12160号パンフレット
【特許文献4】国際公開第97/31049号パンフレット
【特許文献5】特許第3430052号公報
【特許文献6】特開昭63−254128号公報
【特許文献7】特開平6−256492号公報
【特許文献8】特許第3797444号公報
【特許文献9】特許第3184680号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、ポリ乳酸系ポリマーを溶融させることなく、ポリマー中に残存する重合触媒を安価に、短時間で失活又は除去する方法を提供することを課題とする。
【課題を解決するための手段】
【0006】
本発明者らは、斯かる現状において鋭意研究を行った結果、少なくとも一部が結晶化したポリ乳酸系ポリマーを、ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることにより、ポリマーを溶融させることなく、ポリマー中に残存する重合触媒を短時間に失活又は除去できることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、少なくとも一部が結晶化したポリ乳酸系ポリマーを、ポリ乳酸系ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることを特徴とするポリ乳酸系ポリマーの精製方法を提供するものである。
また、本発明は、乳酸類を含む原料モノマーを直接重縮合させて得られたポリマー又はコポリマーを造粒した後、固相重合して少なくとも一部が結晶化したポリ乳酸系ポリマーを得、次いで該ポリ乳酸系ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることを特徴とするポリ乳酸系ポリマーの製造方法を提供するものである。
【発明の効果】
【0008】
本発明によれば、重合反応により固体状態で得られたポリ乳酸系ポリマーを溶融させることなく、ポリマー中に残存する重合触媒を安価に、且つ短時間で失活又は除去できるので、熱安定性に優れた高分子量のポリ乳酸系ポリマーを高収率で得ることができる。
【発明を実施するための最良の形態】
【0009】
本発明で用いられるポリ乳酸系ポリマーは、乳酸単位を含む脂肪族ポリエステルであって、例えばポリ乳酸、乳酸類と、これと共重合可能なモノマーとのコポリマーなどが挙げられる。また、ガラス繊維や植物繊維などと複合化したものでもよい。
ポリマーの原料に用いられる乳酸類としては、L−乳酸、D−乳酸、その両方が混在するDL−乳酸、又は乳酸の環状2量体であるラクタイドなどが挙げられる。また、乳酸類と共重合可能なモノマーとしては、例えば乳酸以外の脂肪族ヒドロキシカルボン酸、脂肪族ジカルボン酸、脂肪族ジオールなどが挙げられる。
【0010】
乳酸以外の脂肪族ヒドロキシカルボン酸としては、例えばグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、6−ヒドロキシカプロン酸などの炭素数2〜10の脂肪族ヒドロキシカルボン酸;グリコライド、ε−カプロラクトンなどの環状エステル中間体が挙げられる。脂肪族ジカルボン酸としては、例えばシュウ酸、コハク酸、グルタル酸、アジピン酸等の炭素数2〜30の脂肪族ジカルボン酸が挙げられる。脂肪族ジオールとしては、例えばエチレングリコール、プロピレングリコール、1,4−シクロヘキサンジメタノールなどの炭素数2〜30の脂肪族ジオールが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明において、ポリ乳酸系ポリマーとしては、ポリ乳酸が好ましい。
【0011】
ポリ乳酸系ポリマーは、上記原料を開環重合させる方法、直接重縮合する方法或いは直接重縮合法と固相重合法を組み合わせた方法のいずれの方法によっても得られるが、直接重縮合法と固相重合法を組み合わせた方法により得られるものが、一部結晶化したものが得られ易い点から好ましい。直接重縮合法と固相重合法を組み合わせることにより、少なくとも一部が結晶化した高分子量のポリ乳酸系ポリマーを得ることができる。直接重縮合法と固相重合法を組み合わせた方法によりポリ乳酸系ポリマーを製造する一般的なフローは、図1に示すとおりである。
