説明

マイクロチップの製造方法および製造装置並びにマイクロチップ

【課題】
接合強度が高く、密閉(密封)性がよく、接合時間が短くて済むマイクロチップの製造方法および製造装置を提供することを目的とする。
本発明は、更に上記の製造方法および製造装置に製造されて、コストが低廉で、変形が少ないマイクロチップを提供すること。
【解決手段】
微細溝形成基板およびガラス基板を接合する接合ステップを有するマイクロチップの製造方法は、光源を熱源線とする加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY軸方向に移動させ、前記加熱装置を前記基板および前記ガラス基板に対向させるステップと、前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射し、前記微細溝の両側に接合線を形成するようにした前記接合ステップとを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロチップの製造方法および製造装置並びにマイクロチップに関する。
【背景技術】
【0002】
化学反応の高速化,微少量による反応,オンサイト分析等の観点から化学反応と微小空間で行うためにマイクロチップを使用することが行われるようになって来た。マイクロチップ内部の微少流路あるいは微細溝(流路チャンネルあるいは単にチャンネルとも言われる。以下、微細溝を統一用語として使用する。)で液中試料の混合,反応,分離,抽出を行って検出データを得ることが成される。
このため、マイクロチップを製造する方法が種々提案されている。
【0003】
特許文献1には、マイクロチップは、溝が形成されたガラス基板上に、試料注入・排出用小穴が溝の対応位置に配置された他のガラス基板を接合したものをいい、接合後その溝部分が、前述の微細流路を形成するものである。また、マイクロチップを構成する2枚のガラス基板の接合方法としては、フッ酸水溶液又は無水ケイ酸を片方のガラス基板に滴下し、もう一方のガラス基板を張り合わせて長時間荷重を印加して接合するものや、アルカリ(NaOH)等で両方のガラス基板表面を洗浄し、軽い圧力を加えることで接合するものや、高真空下で両方のガラス基板表面をエネルギービームを照射することで活性化させて接合するものなどが知られていることを記憶している。
【0004】
また、特許文献1には、一方の面に溝が有する板状の第1のガラス基板の前記一方の面に、前記溝の対応位置に少なくとも2つの貫通孔を有する板状の第2のガラス基板を接合する接合ステップを備えるマイクロチップの製造方法であって、
前記第1のガラス基板と前記第2のガラス基板は、温度粘性曲線が互いに異なり、
前記接合ステップは、前記接合を前記第1のガラス基板及び前記第2のガラス基板を所定温度に加熱することにより行うマイクロチップの製造方法を提案している。
【0005】
特許文献2には、少なくとも珪素酸化物を貼り合わせる面の表面の構成要素として含む基板同士の張りあわせにおいて、少なくとも六ふっ化珪酸(H2SiF6)を含む溶液を当該張り合わせを行う基板間に導入した後に、当該被貼り合わせ基板間に適当な圧縮圧力を印加する貼り合わせ方法が記載されている。
【0006】
特許文献3には、表面の主成分がSiO2である部材同士を接合させる工程を含んで構造体を製造する製造方法であって、前記接合工程は、前記両部材のいずれかの表面に表面領域を複数に分割する溝を形成しておき、前記溝が形成された表面に他の部材の表面を重ね、その接合面にSiO2を溶解させる溶液を介在させて前記両部材を接合させる工程である構造体製造方法が記載されている。
【0007】
特許文献4には、相互に接合するガラスである酸化珪素部材をフッ酸ガスにさらしたのち、両酸化珪素系部材を接触させて接合する個体接合方法が記載されている。
【0008】
特許文献5には、接合対象の複数のガラスを密着して重ね合わせることにより複数ガラス密着体を形成し、該複数ガラス密着体にビーム状のレーザー光を照射し、該ガラスの一部分を溶融し、溶融した該ガラスを固化させることにより、該接合対象の複数のガラスを接合する方法が記載されている。
【0009】
特許文献6には、二枚のガラスを、それらの接合面を相互に突き合わせた状態に配置し、これらの接合面を相互に加圧しながら、加熱用の光源ランプからの光を当該接合面を含む接合部分に照射して、当該接合面を加熱して軟化させることにより、前記接合面を融着する板ガラスの接合方法が記載されている。
【0010】
