説明

リグノセルロースバイオマスのエタノールへの変換のための好熱性生物

様々なバイオマス由来基質を消費する、変異好熱性生物が本明細書中で開示される。酢酸キナーゼおよびホスホトランスアセチラーゼの発現を排除したThermoanaerobacterium saccharolyticumの系統が、本明細書中で開示される。さらに、系統ALK1を部位特異的相同的組み換えによって操作して、酢酸および乳酸の産生をどちらもノックアウトした。基質濃度チャレンジを含む連続的培養は、ALK1の進化、そしてALK2と呼ばれるより強い系統の形成を引き起こした。その生物を、例えばセルラーゼ活性に最適な温度で行われる好熱性SSFおよびSSCF反応において利用して、ピルビン酸脱炭酸酵素を発現することなく、理論的に近い収率でエタノールを産生し得る。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
本願は、2006年5月1日に出願された米国特許出願第60/796,380号への優先権を主張する、2006年10月31日に出願されたPCT/US06/042442号への優先権を主張する。これらの特許はぞれぞれ、本明細書中に参考として援用される。
【0002】
(政府の利益)
米国政府は、本発明の開発に関連する研究が、National Institute of Standards and Technology(NIST)契約番号60NAB1D0064により資金援助されたことから、本発明に一定の権利を有する。
【0003】
(背景)
(1.発明の分野)
本発明は、エタノールを産生するためのバイオマス処理の分野に属する。特に、様々なバイオマス由来基質を消費し、そして高収率でエタノールを産生する新規好熱性生物、および産生の過程およびその生物の使用が開示される。
【背景技術】
【0004】
(2.関連技術の説明)
バイオマスは、安価および容易に入手可能な、糖を産生し得るセルロース分解性(cellulolytic)物質を代表する。これらの糖を単独で使用し得る、またはアルコールおよび他の産物を産生するために発酵し得る。生物変換産物の中で、エタノールは再生可能な国内燃料として使用し得るので、エタノールに関する関心は高い。
【0005】
反応器の設計、前処理プロトコール、および分離技術の分野において、重要な研究が実施され、生物変換処理は、石油燃料技術と経済的に競合しつつある。しかし、2つまたはそれ以上の処理工程を組み合わせた場合に、最も大きく経費を節約し得ることが推定される。例えば、同時糖化および発酵(SSF)および同時糖化および共発酵(SSCF)処理は、単一の反応器または連続的処理装置において、酵素的糖化工程を発酵と組み合わせる。SSF処理において、可溶性の糖が連続的にエタノールへ発酵されるので、最終産物による阻害は除かれる。様々な加水分解産物を提供するために、複数の生物を使用する場合、SSF処理は通常、同時糖化および共発酵(SSCF)処理と呼ばれる。より短い反応時間および主要な経費の抑制に関連する節約に加えて、共発酵処理はまた、そうでなければ代謝分解(metabolysis)または加水分解を阻害するレベルで生じるある化合物が、共発酵生物によって消費されるので、改善した産物の収率を提供し得る。そのような1つの例において、β−グルコシダーゼは、グルコースの存在下でセロビオースの加水分解を停止し、そして次にセロビオースの蓄積はセルロースの分解を阻害する。セルロースおよびヘミセルロース加水分解産物の共発酵を含むSSCF処理は、グルコースを、β−グルコシダーゼの加水分解活性を阻害しない1つまたはそれ以上の産物へ変換することによって、この問題を軽減し得る。
【0006】
統合バイオプロセス(CBP)は、4つの生物学的に媒介されるイベント:(1)酵素産生、(2)基質の加水分解、(3)ヘキソースの発酵、および(4)ペントースの発酵を含む。これらのイベントを、単一の工程で行い得る。この戦略は、セルロースおよびヘミセルロースを利用する微生物を必要とする。CBP生物の開発は、潜在的に、専用の処理工程において糖分解酵素を産生する、より従来的なアプローチと比較して、非常に大きな経費の抑制をもたらし得る。4つの生物学的に媒介されるイベントを達成するために1つ以上の生物を利用するCBP処理は、統合バイオプロセス共培養発酵と呼ばれる。
【0007】
いくつかの細菌は、ペントースをヘキソースへ変換する能力、および解糖によってヘキソースを有機酸および他の産物の混合物に発酵する能力を有する。解糖経路は、6炭素のグルコース分子の、2つの3炭素分子のピルビン酸への変換から始まる。次いでピルビン酸は、乳酸デヒドロゲナーゼ(「ldh」)の作用によって乳酸へ、またはピルビン酸デヒドロゲナーゼまたはピルビン酸フェレドキシン酸化還元酵素の作用によってアセチル補酵素A(「アセチル−CoA」)へ変換され得る。アセチル−CoAはさらに、ホスホトランスアセチラーゼおよび酢酸キナーゼによって酢酸へ変換される、またはアセトアルデヒドデヒドロゲナーゼ(「AcDH」)およびアルコールデヒドロゲナーゼ(「adh」)によってエタノールへ還元される。全体的にみて、エタノール産生生物の能力は、エタノール以外の有機産物の産生によって、特にldhによるピルビン酸から乳酸への変換によって、およびホスホトランスアセチラーゼおよび酢酸キナーゼによるアセチル−CoAの酢酸への変換によって損なわれる。
【0008】
細菌の代謝的操作は、最近好熱性、嫌気性、グラム陽性細菌T.saccharolyticumにおいて乳酸デヒドロゲナーゼのノックアウトの産生を引き起こした。Desai,S.G.;Guerinot,M.L.;Lynd,L.R.「Thermoanaerobacterium saccharolyticum JW/SL−YS485における、L−乳酸デヒドロゲナーゼのクローニングおよび遺伝子ノックアウトによる乳酸産生の排除」非特許文献1を参照のこと。
【0009】
ldhのノックアウトは、当該分野における進歩であるが、T.saccharolyticumのこの系統が、有機酸−特に酢酸を産生し続けることは、この生物のいくつかの使用に関して問題がある。
【非特許文献1】Appl.Microbiol.Biotechnol.65:600−605、2004