【0012】
図1において、乳酸類などの原料は、先ず脱水工程に付され、脱水が終了した原料に重合触媒を添加した後、溶融状態で重縮合して、低分子量のポリ乳酸系ポリマーを得る。次いで、ポリマーを造粒してペレット化した後、固相重合槽に投入し、固体状態で重合を進行させ、固体状の高分子量のポリマーを得る。固相重合により得られたポリマーは、精製工程に付された後加工される。ここで、精製工程により重合触媒が失活又は除去されるが、重合触媒としては、重合反応に用いられる公知の触媒、例えばスズ、亜鉛、鉛、チタン、コバルトなどの金属及びそれらの化合物が挙げられる。
【0013】
本発明で用いられるポリ乳酸系ポリマーは、少なくとも一部が結晶化したポリマーである。ここで、少なくとも一部が結晶化した状態とは、完全に非晶質の状態でなければよく、結晶化の程度は問わないが、40質量%以上、特に50〜90質量%結晶化しているものが好ましい。少なくとも一部が結晶化したポリマーを用いることで、混合溶液を加温しても軟化せず、簡便に精製処理が行える。
結晶化の程度(結晶化度)は、例えば、示差走査熱量計(DSC)にて測定できる。測定は昇温速度を10℃/minで行い、ポリ乳酸系ポリマーに起因する融解熱量(ΔHm)及び結晶化熱量(ΔHc)を測定し、下記式によりポリ乳酸系ポリマーの結晶化度を算出する。
結晶化度(%)=100×(ΔHm+ΔHc)/93
(上式中、「93」は、公知の文献で示されているポリ乳酸が100%結晶化した場合の結晶融解熱(93J/g)を意味する。ΔHc、ΔHmの単位はJ/gである。)
【0014】
ポリマーの形状は、特に制限されず、例えば粉末状、顆粒状、ペレット状、粒状、フレーク状、ブロック状などが挙げられ、特にペレット状、粒状が好ましい。ポリマーの形状が小さすぎると処理後のろ過などの取扱いが難しくなり、他方大きすぎると触媒を失活させるのに長時間を要するため、その直径は1〜5mm程度であるのが好ましい。
ポリマーの重量平均分子量は、5万〜40万が好ましく、特に15万〜30万が好ましい。なお、ポリマーの重量平均分子量は、GPCによるポリスチレン換算の値である。
【0015】
本発明で用いられる有機溶剤としては、ポリ乳酸系ポリマーの溶解度が低く、適度に膨潤させることのできるものが好ましく、例えばアセトン、2−ブタノン、ジエチルケトン、アセトフェノンなどのケトン類;テトラヒドロフランなどのエーテル類;シクロヘキサンなどの飽和炭化水素、トルエンなどの芳香族炭化水素、メタノールなどのアルコール類、酢酸エチルなどのエステル類、アセトニトリルなどのニトリル類などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうち、ポリマー内部への浸透性の観点から、ケトン類が好ましく、特にアセトンが好ましい。アセトンは、沸点が低いため、続いて行われる乾燥工程が簡便となり、また触媒失活剤の拡散や抽出を容易にさせる。
【0016】
本発明で用いられる触媒失活剤としては、ポリマーの加水分解を防止する観点から、実質的に酸を含まないものが好ましく、例えばアセチルアセトン、2,4−ヘキサンジオン、1,3−シクロヘキサンジオン、アセト酢酸エチルなどのジケトン類;エチレンジアミン等のアミン類などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうち、ポリマー内部への浸透性の観点から、ジケトン類が好ましく、特にアセチルアセトンが好ましい。アセチルアセトンは、分子量が低く、沸点が低いため、処理後の乾燥工程が簡便であり、またペレット内部への拡散性にも優れる。
【0017】
本発明において、有機溶剤と触媒失活剤との混合比(質量比)は、ポリマーへの浸透性、精製時間短縮の観点から、有機溶剤:触媒失活剤=1:9〜7:3が好ましく、特に4:6〜6:4が好ましい。有機溶剤の含有率が高い方が触媒失活剤のポリマー中への浸透が容易であるが、混合溶液の沸点が低くなりすぎると精製効率が悪くなる。なお、混合溶液の沸点を上昇させるために、沸点の高い溶剤を混合してもよい。