更に、特許文献7には、所定のパターンを有すると共に所定の断面形状のチャネルをガラス基板に形成するマイクロ化学システム用チップ部材のチャネル形成方法において、プレス法を用いて前記ガラス基板に前記チャネルの形成を行うことを特徴とするマイクロ化学システム用チップ部材のチャネル形成方法が記載されている。
【0011】
更に、特許文献8には、電極集積化マイクロチップにおける電気化学反応の測定方法が記載されている。
【0012】
【特許文献1】特開2003−215140号公報
【特許文献2】特開2002−316842号公報
【特許文献3】特開2004−238238号公報
【特許文献4】特開2002−97040号公報
【特許文献5】特開2001−247321号公報
【特許文献6】特開2003−63839号公報
【特許文献7】特開2003−275575号公報
【特許文献8】特開2004−237981号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
従来、流路加工後のマイクロチップガラスを接合するには、(1)水酸化アンモニウム/過酸化水素水を用いてベースガラスとカバーガラスの接合面を酸化処理し、重ね合わせて加熱する方法、(2)接合面に1%フッ酸水溶液を滴下し重ね合わせ24時間荷重をかけて接合方法及び(3)接合面に水ガラスを薄く塗布し、重ね合わせて荷重をかけ加熱する等の湿式法が主に用いられていた。
【0014】
(1)(2)については比較的強固な接合が得られるが、多くの生化学システムで必要となる金属電極が、アルカリ液や酸性液により浸食溶解される欠点を有するため、従来からある有益な技術や表面プラズモン共鳴バイオセンサ(SPR)等の新しい技術をマイクロチップ化できない原因となっている。
(3)については、電極の浸食はないが接合強度,密閉性に難がある。また、これらの湿式法は一般に接合に要する時間が長い(数時間から1日)欠点がある。
【0015】
一方、乾式法には、(4)接合面を鏡面研磨後、重ね合わせ電気炉内で融着する乾式法があるが、研磨に要する時間(数時間)とコストが増大する欠点を有する。
また、従来の方法は、耐圧を要求されるシステムでは充分な強度が得られず、ガラス自体の変形や支持器材の耐熱の問題から不可能であった。
【0016】
本発明は、かかる点に鑑みて接合強度が高く、密閉(密封)性がよく、接合時間が短くて済むマイクロチップの製造方法および製造装置を提供することを目的とする。
【0017】
本発明は、更に上記の製造方法および製造装置に製造されて、コストが低廉で、変形が少ないマイクロチップを提供することを目的とする。
【課題を解決するための手段】
【0018】
本発明は、一方の面に微細溝(チャンネル)を有する板状の基板の前記一方の面に、重ね合わせて板状のガラス基板を配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成されて、前記基板および前記ガラス基板を接合する接合ステップを有するマイクロチップの製造方法において、光源を熱源線とする加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY軸方向に移動させ、前記加熱装置を前記基板および前記ガラス基板に対向させるステップと、前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射し、前記微細溝の両側に接合線を形成するようにした前記接合ステップとを有することを特徴とするマイクロチップの製造方法を提供する。
【0019】
また、本発明は、一方の面に微細溝を有する板状の基板の前記一方の面に、板状のガラス基板を重ね合わせて配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成された前記基板および前記ガラス基板を接合して製造するマイクロチップの製造装置において、光源を熱線源とする加熱装置と、前記加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY方向に移動して、前記加熱装置および重ね合わせた前記基板と前記ガラス基板とを対向配置させる移動手段と、前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射させ、前記微細溝の両側で接合線を形成させる制御部と、を有することを特徴とするマイクロチップの製造装置を提供する。
【0020】