【発明の開示】
【課題を解決するための手段】
【0010】
(要旨)
本手段は、様々なバイオマス由来基質を消費し、そしてエタノールを理論的収率付近で産生する好熱性、嫌気性細菌を提供することによって、その分野を進歩させ、そして上記で概略を述べた問題を克服する。その生物を用いてエタノールを産生する方法も開示される。
【0011】
本明細書中で報告された手段は、単独で、または組み合わせて、様々な遺伝子のノックアウトを生じ、ここでそのような遺伝子は、天然の生物においてそうでなければ有機酸の形成を引き起こす。例えば、T.saccharolyticum JW/SL−YS485における(a)酢酸キナーゼおよび/またはホスホトランスアセチラーゼ、および(b)乳酸デヒドロゲナーゼ(ldh)、酢酸キナーゼ(ack)およびホスホトランスアセチラーゼ(pta)のノックアウトが存在し得る。本明細書中で報告された結果は、T.saccharolyticumに関するものであるが、その方法および材料を、Thermoanaerobacterium thermosulfurigenes、Thermoanaerobacterium aotearoense、Thermoanaerobacterium polysaccharolyticum、Thermoanaerobacterium zeae、Thermoanaerobacterium thermosaccharolyticum、およびThermoanaerobacterium xylanolyticumを含む、Thermoanaerobacter属の他のメンバーにも適用する。その方法および材料は、一般的に、代謝的に操作された、好熱性、グラム陽性細菌の分野で有用である。
【0012】
1つの実施態様において、ピルビン酸脱炭酸酵素を発現しない、単離された生物は、セルロース分解性基質を発酵して、理論的収率の少なくとも90%である濃度でエタノールを産生する。
【0013】
1つの実施態様において、天然の状態で、グラム陽性細菌に、発酵産物として酢酸を産生する能力を与える少なくとも1つの遺伝子を含むグラム陽性細菌を形質転換して、その少なくとも1つの遺伝子の発現を排除する。その細菌は、Thermoanaerobacterium saccharolyticumのような、Thermoanaerobacterであり得る。グラム陽性細菌に発酵産物として酢酸を産生する能力を与える遺伝子は、酢酸キナーゼおよび/またはホスホトランスアセチラーゼの発現をコードし得る。
【0014】
別の実施態様において、グラム陽性細菌をさらに形質転換して、グラム陽性細菌に発酵産物として乳酸を産生する能力を与える1つまたはそれ以上の遺伝子の発現を排除し得る。例えば、乳酸を産生する能力を与える遺伝子は、乳酸デヒドロゲナーゼであり得る。
【0015】
1つの実施態様において、エタノールを産生する方法は、天然の生物を形質転換して、グラム陽性細菌に発酵産物として有機酸を産生する能力を与える全ての遺伝子の発現を排除するよう形質転換したグラム陽性細菌を産生して、形質転換した細菌宿主を産生すること、および形質転換した細菌宿主を、グルコース、キシロース、セロビオース、スクロース、キシラン、デンプン、およびその組み合わせから成るグループから選択される物質を含む基質を含む培地中で、適当な条件下で、基質の糖化および発酵を可能にするのに十分な時間培養することを含む。
【0016】
1つの実施態様においてALK1と呼ばれ、そしてATCCにPatent Deposit Designation No.PTA−7206の項目下で寄託された微生物の、生物学的に純粋な培養物が記載される。
【0017】
1つの実施態様において、単離されたポリヌクレオチドは、(a)配列番号第10番の配列、または(b)配列番号第9番および配列番号第10番の配列、または(c)(a)または(b)の配列と少なくとも約90%の配列同一性を有する配列を含む。(a)、(b)または(c)の単離されたポリヌクレオチドを含むベクター、および(a)、(b)、または(c)のポリヌクレオチドの相補体(compliment)を発現するよう遺伝的に操作された宿主細胞が記載される。別の実施態様において、単離されたポリヌクレオチドは、(a)または(b)の配列と少なくとも約95%の配列同一性を有する配列を含む。さらに別の実施態様において、単離されたポリヌクレオチドは、(a)または(b)の配列と少なくとも約98%、または少なくとも約99%の配列同一性を有する配列を含む。
【0018】
1つの実施態様において、エタノールを産生する方法は、(a)、(b)、または(c)の単離されたポリヌクレオチドの相補体を発現する変異細菌を、グルコース、キシロース、セロビオース、スクロース、キシラン、デンプン、およびその組み合わせから成るグループから選択される基質を含む培地中で、適当な条件下で、基質のエタノールへの発酵を可能にするのに十分な時間培養することを含む。
【0019】
1つの実施態様において、エタノールを産生する方法は、反応容器内に、リグノセルロース基質、セルラーゼ、および発酵剤を含む反応混合物を提供することを含む。発酵剤は、グラム陽性細菌に、天然状態で、発酵産物として酢酸を産生する能力を与える少なくとも1つの遺伝子の発現を排除するよう形質転換したグラム陽性細菌を含む。その反応混合物を、適当な条件下で、リグノセルロース基質の糖化および発酵を可能にするのに十分な時間反応させる。
【発明を実施するための最良の形態】
【0020】
(発明の詳細な説明)
バイオマスのエタノールへの変換における、好熱性、嫌気性グラム陽性細菌の操作および利用の方法を示し、そして説明する。
【0021】
本明細書中で使用する場合、もし遺伝的に操作されなければ、または他の方法でヒトの手によって意図的にその生物の遺伝的および/または表現型の構成を変化させる方式で操作されなければ、生物は「天然の状態」である。例えば、野生型の生物は、天然の状態であると考えられ得る。
【0022】