【0018】
本発明において、有機溶剤と触媒失活剤を含有する混合溶液の加熱温度は、ポリ乳酸系ポリマーのガラス転移温度(Tg)以上であればよい。ガラス転移温度以上に加温することにより、ポリマー内部への浸透性が向上し、精製時間を短縮できる。例えばポリ乳酸の場合、ガラス転移温度である60℃以上に加温すればよい。ここで、ポリマーのガラス転移温度は、例えばDSC法によって求めることができる。
加熱温度の上限値は、混合溶液の沸点が好ましい。混合溶液の沸点を超えて加熱すると、ポリマーの加水分解が生じ易く、また混合溶液のポリマーへの浸透性が失われ易い。
本発明において加熱温度は、60℃〜100℃の範囲が好ましく、特に70℃〜90℃の範囲が好ましい。
【0019】
混合溶液にポリマーを浸漬させる方法としては、特に制限されず、例えば静置法、攪拌法、カラム法などが挙げられる。
浸漬時間は、ポリマーの形状や大きさなどにもよるが、例えば直径2〜3mmのペレット状の場合、2〜24時間が好ましく、特に4〜10時間が好ましい。浸漬時間が短すぎると触媒の失活・除去効果が得られにくく、加熱溶融により分子量が大幅に低下する可能性がある。他方、浸漬時間が長すぎると、触媒の失活・除去効果が頭打ちになるだけでなく、ポリマーの劣化が生じる恐れがある。
混合溶液は、ポリマー中に含まれる触媒量より触媒失活剤が多くなるように用いればよく、その使用量は、ポリマーに対して、50〜400質量部が好ましく、特に100〜200質量部が好ましい。
なお、本発明において、少なくとも一部が結晶化した乳酸ポリマーは、前記ガラス転移温度から沸点の範囲に加温した混合溶液に浸漬すればよく、予め当該温度に加温した混合溶液に浸漬してもよく、当該温度未満の混合溶液に浸漬した後に当該温度に加温してもよい。
【実施例】
【0020】
以下、本発明について実施例をあげて具体的に説明するが、本発明はこれらによって何等限定されるものではない。なお、本発明において、分子量の測定及び熱安定性の評価は次の方法で行った。
(1)重量平均分子量の測定
クロロホルムを溶離液としたゲルパーミエーションクロマトグラフィー(GPC)により測定した。試料の濃度は0.5〜1%で、標準試料として分子量既知の標準ポリスチレンを用いた。
(2)熱安定性評価
アルミナ10mgをリファレンスとして用いた示差走査熱量測定法(DSC装置)を用いて熱処理を行った。熱処理条件は、試料量10mg、窒素雰囲気下(流量100ml/min)、昇温速度10℃/min、処理温度200℃、処理温度保持時間は30分間とした。200℃30分保持後自然放冷し、サンプルを取り出し、GPCにより分子量を測定し、下記の式で示される分子量低下率でポリ乳酸の熱安定性を評価した(Mw=重量平均分子量)。
分子量低下率:
[熱処理前分子量(Mw)−熱処理後分子量(Mw)]/熱処理前分子量(Mw)×100
【0021】
[ポリ乳酸の合成]
ピューラック社製L−乳酸Hipure90を10kg、図2に示す攪拌翼6を備えた回分式溶液重合槽1に入れた。この反応槽は、上部に多管式の還流装置3が設置されており、この還流装置の上流にはバルブ2、冷却トラップ4と真空ポンプ5が設置させている。材料温度を180℃に加熱し、真空ポンプ5直前の圧力を3torrに調整し、更に200rpmで攪拌翼を回転させながら5時間脱水を行ったところ、脱水開始直後に約30torrであった重合槽の圧力は、約10torrまで低下し、安定した。そこで、この時点を脱水工程終了時と判断し、次の溶液重合工程に移行した。
脱水が終了した試料に重合触媒として塩化第一スズ2水和物及びp−トルエンスルホン酸を初期乳酸原料に対して0.5重量部となるように添加し、更にジフェニルエーテルを初期乳酸原料に対して25重量部となるように添加した。次いで、反応槽の材料温度が160℃になるように調整し、真空ポンプ直前の圧力を3torrに調整し、更に200rpmで攪拌翼を回転させながら溶液重合を行った。ポリマー粘度に適した攪拌を行うため、重合途中から攪拌翼の回転数を段階的に落とし、最終的には5rpmとした。次いで、分子量の上昇速度が低下し始める溶融重合開始から17時間後に溶液重合を終了した。ゲルクロマトグラフを用いて測定したこの時点のポリマーの重合平均分子量は96,000であった。