また、本発明は、一方の面に微細溝を有する板状のガラス基板の前記一方の面に、重ね合わせて板状のガラス基板が配設され、前記微細溝の対応位置に少なくとも2つの貫通孔が形成されて接合されたマイクロチップにおいて、前記2つのガラス基板は、前記微細溝の両側にある複数の接合線で接合されていることを特徴とするマイクロチップを提供する。
【発明の効果】
【0021】
上述のように、本発明は、加熱装置からの熱源線をガラス基板を含む両基板の間に照射し、微細溝の両側で該微細溝に並行するようにして複数の接合線もしくは微細溝を包囲する接合線を形成するようにしているので、接合強度が高く、密閉性が良く、接合時間が短くて済むマイクロチップの製造方法および製造装置を提供することができる。
【0022】
更に、これらのマイクロチップの製造方法および製造装置は簡便であり、コストが低くて済むことによって製造されたマイクロチップ自体もコストが低廉であり、かつ接合線による接合のため基板に変形を与えないか、あるいは極めて少なくて済む、精度の高いマイクロチップを提供することができる。
【0023】
上述のように、マイクロチップを安価に簡便に密封性のよいものにすることができるので、マイクロチップ間に形成する微細溝をより複雑に、多岐にわたる種々の反応に供することができるようになる。
【発明を実施するための最良の形態】
【0024】
一方の面に微細溝(チャンネル)を有する板状の基板の前記一方の面に、重ね合わせて板状のガラス基板を配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成されて、前記基板および前記ガラス基板を接合する接合ステップを有するマイクロチップの製造方法において、光源を熱源線とする加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY軸方向に移動させ、前記加熱装置を前記基板および前記ガラス基板に対向させるステップと、前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射し、前記微細溝の両側に接合線を形成するようにされ、前記接合線は前記微細溝に沿って近接して形成されるようにされた接合ステップを有することを特徴とするマイクロチップの製造方法が構成される。
【0025】
上記方法において、前記貫通孔は前記マイクロチップの外方にそして前記微細溝は内方に形成され、前記接合線は当該貫通孔と当該微細溝とを包囲して形成されるようにされたマイクロチップの製造方法が構成される。
【0026】
上記方法において、前記基板はガラス板,金属板,シリコン(Si)板あるいはアルミニウム(合金を含む)板であることを特徴とするマイクロチップの製造方法が構成される。
【0027】
上記方法において、前記基板と前記ガラス基板との間には封鎖接合のための薄膜が形成されず、直接接触とさせ、前記基板と前記ガラス基板とを加熱による反応接合によって前記接合線を形成するようにしたマイクロチップの製造方法が構成される。
【0028】
上記方法において、前記基板と前記ガラス基板との間にはガラス成分からなる封鎖接合のための薄膜を形成し、該封鎖接合薄膜と前記基板と前記ガラス基板との間の加熱による反応接合によって前記接合線を形成するようにしたマイクロチップの製造方法が構成される。
【0029】
上記方法において、前記基板はガラス基板であり、両ガラス基板の両側に熱吸収材を配置して両ガラス基板の間に局部的な電気炉を形成し、両ガラス基板を局部的に溶融させることによって前記接合線を形成するマイクロチップの製造方法が構成される。
【0030】
上記方法において、前記接合線は点焦点法によって、もしくは線焦点法によって形成されることを特徴とするマイクロチップの製造方法が構成される。
【0031】
更に、一方の面に微細溝を有する板状の基板の前記一方の面に、板状のガラス基板を重ね合わせて配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成された前記基板および前記ガラス基板を接合して製造するマイクロチップの製造装置において、光源を熱線源とする加熱装置と、前記加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY方向に移動して、前記加熱装置および重ね合わせた前記基板と前記ガラス基板とを対向配置させる移動手段と、前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射させ、前記微細溝の両側で接合線を形成させ、前記微細溝の配置を記憶する記憶手段を有し、該記憶手段に記憶された前記微細溝の配置データを使用して前記移動手段の移動量を演算処理する処理部を有する制御部とで構成されるマイクロチップの製造装置が構成される。