天然の状態のT.saccharolyticumから有機酸の産生を完全に排除することは、2つの部位特異的DNA相同的組み換えの発生を用いて達成された。変異系統、Thermoanaerobacterium saccharolyticum JW/SL−YS485ALK1(「ALK1」)は、約30−66℃の範囲の温度、および約3.85−6.5の範囲のpHを有するバッチ培養で、低い基質の供給で、理論的な量に近いエタノールを産生する。1つの実施態様において、エタノールの収率は、理論的最大量の少なくとも約90%である。ALK1、およびその子孫は、SSFおよびSSCF処理におけるセルラーゼ活性に実質的に最適である、その増殖条件のために、リグノセルロースバイオマスからエタノールへの変換において、有意な節約に寄与する可能性を有する。例えば、最適なセルラーゼ活性のパラメーターは、4−5の間のpHおよび40−50℃の間の温度を含む。さらに、有機酸を産生する能力を欠くノックアウト生物を使用する場合、発酵ブロスのpHを調整する必要がない。ALK1、および同様の生物はまた、統合バイオプロセス共培養発酵にも適当であり得、ここでそのノックアウト生物は、ペントースをエタノールへ変換し、そしてセルロースはC.thermocellumのような、セルロース分解性生物によって分解される。
【0023】
好熱性の温度でSSF、SSCF、またはCBP処理のいずれかを行うことは、30−37℃の従来の中温性の発酵温度に比べていくつかの重要な利点を提供する。特に、好熱性温度におけるより高い酵素活性のために、所定の量の変換を達成するために必要な酵素の濃度を抑制し得る。結果として、セルラーゼ産生に費やされる処理工程の経費が、好熱性SSFおよびSSCFに関しては実質的に抑制され(例えば2倍またはそれ以上)、そしてCBPに関しては排除される。発酵槽の冷却および発酵前および後の熱交換に関連する経費も、好熱性SSF、SSCF、およびCBPに関して抑制されることが予測される。最後に、好熱性生体触媒を特徴とする処理は、従来の中温性生体触媒を特徴とする処理と比較して、微生物が混入しにくくあり得る。
【0024】
天然に存在するSaccharomyces cerevisiaeおよびZymomonas mobilis、およびEscherichia coliおよびKlebsiella oxytocaの組み換え系統のような、公知の「ホモエタノール発酵」微生物と対照的に、現在開示される生物は、ピルビン酸脱炭酸酵素の作用によるピルビン酸からアセトアルデヒドへの変換に依存しない(図1、9を参照のこと)。実際、Thermoanaerobacter属に属する細菌は、天然の状態でピルビン酸脱炭酸酵素を発現しない。図1に示す解糖経路の反応から、ピルビン酸は、酵素ピルビン酸−フェレドキシン酸化還元酵素2によって、アセチルCoA、二酸化炭素、および還元フェレドキシンに代謝され得る。しかし、唯一の発酵産物としてエタノールを産生するために、還元フェレドキシンによって運ばれる電子は、全てNAD:フェレドキシン酸化還元酵素3によってNADに転移され、NADHを形成しなければならない。NADHは続いて、アセトアルデヒドデヒドロゲナーゼ7およびアルコールデヒドロゲナーゼ8によって、アセチルCoAのエタノールへの2段階の還元の過程において、NADにまた酸化される。NADHの効率的な利用の証拠を、図2において、ackおよびptaを発現できない酢酸ノックアウト生物、およびack、pta、およびldhを発現できないダブルノックアウト生物(ALK1)の両方による、Hの産生の減少として観察し得る。これらの生物は、還元フェレドキシンからNADへ、そして続いてエタノールへの化学量論的な電子移動の最初の実証を提供する。
【0025】
PDCを発現する能力を有さない生物において、化学量論的なエタノール収率を産生する、上記で記載した経路は、以前に記載されたホモエタノール発酵系統の全てにおいて採用された経路と対照的である。以前に記載された系統は、内因性のピルビン酸脱炭酸酵素(PDC)を利用する、または外来性のPDCを発現するように操作される。PDCの発現は、微生物の世界ではまれであるので、電子の流れを、炭素の流れに対する修飾によって切り換える能力は、広い意味を有する。例えば、このアプローチを使用して、T.saccharolyticum以外の系統において、高いエタノール収率を生じ得る、および/またはエタノール以外の溶媒を生じ得る。特に、Thermoanaerober属のメンバーのようなグラム陽性細菌;Clostridium thermocellumおよび他の好熱性および中温性Clostridia;好熱性および中温性Bacillus種;Escherichia coliおよびKlebsiella oxytocaのようなグラム陰性細菌;Fibrobacter succinogenesおよび他のFibrobacter種;Thermoga neopolitanaおよび他のThermotoga種;およびNeocallimatixおよびPiromyces種を含む嫌気性真菌は、PDCを発現する能力を欠き、そして開示された手段から利益を得得る。
【0026】
糖化されて1つまたはそれ以上のグルコース、キシロース、マンノース、アラビノース、ガラクトース、フルクトース、セロビオース、スクロース、マルトース、キシラン、マンナンおよびデンプンを産生する、リグノセルロース材料を、開示される生物によって利用し得ることが認識される。様々な実施態様において、リグノセルロースバイオマスは、木、トウモロコシの茎や葉、おがくず、樹皮、葉、農業および森林の残留物、スイッチグラスのような草、反芻動物の消化産物、市の廃棄物、製紙工場の廃棄物、新聞、厚紙、またはその組み合わせを含む。
【実施例】
【0027】
実施例1
ALK1系統の産生
材料および方法
