説明

リチウムイオン二次電池用負極材とその製造方法

【課題】高密度充填、かつ優れた出力特性、サイクル特性、充放電効率に優れたリチウムイオン二次電池用炭素質負極材とその製造方法の提供。
【解決手段】体積基準メディアン径が1μm〜30μmの炭素質粒子と、軟化点70℃〜250℃のピッチと、空気中で400℃に加熱した時の揮発分が50%以上、不活性雰囲気中で800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合することにより、ピッチおよび溶融性有機物で被覆された炭素質粒子を得る工程、得られたピッチおよび溶融性有機物で被覆された炭素質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化炭素質粒子を得る工程、得られた球状化炭素質粒子を引き続き非酸化性雰囲気中で1,000〜3,000℃の温度で焼成炭化し、解砕・分級することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高密度充填、高容量、大電流放電が可能なリチウムイオン二次電池用負極材とその製造方法に関する。
【背景技術】
【0002】
非水電解質二次電池としてリチウム塩の有機電解液を用いたリチウム二次電池は軽量でエネルギー密度が高く、小型電子機器の電源あるいは電力貯蔵用の電池等として期待されており、リチウムイオン二次電池が主として使用されている携帯電話やノート型パソコンなどの性能向上に伴い急速充電に対する要求はより高度化し、ハイブリッドカーや電気自動車用のリチウムイオン二次電池では高容量化を図りつつも、サイクル特性、出力特性を向上させることが重要な課題となっている。
【0003】
当初、リチウム二次電池の負極材としては金属リチウムが用いられていたが、金属リチウムは放電時にリチウムイオンとして電解液中に溶出し、充電時にはリチウムイオンは金属リチウムとして負極表面に析出する際に、平滑で元の状態に析出させることが難しく、デンドライト状に析出し易い。このデンドライトは活性が極めて強いため電解液を分解するので電池性能が低下し、充放電のサイクル寿命が短くなる欠点がある。更に、デンドライトが成長して正極に達して、両極が短絡する危険もある。
【0004】
この欠点を改善するために、金属リチウムに代えて炭素材を用いることが提案されてきた。炭素材はリチウムイオンの吸蔵、放出に際しデンドライト状に析出する問題がないため負極材として好適である。すなわち、黒鉛材はリチウムイオンの吸蔵・放出性が高く、速やかに吸蔵・放出反応が行われるために充放電の効率が高く、理論容量も372mAh/gであり、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られる等の利点がある。
【0005】
しかしながら、黒鉛化度が高く、六角網面構造が高度に発達している黒鉛材の場合、電解液との反応が起こり易く、電池性能が損なわれて、例えば充放電を繰り返すと電池容量が低下する等の難点があり、この問題を解決するために、黒鉛材を中心とする炭素材の性状を改良して、例えば、黒鉛化度の高い黒鉛材の表面を黒鉛化度の低い炭素質物で被覆した複層構造とするなど、数多くの提案がなされている。
【0006】
また、黒鉛は鱗片状、鱗状、板状等の粒子形状であるため、例えば、電極板作製時に粒子の配列化が起こりリチウムイオンの移動が妨げられるので、特に電池の急速充放電性が低下し、また充放電容量も低く、改良の必要性が求められており、黒鉛材を球状化させることで電極板作製時に黒鉛層方向をランダム配向させ、リチウムイオンの移動を容易にする試みも行われている。
【0007】
上記の粒子形状に起因する問題を解決するために粉砕等の力学的エネルギー処理を行って、鱗片状や鱗状の黒鉛粒子の角を取りし、黒鉛化度の低い炭素質物で被覆した複層構造の炭素材とすることも提案されている。例えば、処理前後の見かけ密度比を1.1以上、処理前後のメジアン径比が1以下となるように力学的エネルギー処理を行った炭素質あるいは黒鉛質粒子を含むことを特徴とする非水系二次電池用電極、処理後の炭素質あるいは黒鉛質粒子を有機化合物と混合した後に、該有機化合物を炭素化した複層構造炭素材料を含む非水系二次電池用電極が提案されている(特許文献1参照)。
【0008】