【0032】
上記装置において、前記ガラス基板の上面に電極保護膜が形成されることを特徴とするマイクロチップの製造装置が構成される。
本実施例を公知の他の接合方法とを組み合わせても良い。
以下、図面に沿って本発明の実施例を説明する。
【実施例1】
【0033】
図1は、本発明の実施例であるマイクロチップの製造装置100の構成を示す。図1において、マイクロチップの製造装置100は、光源を熱源線とする加熱装置1,マイクロチップ10を載置するX−Yステージ2,X軸駆動モーター3,Y軸駆動モーター4および制御部5を備えて構成される。制御部5は、接合制御部およびステージ制御部を備える。
【0034】
加熱装置1には、赤外線加熱装置,レーザー照射装置などの光源を熱源線とする加熱手段が採用され、実施例1では、加熱手段として赤外線12を使用した加熱装置の例を示す。赤外線照射部11から発せられた赤外線は反射されてマイクロチップ10を構成する上下板材である基板の接合面(接合部)に焦点を合わされ集光される。本実施例の場合、上方の基板としてガラス基板が使用され、下方の基板としてガラス基板,金属基板,シリコン(Si)基板あるいはアルミニウム(アルミニウム合金を含む)基板が採用される。以下、上方および下方共、ガラス基板を採用した例について説明する。
【0035】
マイクロチップ10はスプリング式ガラス基板ホルダ6に装着あるいはその他の適切なる締着手段によって固定され、ガラス基板ホルダ6はX−Yステージ2にビス止めあるいはその他の適切なる締着手段によって固定される。X−Yステージ2は中央部に空間(部)7が形成してあり、この空間7を跨いでガラス基板ホルダ6がX−Yステージ2に固着されている。
【0036】
加熱装置1から出射される赤外線の強さ,焦点の位置、および接合線の位置,距離,形は、制御部5の接合制御部により出力される制御信号により制御される。
【0037】
ガラス基板ホルダ6は、前述のようにX−Yステージ2に固定されていて、その表面に赤外線照射部11からの赤外線が対称の形で照射されるように、すなわち一本の統合された照射線としての光源線を想定するならば、当該光源線に直交するように配置される。
【0038】
X−Yステージ2はX軸駆動モーター3によってX軸方向に、そしてY軸駆動モーター4によってY軸方向に駆動される。また、加熱装置1はZ軸駆動モーター(図示せず)によってZ軸方向に駆動される。このZ軸方向の駆動を含むX−Y軸駆動をX−Yステージ2によって行ってもよい。
【0039】
制御部5のステージ制御部はX−Yステージ2あるいは加熱装置1に対する制御/監視機能を有しており、それぞれに対応する電源のオンオフを含む各種制御を行い、そのためのプログラムを含む。
【0040】
図2に上下のガラス基板15,16を接合し、マイクロチップ10を製造する手段および方法を示す。図2において、前述のように加熱装置1は赤外線照射部11を有し、この赤外線照射部11を囲んで反射体13が設けてある。本例の場合、精密の曲率加工を施した楕円面反射形としているが、他の反射形、例えば放物面反射形としてもよい。楕円面反射形部の終端に開口部14が形成してある。
【0041】
発熱体としては赤外線ランプが使用される。赤外線ランプは石英ガラス管にタングステンフィラメントを封じ込んで、棒状ランプとされる。この棒状ランプが赤外線照射部11となる。高エネルギー密度の赤外線ランプと上述の反射体により高速超高温加熱が実現される。冷却手段(図示せず)としては、水冷あるいはガラス冷却機構が用いられる。制御部1(図1)の接合制御部によって応答性の高い赤外線ランプの電圧調節と、プログラマブル温度コントロールとの組み合わせにより接合部の温度を自在に制御することを行う。赤外線ランプを使用した接合は、大気中あるいは気密構成物中で可能であり、20秒内外の時間で1900〜2000℃に昇温することができる。
【0042】
下方のガラス基板16の一面には微細溝となる流路19(チャンネル)が形成され、流路19の形成されたガラス基板16は流路形成基板となる。
微細溝は、微細溝内での精製操作や合成反応,免疫反応のため試薬担体等として有用なマイクロビーズ等の固体試料の流れを形成するために用いられる。
【0043】