Thermoanaerobacterium saccharolyticum系統JW/SL−YS485(DSM8691)は、イエローストーン国立公園、ワイオミングのWest Thumb Basinから単離された好熱性、嫌気性の細菌である(Lui,S.Y.;Gherardini,F.C.;Matuschek,M.;Bahl,H.;Wiegel,J.「Escherichia coliにおける、Thermoanaerobacterium sp系統JW/SL−YS485由来の大きなS層関連エンドキシラナーゼをコードする遺伝子のクローニング、配列決定および発現」J.Bacteriol.178:1539−1547、1996;Mai,V.;Wiegel,J.「Thermoanaerobacterium sppの遺伝的システム開発における進歩:加水分解酵素をコードする遺伝子の発現、2番目のシャトルベクターの開発、および染色体への遺伝子の組み込み」Appl.Environ.Microbiol.66:4817−4821、2000)。それは30−66℃の範囲の温度、および3.85−6.5の範囲のpHで増殖する。それは単糖類グルコースおよびキシロース、二糖類セロビオースおよびスクロース、および多糖類キシランおよびデンプンを含む様々なバイオマス由来基質を消費するが、セルロースは消費しない。その生物は、主な発酵産物として、エタノールおよび有機酸である乳酸および酢酸を産生する。
【0028】
クローニングおよび配列決定
乳酸デヒドロゲナーゼ(L−ldh)、ホスホトランスアセチラーゼ(pta)、および酢酸キナーゼ(ack)遺伝子を、L−ldhに関して以前に報告されたように(Desai、2004)、標準的な技術を用いて、同定および配列決定した。縮重プライマーを、CODE−HOPアルゴリズムを用いて作成し(Rose,T.;Schultz,E.;Henikoff,J.;Pietrokovski,S.;McCallum,C.;Henikoff,S.「遠く関連した配列を増幅するためのコンセンサス縮重ハイブリッドオリゴヌクレオチドプライマー」Nucleic Acids Research、26(7):1628−1635、1998年4月1日)、そしてPCR反応を行って保存された領域間のDNA配列を得た。保存された領域の外の遺伝子断片を、BigDye Terminatorキットv3.1(ABI、Foster City、CA)と共に、ThermoFidelase(Fidelity Systems、Gaithersburg、MD)酵素を用いて、ゲノムDNAから直接配列決定した。
【0029】
自殺ベクターの構築
酢酸キナーゼおよびホスホトランスアセチラーゼノックアウトベクター、pSGD9
標準的なクローニング技術に従った(Smbrook)。6.2kbの自殺ベクターpSGD9は、前に報告されたものと同様のデザインアプローチを用いて(Desai、2004;Mai、2000)、pBLUESCRIPT II SK(+)(Stratagene)に基づいた。pta/ack配列の遺伝子断片、pta−up(〜1.2kb)およびack−down(〜0.6kb)を、プライマーペア配列番号第1−2番および配列番号第3−4番を用いて、ゲノムDNAから増幅した。PCR増幅を、pfu DNAポリメラーゼを用いて行い、そしてその断片を1%の電気泳動ゲルから抽出した。断片pta−upおよびack−downを次いで、TaqポリメラーゼでA−tail処理し、そしてTOPO pCR2.1(Invitrogen、Carlsbad、CA)にクローニングした。カナマイシンマーカーを含む1.5kbの断片を、pIKM1のPstI/XbaI消化物から得て、そしてpBLUESCRIPT II SK(+)にサブクローニングした。pta−upを含むTOPOをXhoI/BsiHKAIで消化し、そしてXhoI/PstI消化したpBLUESCRIPT II SK(+)に、以前にサブクローニングしたカナマイシンマーカーの上流にサブクローニングした。ack−downを含むTOPOを、XbaI/SphIで消化し、そしてpUC19(Invitrogen)にサブクローニングした。ack−downを含むXbaI/AflIII断片を、消化し、そしてカナマイシンマーカーの下流にサブクローニングして、最終的な構築物pSGD9を得た。
【0030】
エリスロマイシン耐性を有する乳酸デヒドロゲナーゼノックアウトベクター、pSGD8−Erm
5.5kbの自殺ベクターpSGD8−Ermは、Desaiら、2004によって産生されたようなプラスミドpSGD8に基づいた。aphカナマイシン抗生物質マーカーの代わりに、プラスミドpIKM1由来のaphプロモーターおよびプラスミドpCTC1由来のエリスロマイシン耐性を与えるアデニンメチラーゼ遺伝子に基づく融合遺伝子(Klapatch,T.R.;Guerinot,M.L.;Lynd,L.R.「Clostridium thermosaccharolyticumの電気形質転換」J.Ind.Microbiol.16(6)342−7、1996年6月)を、選択のために用いた。pfuポリメラーゼ(Stategene)およびaphプロモーターに関しては配列番号第5−6番、およびアデニンメチラーゼオープンリーディングフレームに関しては配列番号第7−8番のプライマーを用いて、PCR遺伝子断片を産生した。断片をXbaI/BamHI(aph断片)およびBamHI/EcoRI(アデニンメチラーゼ)で消化し、そしてpIKM1の複数のクローニング部位にライゲーションした。この融合遺伝子を、次いでBseRI/EcoRIで切断し、そして同様に消化したpSGD8にライゲーションした。
【0031】
T.saccharolyticumの形質転換
T.saccharolyticumの形質転換を、2つの方法で交換可能に行い、1つは以前に記載されたものであり(Mai,V.:Lorenz,W.;Weigel,J.「カナマイシン耐性を与えるプラスミドPIKM1による、Thermoanaerobacterium sp.系統JW/SL−YS485の形質転換」FEMS Microbiol.Lett.148:163−167、1997)、および2つ目は細胞回収後にいくつかの修飾を有するものであり、そしてClostridium thermocellumに関して開発された方法に基づいた(Tyurin,M.V.;Desai,S.G.;Lynd,L.R.「Clostridium thermocellumの電気形質転換」Appl.Environ.Microbiol.70(2):883−890、2004)。細胞を、前もって還元した培地DSMZ122を用いて、55℃に維持したインキュベーター中で、嫌気性チャンバーの中で、滅菌ディスポーザブル培養チューブで一晩増殖させた。その後、細胞を、最初の誘導期の後に培地に加えた、細胞壁を弱める薬剤である4μg/mlのイソニコチン酸ヒドラジド(イソナイアシン(isoniacin))(Hermans,J.;Boschloo,J.G.;de Bont,J.A.M.「エレクトロポレーションによるM.aurumの形質転換:形質転換効率の増強におけるグリシン、リゾチーム、およびイソニコチン酸ヒドラジドの使用」FEMS Microbiol.Lett.72、221−224、1990)と共に継代培養した。対数期の細胞を回収し、そして前もって還元した冷却滅菌200mMセロビオース溶液で洗浄し、そして同じ溶液に再懸濁し、そして氷上に維持した。細胞の回収後、それらを遠心の間も含めてずっと冷たく(約4℃)維持するために、非常に注意をした。