バルブ2を閉じ、窒素供給バルブ8を開いて重合槽内に乾燥窒素を供給し、常圧に戻した後、更に圧力計9が0.3kgf/cm2の圧力となるように加圧した。次いで、重合槽の下部にある排出バルブ10を開放し、その下に設置されているギアポンプ11を10rpmで回転させ、重合槽内のポリマーを2軸スクリュー押出機(TEX)21へ供給した。この時の樹脂の排出速度は約8.5kg/hrであった。
TEXは、スクリュー径が30mmのTEX30αを用い、各個別に加熱することができる7つのシリンダーブロック13が装着されている。スクリューの構成は全てフルフライトのスクリューとした。
シリンダーブロックの温度を140℃に設定し、スクリュー回転数を125rpmで同方向に回転させながら、ホッパー口12から約8.5kg/hrの速度で重量平均分子量は96,000のポリマーを供給した。ダイス17から樹脂が安定して排出されるのを確認した後、出てきた樹脂をテフロン(登録商標)製冷却コンベアー18で移動させながら冷却装置19で冷却後、破砕機22で破砕した回分式固相重合槽24に投入した。この重合槽には冷却トラップ26とその先に真空ポンプ27が設置されており、溶媒やラクチドがトラップ内に捕集させるようになっている。熱媒温度が120℃になるように調整し、真空ポンプ27直前の圧力を3torrに調整、攪拌翼25を回転させずに1時間脱溶媒を行った。熱媒温度を160℃に設定し、真空ポンプ直前の圧力を3torrに調整、攪拌翼を5rpmで回転させながら48時間重合を行ったところ、重量平均分子量約300,000のポリマーを得た。結晶化の程度を上記方法により測定したところ、約90%であった。
【0022】
実施例1
上記により得られた直径2〜3mmのペレット状のポリ乳酸(重量平均分子量約28万)2.5gを30mLの容器に入れ、アセトン、アセチルアセトンの割合(質量比)が5:5の混合溶液5gを添加し浸漬させた。容器の開放部に還流管を接続し、25℃の冷却水を流した。容器を80℃に保った恒温槽に入れ、2時間保持した後、ろ過乾燥を行った。得られたポリ乳酸を200℃30分間熱処理し、その前後でのポリ乳酸の分子量を測定した。結果を表1に示す。
【0023】
実施例2−16
アセトンとアセチルアセトンの混合比、恒温槽温度及び浸漬時間を表1のように変えた以外は、実施例2と同様に行った。結果を表1に示す。
【0024】
実施例17
上記により得られた直径2〜3mmのペレット状のポリ乳酸(重量平均分子量約28万)2.5gを30mLの容器に入れ、メチルエチルケトン(MEK)、アセチルアセトンの割合(質量比)が8:2の混合溶液5gを添加し浸漬させた。容器の開放部に還流管を接続し、25℃の冷却水を流した。容器を70℃に保った恒温槽に入れ、2時間保持した後、ろ過乾燥を行った。得られたポリ乳酸を200℃30分間熱処理し、その前後でのポリ乳酸の分子量を測定した。結果を表1に示す。
【0025】
実施例18−20
恒温槽温度及び浸漬時間を表1のように変えた以外は、実施例17と同様に行った。結果を表1に示す。
【0026】
比較例1
上記により得られた直径2〜3mmのペレット状のポリ乳酸(重量平均分子量約28万)を未処理のまま熱処理を行った。結果を表1に示す。
【0027】
比較例2
上記により得られた直径2〜3mmのペレット状のポリ乳酸(重量平均分子量約28万)2.5gを30mLの容器に入れ、アセチルアセトン溶液5gを添加し浸漬させた。容器の開放部に還流管を接続し、25℃の冷却水を流した。容器を80℃に保った恒温槽に入れ、2時間保持した後、ろ過乾燥を行った。得られたポリ乳酸を200℃30分間熱処理し、その前後でのポリ乳酸の分子量を測定した。結果を表1に示す。
【0028】
比較例3−4
恒温槽温度及び浸漬時間を表1のように変えた以外は、比較例2と同様に行った。結果を表1に示す。
【0029】
比較例5