上方のガラス基板15あるいは下方のガラス基板16のガラス接合面に、ガラス成分であるアルミニウム,酸化硼素,一酸化珪素あるいは珪素などを蒸着あるいはスパッタ法により封鎖接合薄膜として使用する薄膜(数十nm〜数ミクロン)17を形成する。薄膜17を形成して、ガラス基板15,16を重ね合わせる。本実施例の場合、ガラス基板15,16に電極(図示せず)が設けてあり、これらの電極による昇温作用により昇温をより速やかに行えるようにしている。上方のガラス基板15の上面に金属膜,金蒸着膜等による電極保護膜20が形成してあり、また流路19の底部に電極を形成する。ガラス基板15,16と薄膜17とを重ね合わせた後に、接合面に赤外線ランプの光を楕円形の反射体13により一点に集光する赤外線イメージ炉にて予めプログラム化された接合線に沿って加熱し、反応接合させる。前述のように、重ね合わせたガラス基板15,16はX−Yステージ2を有する専用の移動機械のガラス基板ホルダ6に支持しているので、接合線を任意に矢印で示すように起動することができ、電極部の熱や酸,アルカリ処理からのダメージを回避できる。
【0044】
以上のようにしてマイクロチップ10が形成、すなわち製造される。図3は、点焦点接合の例(図3(a))と線焦点接合の例(図3(b))を示す。これらの図にあっては、側方から見た図と上方から見た図を含み、マイクロチップを示す図は平面図である。図3(a)に示す加熱装置1には点焦点型の加熱装置が使用され、図3(b)に示す加熱装置1には線焦点型の加熱装置が使用される。図3(a)に示す例にあっては、電気炉は採用されず、赤外線ランプを使用した赤外線照射部11による加熱方式が採用され、図3(b)に示す例にあっては、電気炉が採用され、この電気炉上方の光吸収メッシュ22および下方の光吸収プレートによって光吸収局部電気炉21が形成される。また、この例にあっては赤外線ランプは横配置とされ、縦配置の図3(a)とは異なる配置となる。
【0045】
図3(a)による点焦点式接合によれば点集合によって接合線が形成され、図3(b)による線焦点式接合によれば線焦合によって接合線が形成される。
【0046】
図3(b)に示す例にあっては、前述のように光吸収メッシュ(白金メッシュ)22および光吸収プレート(白金シート)23を配置して赤外線照射することにより、白金部にて赤外線が吸収されて発熱して局部的な電気炉を形成する(光吸収局部電気炉21の形成)。
【0047】
図4および図5を使用して接合方法について説明する。図4は、マイクロチップ10を説明する図であり、図4(a)は封鎖接合薄膜として使用される薄膜17、すなわち中間層を設けることなく、上下のガラス基板15,16を直接的に接合する例である。この例に合っては、流路19は下側のガラス基板16上に直接形成されるか、あるいはこのガラス基板16の上に流路19を備えた流路形成基板介在される。この方法による接合によれば、2枚のガラス基板15,16を熱融接するために接合強度が大きくなる。
【0048】
上側のガラス基板15には、流路19に連通するようにした貫通孔33が複数個設けてある。
【0049】
図4(b)は封鎖接合薄膜として使用される薄膜17、すなわち中間層を設けて、当該中間層を溶融させて、あるいはガラス基板15,16の一部も含めて溶融させてガラス基板15,16を接合する例である。図に示すように、電極31,封入電極32が配設される。中間のガラス成分とガラス基板15,16を反応させるために接合後は一体とガラスとなるため接合強度は大きくなる。このようにすることによってマイクロチャンネルが形成され、かつ微小電極が集積化された電極集積化マイクロチップ内で電気化学反応を行うことができる。熱レンズ顕微鏡により電気化学反応の熱レンズ信号を測定することができる。
【0050】
図5は各種の接合式によって形成される接合線を説明する図であり、図5(a)は点焦点接合−流路沿接合方式(a)を、図5(b)は点焦点接合−流路包囲接合方式(b)を、そして図5(c)は線焦点接合一面一括接合方式(c)を示す。
【0051】
図5(a)の例にあっては、矢印で示すように集光は流路19に沿って、すなわち流路19に近接して接合線41を形成している。
【0052】
従って、この例の場合、流路19の両側に沿って近接して接合線41が形成され、流路19の密封性を向上させている。流路19に沿った接合は図1に示す制御部5のプログラムに基づいてなさえることになる。
【0053】