【0032】
90μlの細胞懸濁液およびパルス適用の直前に加えた2から6μlのpSGD9またはpSGD8−Erm(1から3μg)から成るサンプルを、電気形質転換キュベットとしてはたらく滅菌2mlポリプロピレン微量遠心ディスポーザブルチューブに入れた。パルス長を10msに設定した方形波を、あつらえたパルスジェネレーター/チタン電極システムを用いて適用した。細胞における電気孔の形成に対応する電圧閾値を、パルス電圧が200Vの増加で直線的に増加する場合に、非線形の電流変化として評価した。所定のDNA濃度で、形質転換収率対細胞生存率の最もよい比を与えた特定の電圧を使用し、それは、この特定の場合には25kV/cmであった。パルスした細胞を、最初に500μlのDSM 122培地で希釈し、氷上で10分間保持し、そして次いで55℃で4−6時間回復させた。回復後、pSGD9で形質転換した細胞を、カナマイシンを75μg/mlで含む2%の寒天培地と混合し、そしてペトリ皿に注ぎ、そして嫌気性のジャーで4日間インキュベートした。pSGD8−Ermで形質転換した細胞を、48℃で4−6時間回復させ、そしてエリスロマイシンを5μg/mlで含むpH6.0の2%寒天培地か、または同様の液体培地にまき、そして嫌気性のジャーで、48℃で6日間インキュベートした。形質転換細胞の系統のいずれかを、さらなる操作なしに使用し得る。しかし、有機酸を産生する能力を与える全ての遺伝子の発現を排除した生物を、2番目の(連続的な)形質転換を行うことによって得た。第1次の形質転換体を、非形質転換細胞懸濁液の代わりに用いて、2番目の形質転換を、上記で記載したように行った。2番目の形質転換体、ALK1を、カナマイシンおよびエリスロマイシンを両方含む培地で増殖させた。
【0033】
ノックアウト領域の配列決定
部位特異的ノックアウト領域の配列決定を、Taqポリメラーゼ(New England Biolabs)およびゲノムおよび自殺ベクター間の相同的オーバーラップ領域の外側のプライマーを用いて、ゲノムDNAからのPCRによって行った。PCR産物の内側のプライマーを、BigDye Terminatorキットv3.1(ABI、Foster City、CA)による配列決定のために使用した。CAP3ソフトウェアプログラム(Huang,X.「改良した配列アッセンブリープログラム」Genomics 33:21−31、1996)を用いて領域を配置し、そしてCLUSTAL Wアルゴリズム(Higgins,D.G.;Bleasby,A.J.;Fuchs,R.「CLUSTAL V:複数の配列アラインメントのための改良されたソフトウェア」Computer Applications in the Biosciences(CABIOS)、8(2):189−191、1992)を用いて、予測されるDNA配列と比較した。実験的に編集された配列および公知の野生型および自殺ベクター配列に基づいて予測される配列間には、高い程度の相同性(同一性パーセント)が存在した(図3および4)。
【0034】
「同一性」は、核酸またはアミノ酸分子のペア間の比較を指す。配列同一性を決定する方法は公知である。例えば、SmithおよびWaterman、1981、Adv.Appl.Math.2:482−489のアルゴリズムを用いる、GAPプログラム(Wisconsin Sequence Analysis Package、Version8 for Unix(登録商標)、Genetics Computer Group、University Research Park、Madison、Wisconsin)のような、この目的のために通常採用されるコンピュータープログラムを参照のこと。
【0035】
変異系統の検証
変異系統Thermoanaerobacterium saccharolyticum JW/SL−YS485 ALK1(「ALK1」)由来のゲノムDNAは、DNA配列決定によって、L−ldhおよびpta/ack遺伝子座において、予測される部位特異的相同的組み換えを示した。両方の組み込みイベントは、2本鎖の組み込み(double integration)であり、それはより遺伝的に安定な遺伝子型である。
【0036】
実施例2
ALK1および野生型T.saccharolyticumによるエタノールの産生を示す比較データ
T.saccharolyticumを、2.5g/Lの酵母抽出物を含む、部分的に既知組成のMTC培地中で増殖させた(Zhang,Y.;Lynd,L.R.「嫌気性セルロース発酵中の細胞およびセルラーゼ量濃度の定量:Clostridium thermocellumバッチ培養への適用を伴う、酵素結合免疫吸着測定法に基づく方法の開発」Anal.Chem.75:219−222、2003)。グルコース、キシロース、酢酸、乳酸およびエタノールを、Aminex 87Hカラム(BioRad Laboratories、Hercules、CA)で、55℃におけるHPLCによって分析した。移動相は、0.7ml/minの流速で、5mMの硫酸から成っていた。検出は、Waters410屈折計(Milford、MA)を用いて、屈折率によった。酢酸の最低検出レベルは、1.0mMであった。5g/Lのキシロース、5g/Lの乳酸、5g/Lの酢酸、および5g/Lのエタノールを含む標準トレースを、図5に示す。
【0037】