また、リチウムイオン二次電池などの非水電解質二次電池の負極材料として、(1)広角X線回折法による(002)面の面間隔(d002)が3.37オングストローム未満でかつC軸方向の結晶子の大きさ(Lc)が少なくとも1000オングストローム以上、(2)アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.3以下で、かつ1580cm−1ピークの半値幅が24cm−1以下、(3)平均粒径が10〜30μmでかつ一番薄い部分の厚さの平均値が少なくとも3μm以上平均粒径以下、(4)BET法による比表面積が3.5m/g以上10.0m/g以下、(5)タッピング密度が0.5g/cc以上1.0g/cc以下、(6)広角X線回折法による(110)/(004)のX線回折ピーク強度比が0.015以上の特性を示す塊状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成し、炭素質物の表層を形成させた複層構造の炭素質粉末を用いた非水電解質二次電池が開示されている(特許文献2参照)。しかしながら、これらのものにおいては、タッピング密度が低く電池容量を高くできないという問題がある。
【0009】
本出願人は、このような問題点を解決するため、機械粉砕、分級して得られた(1)平均粒子径が10〜40μm、比表面積が10m/g以下、(2)X線回折法による黒鉛結晶子の(002)面の面間隔d002が0.337nm未満、C軸方向の結晶子の大きさLcが100nm以上、(3)真比重が2.18〜2.25、(4)タッピング比重が1.0〜1.3、(5)アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比Rの値が0.5超、かつ、1580cm−1ピークの半値幅が26cm−1超の特性を有する黒鉛粒子を核とし、核の表面に炭素前駆体を被着した後、不活性雰囲気下800〜2800℃の温度で熱処理して形成した炭素質物により被覆された2層構造の炭素材からなる非水電解質二次電池用負極材料を提案したが(特許文献3参照)、上記の手法では、予め黒鉛粒子を加圧力およびせん断力により機械粉砕して球形化した粒子を用いるため、原料となる黒鉛の形状が限られるという問題がある。
【0010】
一方、天然黒鉛を用い、高容量であるとともに初期充放電時の容量ロスが小さく、しかも、高速充電性やサイクル特性にも優れた負極材を提供するために、また、高容量で、容量ロスが少なく、高密度充填性があり、さらに負荷特性(急速充放電特性)にも優れたリチウムイオン二次電池洋負極材を提供するために、何れも予めバインダーを用いて略球状に造粒成形し、バインダーピッチを含浸および被覆した後、焼成してなる負極材の製造方法が提案されている(特許文献4、5参照)が、これらの方法においては、略球状にするバインダーは、造粒成形体にピッチを被覆する際に溶融や溶解をしない材料を選択する必要があり、その後ピッチを含浸するという煩雑な工程が必要となる。また、ピッチ含浸するために略球状体のタップ密度を高くできない(max0.95程度)ため、調整が難しいという問題がある。
【0011】
また、本出願人は、粉砕により発生する黒鉛の新たな活性面の露出を抑制し、不可逆容量が小さくて、可逆容量の大きいリチウムイオン二次電池用負極材の製造方法として、黒鉛粒子と、キノリン不溶分が0.3%以下、固定炭素分が50%以上のピッチ、空気中400℃に加熱した時の揮発分が50%以上、不活性雰囲気中800℃に加熱した時の残炭率が3%以下の溶融性有機物とを溶融混練し、混練物を焼成炭化および黒鉛化したのち粉砕することを特徴とするリチウムイオン二次電池用負極材の製造方法を提案したが(特許文献6)、この方法で高電気容量の負極材とするには、予め球状化した黒鉛粒子を用いる必要がある。
【0012】
黒鉛粒子の角取りと、黒鉛化度の低い炭素質物となるバインダーとの被覆を同時に行う方法として、高容量で、かつサイクル特性及び急速充放電特性に優れ、加えて放電時の電圧が連続的に変化し、放電末期での電圧の変化が緩やかになる高性能のリチウム二次電池を得るための複合炭素粒子の製造方法として、 黒鉛の表面にバインダーを融着させた後、非酸化雰囲気中で焼成してバインダーを炭素化することが提案されているが(特許文献7参照)、具体的手法としては、黒鉛の表面にバインダーがメカノフュージョン加熱機を使用して融着するので、メカノフュージョン加熱機の加圧力およびせん断力により球状化された平均粒径が20μmの複合炭素粒子が形成される一方で、バインダーに潤滑性がないためにメカノフュージョン加熱機の強力な攪拌力により黒鉛粒子が角取りされながら破砕された黒鉛微粒子が黒鉛粒子に接合することなく生成して、充分なサイクル特性を発揮することができないという難点がある。
【0013】