図5(b)の例に合っては、矢印で示すように集光は流路19を包囲して、すなわち流路19に近接包囲して接合線42を形成している。従って、この例の場合、流路19を包囲して接合線42が形成され、流路19の密封性を向上させている。流路19が複雑な形状をなす場合には流路を包囲するようにしてもよい。流路19の両側に沿って近接して接合線が形成される。
【0054】
図5(c)の例にあっては、矢印で示すように集光は線焦点によってなされ、一面一括接合となる。この例にあっては一面一括接合面43が形成されるが、流路19の両側には流路19に沿って図5(a)あるいは図5(b)に示すと同様に接合線(部)が近接して形成されており、密封性が向上されている。
【0055】
接合線の形成方法については、図5に示す例に限定さえず、接合線の組み合わせによってなされてよい。要は、流路19である微細溝の両側で該微細溝に対向するようにした複数の接合線もしくは該微細溝を包囲する接合線を形成するようにして密封性を向上させる。そして、接合線41,42,43は微細溝となる流路19に沿って近接して形成させる。
【0056】
貫通孔33は、前記マイクロチップ10の外方(本例の場合、上側のガラス基板5の外方)に沿って流路19は内方に形成され、接合線41,42,43は貫通孔33および流路19とに近接して並行に、あるいは包囲して形成される。
【0057】
図6は、制御部5の内部構成を示す図であり、制御部1の有する接合制御部およびステージ制御部は次のようにして構成されている。
【0058】
制御部5は、プレプロセッサー61およびポストプロセッサー62からなり、プレプロセッサー61は制御データ部63,CPU処理部64およびCPU記憶部65から構成され、ポストプロセッサー62は前述のCPU記憶部65,CPU処理部66および接合出力部67から構成される。
【0059】
制御データ部63は、マイクロチップ流路データ,接合条件としてのマイクロチップ材質,厚み,接合温度,速度などのデータを保有する。
【0060】
CPU処理部64は、制御データ部63のデータを使用して接合軌道の算出,X−Yステージ動作の算出,温度制御プログラムの算出を行う。
【0061】
CPU記憶部65は、CPU処理部64で算出された接合軌道データ,X−Yステージ動作データおよび温度制御プログラムデータを格納する。
【0062】
CPU処理部66は、CPU記憶部に格納された各種データを使用してX−Yステージ制御のための信号および加熱装置制御のための信号を生成する。
【0063】
接合出力部67は、CPU処理部66で生成された信号をX−Yステージおよび加熱装置制御のために出力する。
【0064】
以上のように、本実施例によれば、一方の面に微細溝(流路19)を有する板状の基板16(流路形成基板)の前記一方の面に、板状のガラス基板15を重ね合わせて配設し、かつ微細溝の対応位置に少なくとも2つの貫通孔33が基板16もしくはガラス基板15に形成された基板16およびガラス基板15を接合して製造するマイクロチップの製造装置100であって、光源を熱線源とする加熱装置1と、加熱装置1、もしくは重ね合わせた基板16およびガラス基板15をXY方向に移動して、加熱装置1および重ね合わせた基板16とガラス基板15とを対向配置させる移動手段、例えばX−Yステージ2と、加熱装置1からの熱源線を基板16とガラス基板15との間の接合部に照射させ、微細溝の両側で接合線41〜44を形成させる制御部5と、を有するマイクロチップの製造装置が構成される。
【0065】
制御部5は、微細溝を包囲するようにして接合線41〜44を形成させ得る。
また、制御部5は、微細溝の配置を記憶する記憶手段を有し、該記憶手段に記憶された微細溝の配置データを使用してX−Yステージ2の移動量を演算処理する処理部を有する。
【0066】
この構成であると、赤外線を集光して加熱させ、高エネルギースポットを作り、反応または熱融着するために短時間での接合が可能になる。例えば、従来十数時間必要であった場合でも30分までに所要時間を短縮することができる。また、この構成であればガラス基板15,16を研磨することは必須ではなくなり、コストを低減することができる。また、接合線は集光融着であるために出来上がったマイクロチップ10に変形はほとんどない。
【0067】
図7は、本実施例についてのマイクロチップの製造工程を示すフローチャートである。図7において、下側のガラス基板16にエッチング法によって流路加工を行い(S1)、次いで電極を蒸着する(S2)。封鎖接合薄膜をガラス基板15との間に形成するための封着薄膜処理を行い(S3)、次いで電極保護膜処理を行う(S4)。前述した手法に従って光接合を行い(S5)、電極保護膜を剥離してマイクロチップ製造する(S6)。