系統ALK1は、17g/Lまでのキシロース、または5g/Lのキシロースおよび5g/Lのグルコースで、エタノールのみを産生し、有機酸または他の産物はHPLCによって検出されなかった。図6は、0時におけるALK1系統の発酵を示し、そして図7は、72時間における同じ発酵を示す。6.0の最初のpH、55℃、および100rpmでの、8g/LのMESで緩衝化されたキシロース培地における、系統ALK1および野生型の時間経過発酵プロットは、系統ALK1は、99%以上のキシロースをエタノールへ変換でき(図8)、一方同様の条件下の野生型は、有機酸産生のためにpH制限され、そして存在する全てのキシロースを消費できないことを示す(図9)。野生型生物は0.15mMのエタノールを産生し、一方ALK1は0.46mMのエタノールを産生した。
【0038】
実施例3
ALK1の進化
図10に示すように、供給基質濃度を時間につれて増加させる連続培養を用いて、ALK1に負荷をかけた。図10は、連続培養中のキシロース、キシルロースおよびエタノール濃度を示す。このストレス−進化サイクルに1000時間以上接触させた後、改良された系統、ALK2が、発酵ブロスから単離された。ALK2は、バッチ培養において50g/Lのキシロースで増殖を開始できた。図11は、系統ALK2による発酵中の、キシロース、有機酸、吸光度(OD)およびエタノール濃度を示す。
【0039】
実施例4
好熱性同時糖化および発酵
いくつかの熱耐性酵母系統を、40−45℃の温度で、SSFによるエタノール産生に関して試験し、これらより上の温度では収率が減少した(Banat,I.M.;Nigam,P.;Singh,D.;Marchant,R.;McHale,A.P.「概説:上昇した温度およびアルコール濃度におけるエタノール産生:第I部−酵母一般」World Journal of Microbiology and Biotechnology 14:809−821、1998)。それに加えて、Patelらは、Bacillus系統を用いて、乳酸の産生に関して、50℃でのSSFを実証した(Patel,M.A.;Ou,M.S.;Ingram,L.O.;Shanmugam,K.T.「熱耐性好酸性Bacillus sp.による結晶セルロースおよびサトウキビバガスヘミセルロース加水分解産物の乳酸への同時糖化および共発酵」Biotechnol.Prog.21:1453−1460、2005)。しかし、50℃における酵素の必要量が減少したエタノールの産生に関して、好熱性SSFは以前に実証されていなかった。
【0040】
上記で議論したように、本開示によって形質転換された好熱性生物は、SSF処理におけるセルラーゼ活性に実質的に最適なその増殖条件のために、リグノセルロースバイオマスのエタノールへの変換において、有意な節約に寄与する可能性を有する。例えば、ALK1およびALK2は、50℃およびpH5.0で増殖し得る嫌気性好熱菌であり、一方最適なセルラーゼ活性パラメーターは、4−5の間のpHおよび40−50℃の間の温度を含む。
【0041】
バッチ反応器において、50℃で、1.5Lスケールで行われた好熱性同時糖化および発酵(tSSF)反応において、ALK2を4FPU/gのT.reeseiセルラーゼ(Genencor、Palo Alto、CA)と組み合わせて使用し、固体基質Avicel(20g/L、50g/Lおよび80g/L)からエタノールを産生した。16時間の発酵後、可溶性の糖は測定されず、そしていずれの試験においても0.5g/Lより少ない乳酸が産生された。図12は、tSSF反応が80g/lのAvicelに対して行われた場合、140時間で30g/Lのエタノールが産生され、30g/Lのエタノールのうち25g/Lが最初の50時間に産生されたことを示す。図13は、図12で説明した反応に関するエタノール収率を示す。収率を、グルコース等価物1グラムあたり0.51gのエタノールの理論的な最大値に基づいて計算した。20g/LのAvicelにおいて、140時間で約90%の変換が達成された。
【0042】
T.saccharolyticumは、ペントースおよびヘキソース糖を両方発酵し得ることが認識される。従って開示された生物を、同時糖化および共発酵(SSCF)反応において使用し得、ここでヘミセルロースをペントース糖に変換する酵素(例えばキシラーゼ)を、セルラーゼと組み合わせて利用し得る。
【0043】
ALK1の寄託
ALK1を、American Type Culture Collection、Manassas、VA 20110−2209に寄託した。2005年11月1日に寄託し、そしてPatent Deposit Designation Number PTA−7206を受け取った。この寄託は、ブタペスト条約の必要条件に従って行われ、寄託の期間は、寄託日から30年間、または寄託所における寄託の最後の依頼から5年間、またはこの申請から発達した米国特許の施行期間の、いずれか長いものである。ALK1は、寄託所において生育不能になったら補充される。
【0044】
特定の実施態様の説明は、一般的な概念を明らかにし、それを様々な適用または一般的な概念から離れない使用のために他者が修飾および/または適合させ得る。従って、そのような適合および修飾は、開示された実施態様の等価物の目的および範囲内に含まれるべきであり、そしてそのように意図される。本明細書中で採用される語句または専門用語は、説明の目的のためであり、そして制限のためでないことが理解される。
【0045】
前述の実施例を、あらゆるグラム陽性細菌、および特にThermoanaerobacterium thermosulfurigenes、Thermoanaerobacterium aotearoense、Thermoanaerobacterium polysaccharolyticum、Thermoanaerobacterium zeae、Thermoanaerobacterium thermosaccharolyticum、およびThermoanaerobacterium xylanolyticumを含む、Thermoanaerobacter属のメンバーに対して使用するために適当に修飾し得る。
【0046】
この申請において言及された全ての参考文献は、本明細書中で完全に繰り返されたように同じ程度、参考文献に組み込まれる。
【図面の簡単な説明】
【0047】
【図1】解糖経路の反応を示す。
【図2】T.saccharolyticumの様々なノックアウト系統と比較した、野生型T.saccharolyticumにおける水素産生を示す。