また、天然黒鉛とピッチを混練した後に、球状化する方法が提案されているが(特許文献8参照)、この場合にも、ピッチに潤滑性がないために、メカノケミカル処理装置の強力な攪拌力により黒鉛粒子が角取りされながら破砕された黒鉛微粒子が黒鉛粒子に接合することなく生成して、充分なサイクル特性を発揮することができないという難点がある。
【0014】
更に、炭素物質を機械的力学的粉砕過程によって球形化又は類似球形化すると同時に1次的に安定な構造に組み立てる工程と、表面間の摩擦及びせん断力を付与する粉砕機を利用して、前記球形化又は類似球形化過程で精製された微細な炭素粉末粒子を単物質の表面で2次的に安定な構造に組み立てる工程と、前記組立体を熱処理する工程と、を供えることを特徴とするリチウム二次電池用負極活物質の製造法も提案されているが(特許文献9参照)、黒鉛と固形ピッチを混入し、ピッチが溶融しない温度域で攪拌混合したとしても、ピッチが黒鉛材内部の隅々にまで充填されにくいので、得られた複合粒子は球状であったとしても、内部に残存する空隙が多く、負極活物質として充填する際に極板密度の高密度化が難しいという問題がある。
【特許文献1】特開平10−334915号公報
【特許文献2】特開平11−054123号公報
【特許文献3】特開2004−079344号公報
【特許文献4】特開2004−031038号公報
【特許文献5】特開2004−179075号公報
【特許文献6】特願2005−377139号
【特許文献7】特開平11−011919号公報
【特許文献8】特開2003−173778号公報
【特許文献9】特開2005―302725号公報
【発明の開示】
【発明が解決しようとする課題】
【0015】
本発明は、リチウムイオン二次電池用負極材とその製造方法における上記従来の問題点を解消するためになされたものであり、その目的は、炭素質粒子の形状および表面結晶構造を制御して電極板作製時に黒鉛層方向をランダム配向することにより、高密度充填、かつ優れた出力特性、サイクル特性、充放電効率を備えたリチウムイオン二次電池用負極材とその製造方法を提供することにある。
【課題を解決するための手段】
【0016】
上記の目的を達成するための、請求項1によるリチウムイオン二次電池用負極材は、ピッチおよび溶融性有機物で被覆された炭素質粒子を焼成炭化して得られるリチウム二次電池用炭素質負極材であって、体積基準メディアン径が5〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下の特性をそなえることを特徴とする。タッピング比重は1.0〜1.3が望ましい。
【0017】
請求項2によるリチウムイオン二次電池用負極材の製造方法は、体積基準メディアン径が1μm〜30μmの炭素質粒子と、軟化点70℃〜250℃のピッチと、空気中で400℃に加熱した時の揮発分が50%以上、不活性雰囲気中で800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合することにより、ピッチおよび溶融性有機物で被覆された炭素質粒子を得る工程、得られたピッチおよび溶融性有機物で被覆された炭素質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化炭素質粒子を得る工程、得られた球状化炭素質粒子を引き続き非酸化性雰囲気中で1,000〜3,000℃の温度で焼成炭化し、解砕・分級することを特徴とする。
【0018】
請求項3によるリチウムイオン二次電池用負極材の製造方法は、請求項2において、前記炭素質粒子のX線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満以下であることを特徴とする。
【0019】
請求項4によるリチウムイオン二次電池用負極材の製造方法は、請求項2または3において、加熱混合により得られたピッチおよび溶融性有機物で被覆された炭素質粒子は、レーザー回折法により測定した体積基準メディアン径が10〜40μmであることを特徴とする。
【0020】
本発明においては、ピッチを黒鉛材内部の隅々にまで充填した状態で、かつピッチが軟化する温度域にて黒鉛材を球状化することにより、黒鉛材内部の空隙にピッチが溶融状態で浸透し、ピッチの軟化点温度域にて球状化したのち、ピッチ成分を焼成炭素化することで上記従来の問題を解決することができる。
【0021】
また、篩い分けや分級処理による収率が高く、粒度が球状であり、また、その粒度分布がシャープな黒鉛結晶のエッジ面が炭素で被覆された複合炭素粒子により、充電容量、サイクル特性に優れたリチウムイオン二次電池用負極材が提供されることができる。
【発明の効果】
【0022】