【0068】
以上のように一方の面に微細溝を有する板状の基板16の一方の面に、重ね合わせて板状のガラス基板15を配設し、かつ微細溝の対応位置に少なくとも2つの貫通孔33が基板16もしくはガラス基板15に形成されて、基板16およびガラス基板15を接合する接合ステップを有するマイクロチップの製造方法において、光源を熱源線とする加熱装置1、もしくは重ね合わせた基板16およびガラス基板15をXY軸方向に移動させ、加熱装置1を基板16およびガラス基板15に対向させるステップと、加熱装置1からの熱源線を基板16とガラス基板15との間の接合部に照射し、微細溝の両側に接合線41〜44を形成するようにした接合ステップとを有する製造方法が構成される。
【0069】
接合線41〜44は微細溝に近接して形成される、基板16はガラス基板であり、両ガラス基板の両側に熱吸収材を配置して両ガラス基板の間に局部的な電気炉を形成し、両ガラス板を局部的に溶融させることによって接合線41〜44を形成することができる。
【0070】
本法では、コールドウオールが可能な、例えば赤外線集光加熱器を用いて赤外線吸収効率を上げた接合面を部分加熱融着するために、接合部以外の支持器材の温度上昇やガラス自体の変形を防ぐことができる。また、湿式法では不可能な電極取り付けも、電極部に光反射マスクを設けることで、熱溶解を起こさずに取り付け可能である。
【実施例2】
【0071】
図8は他の実施例を示す図で、先の実施例の図5(b)に相当する。先の実施例と同一構成については割愛してあり、要部のみを示し、多くの説明は先の実施例が参照される。
【0072】
図8において、加熱装置1としてレーザー照射装置を使用する。レーザー照射装置は、レーザー光81を出射する。レーザー光81の強さ,焦点の位置は接合制御部により出力されるレーザー光用制御信号により制御される。光接合による接合方法は先の実施例と同様であり繰り返して説明しない。このようにして接合線44が形成される。
【0073】
一方の面に微細溝を有する板状のガラス基板16の前記一方の面に、重ね合わせて板状のガラス基板15が配設され、微細溝の対応位置に少なくとも2つの貫通孔33が形成されて接合されたマイクロチップ10であって、2つのガラス基板15,16は、微細溝の両側にある複数の接合線41〜44で接合されていることを特徴とするマイクロチップが構成される。
【0074】
本法のガラスマイクロチップ自動化した接合装置により30分以下の時間で完了することが可能であり、ガラスマイクロチップを用いるため紫外,赤外,レーザーなどを用いる光反応,光触媒,光分析や酸,溶媒を用いる各種反応,分析等が可能である。さらに本法では電極を封入したマイクロフルイデックチップの製作ができるため、近年注目を集めている表面プラズモン共鳴バイオセンサ(SPR)や電気化学検出素子の組み込み、DNAや酵素などの機能性素子(分子)の固定,電解反応場の提供など幅広いアプリケーションが可能となる。
【図面の簡単な説明】
【0075】
【図1】本発明の実施例の概略構成を示す図。
【図2】本発明の実施例の製造装置および方法を示す図。
【図3】接合方法を示す図で、図3(a)は点焦点式接合の例を、そして図3(b)は線焦点接合の例を示す図。
【図4】マイクロチップの説明図で、図4(a)は中間層なしの場合の例を、そして図4(b)は中間層ありの場合の例を示す図。
【図5】各種接合方式を示す図で、図5(a)は点焦点接合−流路沿接方式を、図5(b)は点焦点接合−流路包囲接合方式を、そして図5(c)は線焦点一面一括接合方式を示す図。
【図6】制御部の詳細を示す図。
【図7】フローチャート図。
【図8】他の実施例の構成を示す図。
【符号の説明】
【0076】
1…加熱装置、2…X−Yステージ、3…X軸駆動モーター、4…Y軸駆動モーター、5…制御部、6…ガラス基板ホルダ、7…空間(部)、10…マイクロチップ、11…赤外線照射部(赤外線ランプ)、12…赤外線、13…反射体(反射面)、15…上側のガラス基板、16…下側のガラス基板、17…薄膜(封鎖接合薄膜)、18…流路形成基板、19…流路(微細溝)、20…電極保護膜、31…電極、32…封入電極、33…貫通孔、41,42,43,44…接合線、100…マイクロチップの製造装置。

【特許請求の範囲】
【請求項1】
一方の面に微細溝(チャンネル)を有する板状の基板の前記一方の面に、重ね合わせて板状のガラス基板を配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成されて、前記基板および前記ガラス基板を接合する接合ステップを有するマイクロチップの製造方法において、