【図3−1】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD9(配列番号第9番)のldh領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図3−2】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD9(配列番号第9番)のldh領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図3−3】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD9(配列番号第9番)のldh領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図3−4】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD9(配列番号第9番)のldh領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図3−5】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD9(配列番号第9番)のldh領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−1】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−2】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−3】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−4】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−5】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図4−6】T.saccharolyticumのゲノムに組み込まれた自殺ベクターpSGD8−Erm(配列番号第10番)のpta/ack領域の実験的および予測されるポリヌクレオチド配列の比較を示す。
【図5】ALK1の増殖中の様々な時間間隔における、発酵ブロスの高速液体クロマトグラフィー(HPLC)トレースを示す。
【図6】ALK1の増殖中の様々な時間間隔における、発酵ブロスの高速液体クロマトグラフィー(HPLC)トレースを示す。
【図7】ALK1の増殖中の様々な時間間隔における、発酵ブロスの高速液体クロマトグラフィー(HPLC)トレースを示す。
【図8】系統ALK1による発酵中の、キシロース、有機酸およびエタノール濃度を示す。
【図9】野生型T.saccharolyticumによる発酵中の、キシロース、有機酸およびエタノール濃度を示す。
【図10】ALK1の連続的培養チャレンジ中の、キシロース、有機酸およびエタノール濃度を示す。
【図11】系統ALK2による発酵中の、キシロース、有機酸およびエタノール濃度を示す。
【図12】50℃でALK2およびセルラーゼを含む好熱性SSF反応中の、様々なAvicel濃度におけるエタノール産生を示す。
【図13】図12に示した好熱性SSF反応のエタノール収率を示す。

【特許請求の範囲】
【請求項1】
セルロース分解性基質の糖化産物を発酵して、理論的収率の少なくとも90%である濃度でエタノールを産生する、単離された生物であって、該生物はピルビン酸脱炭酸酵素を発現しない、生物。
【請求項2】
エタノールを産生するための方法であって、該方法は:
天然の生物を形質転換して、請求項1に記載の単離された生物を生成し、形質転換した宿主を提供する工程;ならびに
該形質転換した宿主を、グルコース、キシロース、マンノース、アラビノース、ガラクトース、フルクトース、セロビオース、スクロース、マルトース、キシラン、マンナン、デンプンおよびこれらの組み合わせからなる群より選択される物質を含む基質を含む培地中で、適当な条件下で、該基質の糖化および発酵を可能にするのに十分な時間、培養する工程、
を包含する、方法。
【請求項3】
形質転換した生物であって、以下:
グラム陽性細菌であって、天然の状態において、該グラム陽性細菌に発酵産物として酢酸を産生する能力を付与する少なくとも1つの遺伝子を含む、グラム陽性細菌、
を含み、該グラム陽性細菌は、該少なくとも1つの遺伝子の発現を排除するように形質転換されている、形質転換した生物。
【請求項4】
Thermoanaerobacter属のメンバーである、請求項3に記載のグラム陽性細菌。
【請求項5】
Thermoanaerobacterium saccharolyticumである、請求項3に記載のグラム陽性細菌。
【請求項6】
前記少なくとも1つの遺伝子が酢酸キナーゼの発現をコードする、請求項3に記載のグラム陽性細菌。
【請求項7】
前記少なくとも1つの遺伝子がホスホトランスアセチラーゼの発現をコードする、請求項3に記載のグラム陽性細菌。
【請求項8】
前記少なくとも1つの遺伝子が複数の遺伝子を含む、請求項3に記載のグラム陽性細菌。
【請求項9】
前記複数の遺伝子が酢酸キナーゼおよびホスホトランスアセチラーゼの発現をコードする、請求項8に記載のグラム陽性細菌。
【請求項10】
前記グラム陽性細菌に発酵産物として乳酸を産生する能力を付与する1つ以上の遺伝子の発現を排除するようにさらに形質転換される、請求項9に記載のグラム陽性細菌。
【請求項11】
前記グラム陽性細菌に発酵産物として乳酸を産生する能力を付与する1つ以上の遺伝子の発現を排除するようにさらに形質転換される、請求項3に記載のグラム陽性細菌。
【請求項12】
前記少なくとも1つの遺伝子が乳酸デヒドロゲナーゼの発現をコードする、請求項11に記載のグラム陽性細菌。
【請求項13】
エタノールを産生するための方法であって、該方法は:
天然の生物を形質転換して、請求項11に記載のグラム陽性細菌を産生し、形質転換した細菌宿主を産生する工程;ならびに