本発明によれば、炭素質粒子の形状および表面結晶構造を制御して電極板作製時に黒鉛層方向をランダム配向することにより、高密度充填、かつ優れた出力特性、サイクル特性、充放電効率を備えたリチウムイオン二次電池用負極材とその製造方法が提供される。
【発明を実施するための最良の形態】
【0023】
本発明においては、炭素質粒子表面に炭化物を薄く均一に被覆すること、および比表面積を抑えつつ、炭素質粒子表面の結晶性を低下させ、表面平滑性、円形度の高い球状化炭素質粒子の製造が可能となる。すなわち、充放電効率が大きく、高密度充填、高容量でありながらも出力特性に優れるの製造が可能となる。
【0024】
本発明によるリチウムイオン二次電池負極材の製造方法は、炭素質粒子の球状化、およびリチウムイオン二次電池における充放電効率、充填密度、大電流放電時における出力特性の改善を目的と、以下のイ〜ハの特徴により、高密度充填、高容量、出力特性に優れたリチウムイオン二次電池負極材を得ることが可能となる。
イ.炭素質粒子の表面にピッチを均一に被覆すること、
ロ.炭素質粒子の表面を表面間の摩擦及びせん断力を付与する粉砕機を利用して機械的に破壊して球状化することすること、
ハ.炭素質粒子の表面に非晶質表面を形成すること
【0025】
以下、製造工程について説明する。
《原料》
a.炭素質粒子
以下の特性を満たす炭素質粒子が好適であり、具体的には鱗片状天然黒鉛粒子や人造黒鉛粒子、人造黒鉛電極の粉砕粉、コークス粉、その他の炭素前駆体の焼成炭化物、それらの混合物が適用できる。これらの原料となる炭素質粒子は、以下の特性を満足することにより、最終粉体はリチウムイオン二次電池負極材として好適になる。
(1)アスペクト比は限定しない。本発明であればアスペクト比が3.0以上のものでも炭素化した後に球形化することなく、アスペクト比が1.0〜2.0となる。
(2)レーザー回折法により測定した体積基準メディアン径が1μm〜30μm
レーザー回折式の粒度分布測定装置((株)島津製作所製SALD2000)により測定した値で、体積を基準としたメディアン径(μm)で示した。
【0026】
原料となるこの炭素質粒子は、鱗片状天然黒鉛、人造黒鉛、人造黒鉛電極の破砕品、コークスなどをローラーミルや衝撃粉砕機などの粉砕装置を用いて粉砕・分級して得られる。体積基準メディアン径が30μmを上回る場合には、リチウムイオン二次電池とし大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性の低下を招くため好ましくない。また、リチウムイオン二次電池の負極を作成する際、活物質層塗工時における膜厚を薄く均一な層にすることが困難となるために、より体積当たりの出力特性が低下する。より好ましい体積基準メディアン径は25μm以下、さらに好ましくは20μm以下である。体積基準メディアン径が1μmを下回る場合には比表面積が大きくなる。
【0027】
(3)X線広角回折法により測定した(002)面の面間隔d(002)が0.3500m未満
グラファイトモノクロメーターで単色化したCuKα線をもちい、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて測定する。0.3500nmを上回る場合には、最終粉体の放電可逆容量が330mAh/g以下となるため不都合である。通常は、0.3500nm以下、より好ましくは0.3400nm以下、さらに好ましくは0.3358nm以下である。
【0028】
b.ピッチ
環球法で測定された軟化点が70〜250℃のものが好適である。環球法で測定された軟化点が70℃を下回る場合には炭素前駆体が溶融しやすく、下記の第二工程において、ピッチ溶出分が装置内壁に付着してしまい、定常連続運転ができなくなるという不具合が生じる。また、250℃を上回る場合には炭素前駆体の軟化状態が良くなく、下記の第二工程において球状化が旨く進行しないため好ましくない。通常は70〜250℃、より好ましくは70〜150℃、さらに好ましくは70〜90℃である。また、軟化点の異なるピッチ同士を二種以上混合する方法やタール添加する方法により、軟化点70〜250℃に調整したピッチを用いてもよい。負極材としての初回充放電ロスを低下するためには濾過などの方法によりフリーカーボンを除去したピッチまたはキノリン不溶分の含有率が1%未満であるピッチを用いることがより好ましい対応となる。
【0029】
c.溶融性の有機物
空気中400℃に加熱した時の揮発分が50%以上、不活性雰囲気中800℃に加熱した時の残炭率が3%以下の溶融性有機物が好適に使用できる。炭素質粒子とピッチを溶融混練する際に、有機物は低粘度の溶融状態になる必要があり、溶融性の有機物が用いられ、分子量は小さい方が好ましく、混練中に過度の粉砕が生じない性状をもつものが好ましいものとなる。次工程の球状化の際、潤滑剤としても作用し、炭素粒子の微粉化を防ぐ効果がある。また、生産面を考慮すると、装置の金属磨耗、装置内部への炭素前駆体の付着を抑えるためにも、潤滑性を保持することが好ましい。