光源を熱源線とする加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY軸方向に移動させ、前記加熱装置を前記基板および前記ガラス基板に対向させるステップと、
前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射し、前記微細溝の両側に接合線を形成するようにした前記接合ステップと、
を有することを特徴とするマイクロチップの製造方法。
【請求項2】
請求項1において、前記接合線は前記微細溝に沿って近接して形成されることを特徴とするマイクロチップの製造方法。
【請求項3】
請求項1において、前記貫通孔は前記マイクロチップの外方にそして前記微細溝は内方に形成され、前記接合線は当該貫通孔と当該微細溝とを包囲して形成されることを特徴とするマイクロチップの製造方法。
【請求項4】
請求項1において、前記基板はガラス板,金属板,シリコン(Si)板あるいはアルミニウム(合金を含む)板であることを特徴とするマイクロチップの製造方法。
【請求項5】
請求項1において、前記基板と前記ガラス基板との間には封鎖接合のための薄膜が形成されず、直接接触とさせ、前記基板と前記ガラス基板とを加熱による反応接合によって前記接合線を形成することを特徴とするマイクロチップの製造方法。
【請求項6】
請求項1において、前記基板と前記ガラス基板との間にはガラス成分からなる封鎖接合のための薄膜を形成し、該封鎖接合薄膜と前記基板と前記ガラス基板との間の加熱による反応接合によって前記接合線を形成することを特徴とするマイクロチップの製造方法。
【請求項7】
請求項1において、前記基板はガラス基板であり、両ガラス基板の両側に熱吸収材を配置して両ガラス基板の間に局部的な電気炉を形成し、両ガラス基板を局部的に溶融させることによって前記接合線を形成することを特徴とするマイクロチップの製造方法。
【請求項8】
請求項1から7のいずれかにおいて、前記接合線は点焦点法によって、もしくは線焦点法によって形成されることを特徴とするマイクロチップの製造方法。
【請求項9】
一方の面に微細溝を有する板状の基板の前記一方の面に、板状のガラス基板を重ね合わせて配設し、かつ前記微細溝の対応位置に少なくとも2つの貫通孔が前記基板もしくは前記ガラス基板に形成された前記基板および前記ガラス基板を接合して製造するマイクロチップの製造装置において、
光源を熱線源とする加熱装置と、
前記加熱装置、もしくは重ね合わせた前記基板および前記ガラス基板をXY方向に移動して、前記加熱装置および重ね合わせた前記基板と前記ガラス基板とを対向配置させる移動手段と、
前記加熱装置からの前記熱源線を前記基板と前記ガラス基板との間の接合部に照射させ、前記微細溝の両側で接合線を形成させる制御部と、
を有することを特徴とするマイクロチップの製造装置。
【請求項10】
請求項9において、前記制御部は、前記接合線を前記微細溝を包囲して形成させることを特徴とするマイクロチップの製造装置。
【請求項11】
請求項9において、前記制御部は、前記微細溝の配置を記憶する記憶手段を有し、該記憶手段に記憶された前記微細溝の配置データを使用して前記移動手段の移動量を演算処理する処理部を有することを特徴とするマイクロチップの製造装置。
【請求項12】
請求項8において、前記ガラス基板の上面に電極保護膜が形成されることを特徴とするマイクロチップの製造装置。
【請求項13】
一方の面に微細溝を有する板状のガラス基板の前記一方の面に、重ね合わせて板状のガラス基板が配設され、前記微細溝の対応位置に少なくとも2つの貫通孔が形成されて接合されたマイクロチップにおいて、
前記2つのガラス基板は、前記微細溝の両側にある複数の接合線で接合されていることを特徴とするマイクロチップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−232641(P2006−232641A)
【公開日】平成18年9月7日(2006.9.7)
【国際特許分類】
【出願番号】特願2005−52203(P2005−52203)
【出願日】平成17年2月28日(2005.2.28)
【出願人】(302065323)エスティー・ラボ有限会社 (4)
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【Fターム(参考)】