該形質転換した宿主を、グルコース、キシロース、マンノース、アラビノース、ガラクトース、フルクトース、セロビオース、スクロース、マルトース、キシラン、マンナン、デンプンおよびこれらの組み合わせからなる群より選択される物質を含む基質を含む培地中で、適当な条件下で、該基質の糖化および発酵を可能にするのに十分な時間、培養する工程、
を包含する、方法。
【請求項14】
前記細菌宿主がThermoanaerobacterium saccharolyticumである、請求項13に記載の方法。
【請求項15】
前記遺伝子が、乳酸デヒドロゲナーゼ、酢酸キナーゼおよびホスホトランスアセチラーゼの発現をコードする、請求項13に記載の方法。
【請求項16】
ALK1と呼ばれ、Patent Deposit Designation No.PTA−7206の下に寄託された、微生物の生物学的に純粋な培養物。
【請求項17】
単離されたポリヌクレオチドであって、以下:
(a)配列番号10の配列;
(b)配列番号9および配列番号10の配列;または
(c)(a)または(b)の配列と少なくとも約90%の配列同一性を有する配列
を含む、ポリヌクレオチド。
【請求項18】
(a)または(b)の配列と少なくとも約95%の配列同一性を有する、請求項17に記載のポリヌクレオチド。
【請求項19】
請求項18に記載の単離されたポリヌクレオチドを含むベクター。
【請求項20】
請求項18に記載のポリヌクレオチドの相補体を発現するように遺伝的に操作された宿主細胞。
【請求項21】
細菌細胞である、請求項20に記載の宿主細胞。
【請求項22】
エタノールを産生する方法であって、該方法は:
請求項21に記載の変異体細菌を、グルコース、キシロース、マンノース、アラビノース、ガラクトース、フルクトース、セロビオース、スクロース、マルトース、キシラン、マンナン、デンプンおよびこれらの組み合わせからなる群より選択される物質を含む基質を含む培地中で、適当な条件下で、該基質のエタノールへの発酵を可能にするのに十分な時間、培養する工程、
を包含する、方法。
【請求項23】
前記変異体細菌が、Thermoanaerobacterium saccharolyticumである、請求項22に記載の方法。
【請求項24】
前記変異体細菌が、Thermoanaerobacterium saccharolyticum ALK1(JW/SL−YS485 ALK1)である、請求項23に記載の方法。
【請求項25】
細菌中で発現可能なプロモーターに作動可能に連結された配列番号10を含む、遺伝子構築物。
【請求項26】
請求項25に記載の遺伝子構築物を含む組換え細菌。
【請求項27】
Thermoanaerobacterium saccharolyticumである、請求項26に記載の組換え細菌。
【請求項28】
エタノールを産生するための方法であって、該方法は:
反応容器内に、リグノセルロース基質、セルラーゼおよび発酵剤を含む反応混合物を提供する工程を包含し、該発酵剤はグラム陽性細菌を含み、該グラム陽性細菌は、天然の状態で、該グラム陽性細菌に発酵産物として酢酸を産生する能力を付与する少なくとも1つの遺伝子の発現を排除するように形質転換されており、該反応混合物を、適当な条件下で、該リグノセルロース基質の糖化および発酵を可能にするのに十分な時間、反応させる、方法。
【請求項29】
前記適当な条件が、少なくとも50℃の温度を含む、請求項28に記載の方法。
【請求項30】
前記グラム陽性細菌が、Thermoanaetobacter属のメンバーである、請求項28に記載の方法。
【請求項31】
前記グラム陽性細菌が、Thermoanaerobacterium saccharolyticumである、請求項28に記載の方法。
【請求項32】
前記少なくとも1つの遺伝子が、酢酸キナーゼの発現をコードする、請求項28に記載の方法。
【請求項33】
前記少なくとも1つの遺伝子が、ホスホトランスアセチラーゼの発現をコードする、請求項28に記載の方法。
【請求項34】
前記少なくとも1つの遺伝子が、複数の遺伝子を含む、請求項28に記載の方法。
【請求項35】
前記複数の遺伝子が、酢酸キナーゼおよびホスホトランスアセチラーゼの発現をコードする、請求項34に記載の方法。
【請求項36】
前記グラム陽性細菌を形質転換して、該グラム陽性細菌に発酵産物として乳酸を産生する能力を付与する1つ以上の遺伝子の発現を排除する工程をさらに包含する、請求項35に記載の方法。
【請求項37】
前記少なくとも1つの遺伝子が、乳酸デヒドロゲナーゼの発現をコードする、請求項36に記載の方法。
【請求項38】
前記グラム陽性細菌を形質転換して、該グラム陽性細菌に発酵産物として乳酸を産生する能力を付与する1つ以上の遺伝子の発現を排除する工程をさらに包含する、請求項28に記載の方法。
【請求項39】
前記少なくとも1つの遺伝子が、乳酸デヒドロゲナーゼの発現をコードする、請求項38に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3−1】
image rotate

【図3−2】
image rotate

【図3−3】
image rotate

【図3−4】
image rotate

【図3−5】
image rotate

【図4−1】
image rotate

【図4−2】
image rotate

【図4−3】
image rotate

【図4−4】
image rotate

【図4−5】
image rotate

【図4−6】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公表番号】特表2010−504734(P2010−504734A)
【公表日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2009−510031(P2009−510031)
【出願日】平成19年5月1日(2007.5.1)
【国際出願番号】PCT/US2007/067941
【国際公開番号】WO2007/130984
【国際公開日】平成19年11月15日(2007.11.15)
【出願人】(504303713)ザ トラスティーズ オブ ダートマウス カレッジ (12)
【出願人】(508327261)マスコマ コーポレイション (1)
【Fターム(参考)】