上記により得られた直径2〜3mmのペレット状のポリ乳酸(重量平均分子量約28万)2.5gを30mLの容器に入れ、メチルエチルケトン(MEK)にリン酸濃度が0.05M/MEK kgとなるように85%リン酸溶液を加えた混合溶液5gを添加し浸漬させた。容器の開放部に還流管を接続し、25℃の冷却水を流した。容器を80℃に保った恒温槽に入れ、2時間保持した後、ろ過乾燥を行った。得られたポリ乳酸を200℃30分間熱処理し、その前後でのポリ乳酸の分子量を測定した。結果を表1に示す。
【0030】
比較例6
浸漬時間を6時間に変えた以外は、比較例6と同様に行った。結果を表1に示す。
【0031】
【表1】

【0032】
表1から明らかなように、ペレット状の結晶化したポリ乳酸を加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬することで、ポリマー中に残存している重合触媒を失活又は除去でき、熱処理時の分子量低下が抑制された、熱安定性に優れた高分子量のポリ乳酸を得られることが確認された。一方、比較例1〜6に示すように、ポリ乳酸を有機溶剤及び触媒活性剤を含有する混合溶液に浸漬させない未処理の場合は、熱処理によりポリ乳酸が分解され、ポリ乳酸の分子量は大きく低下し、本発明のような有機溶剤と触媒活性剤の混合溶液を用いない場合は、触媒失活・除去に多くの時間が必要となる。
【図面の簡単な説明】
【0033】
【図1】直接重縮合法と固相重合法を組み合わせたポリ乳酸製造工程の概略図を示す図である。
【図2】ポリ乳酸を製造するための装置の概略図を示す図である。
【符号の説明】
【0034】
1:回分式溶液重合槽
2:バルブ
3:還流管
4:冷却トラップ
5:真空ポンプ
6:攪拌翼
7:攪拌モーター
8:乾燥窒素ガス供給バルブ
9:圧力計
10:材料排出バルブ
11:ギヤーポンプ
12:ホッパー口
13:シリンダーブロック
14:ベントロ
15:マテリアルシール
17:ダイス
18:冷却コンベアー
19:冷却装置
20:モーター
21:2軸スクリュー押出機(TEX)
22:破砕機
23:バルブ
24:回分式固相重合槽
25:攪拌翼
26:冷却トラップ
27:真空ポンプ
28:排出バルブ
29:乾燥窒素ガス供給バルブ

【特許請求の範囲】
【請求項1】
少なくとも一部が結晶化したポリ乳酸系ポリマーを、ポリ乳酸系ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることを特徴とするポリ乳酸系ポリマーの精製方法。
【請求項2】
有機溶剤と触媒失活剤との混合比が、質量比で1:9〜7:3の範囲である請求項1記載のポリ乳酸系ポリマーの精製方法。
【請求項3】
有機溶剤がケトン類であり、触媒失活剤がジケトン類である請求項1又は2記載のポリ乳酸系ポリマーの精製方法。
【請求項4】
混合溶液の加温温度が60℃〜100℃である請求項1〜3のいずれか1項記載のポリ乳酸系ポリマーの精製方法。
【請求項5】
ポリ乳酸系ポリマーが、乳酸類を含む原料モノマーを直接重縮合させて得られたポリマー又はコポリマーを造粒した後、固相重合させて得られる少なくとも一部が結晶化したポリ乳酸である請求項1〜4のいずれか1項記載のポリ乳酸系ポリマーの精製方法。
【請求項6】
乳酸類を含む原料モノマーを直接重縮合させて得られたポリマー又はコポリマーを造粒した後、固相重合して少なくとも一部が結晶化したポリ乳酸系ポリマーを得、次いで該ポリ乳酸系ポリマーのガラス転移温度から沸点の範囲に加温した有機溶剤及び触媒失活剤を含有する混合溶液に浸漬させることを特徴とするポリ乳酸系ポリマーの製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2008−260893(P2008−260893A)
【公開日】平成20年10月30日(2008.10.30)
【国際特許分類】
【出願番号】特願2007−106181(P2007−106181)
【出願日】平成19年4月13日(2007.4.13)
【出願人】(000004215)株式会社日本製鋼所 (840)
【Fターム(参考)】