【0030】
さらに、後工程で行う焼成炭化時には酸素(空気)を遮断した非酸化性雰囲気中で行うが、この時被焼成物中に含まれる有機物が揮散する際のガス圧によって、被焼成物周辺の酸素を追い出す、あるいは有機物と酸素が反応して酸素濃度を低下させるという効果もある。そのため、空気中400℃に加熱した時に50%以上が揮発する有機物が使用される。揮発分が50%より少ないと被焼成物周辺の酸素濃度が十分に低下せず、ピッチ由来の炭素の結晶性が低下することになり、可逆容量も低下することになる。また、溶融性有機物中の残炭分は可逆容量を低下させることになるので、できるだけ残炭率は低いことが望ましく、不活性雰囲気中で加熱し、800℃まで加熱した時の残炭率が3%以下のものが用いられる。このような溶融性の有機物としては、合成油、天然油、ステアリン酸、合成ワックス、天然ワックスなどが例示される。
【0031】
本発明による処理工程について説明する。
《第一工程》(炭素質粒子のピッチ被覆および造粒)
本発明においては、ピッチ浸透・被覆を球状化装置でなく他の装置で済ませた後、球状化装置を用いて球状化する手法を適用できる。ピッチを黒鉛材内部にまで浸透・被覆させるには量産性に優れる混練装置(ニーダー)やその他のミキサーが工業的に好ましく用いられる。この場合、球状化装置の内容量に限定されずにピッチを黒鉛材内部にまで浸透・被覆させることができる。また、加圧蓋を設けた加圧式ニーダーを用いてもよい。
【0032】
炭素質粒子を混練機内に投入し、混練しながら容器内の温度をピッチの軟化点を越える所定温度にまで昇温させ、ピッチを投入して十分に混練する。混練により、粒子の破壊や粒度分布の微粉部が合体して一部造粒が同時進行する。しかし、本発明の溶融性有機物の添加により、粒子の破壊が抑制される。そのため、表面に被覆された粒子、微粒子がピッチで造粒した状態の粒子の混合物となる。加熱混合により得られた粉体は、レーザー回折法により測定した体積基準メディアン径が10〜40μmである。混練する時間は、混練機の容量、混練羽形状、原料の投入量などにより左右されるがピッチの融点を超える温度で10分間〜2時間とする。その後、室温まで冷却してピッチを被覆した炭素質粒子を得る。
【0033】
イ、炭素質粒子に対するピッチの比率
黒鉛質炭素粒子100重量部に対して5〜40重量部とするのが好ましい。5重量部を下回る場合には、炭素質粒子表面をピッチで均一に被覆することが難しく、また、造粒ができずに粒度分布の微粉部が多いためブロードになる不具合が生じるので、電極作成時に負極材の密度が低下して電池容量が低下するためである。40重量部を上回る場合、黒鉛粉末同士が凝集するために個々の粒子一ケづつ解砕することが難しくなり、最終的に得られる複合粒子の粒子径が大きくなり過ぎて、解砕により得られる黒鉛質炭素粒子表面のピッチ被覆膜の厚さが不均一となり、ピッチ単独の粉末が存在することとなり易い。そのうえ、粗大な塊が形成されるために粉砕工程が必要となるうえに、電池特性として初回充放電ロスが大きくなる。また、第二工程(球状化)において、余分なピッチが装置内部に付着することにより、連続的な連続運転ができなくなる不具合も生じる。比率は使用する原料の種類によって適宜、調整するが、通常は5〜40重量部、より好ましくは10〜30部、さらに好ましくは15〜25部である。
【0034】
ロ、炭素質粒子に対する溶融性有機物の比率および添加時期
黒鉛質炭素粒子100重量部に対して1〜30重量部とする。より好ましい範囲は、3〜20重量部である。3重量部を下回る場合には、次工程のピッチを被覆した炭素質粒子の球状化する場合に微粉化した炭素質粒子が残存するので、除去が難しい上、収率が低下する。30重量部を上回る場合には、次工程のピッチを被覆した炭素質粒子の球状化が困難になるうえに、次工程のピッチを被覆した炭素質粒子の球状化する場合にも粗大な塊が形成される問題がある。
【0035】
溶融性有機物は、以下の方法で混練する。
(1)炭素質粉末と溶融性有機物を充分に加熱混練して、その後ピッチを添加して混練する方法。
(2)炭素質粉末とピッチとを加熱混練して、その後溶融性有機物を添加して混練する方法。
(3)炭素質粉末とピッチと溶融性有機物とを加熱混練する方法。
炭素質粉末の過度の微粉砕化を防ぐ方法としては、(1)の炭素粉末と溶融性有機物を充分に加熱混練して、その後ピッチを添加して混練する方法や(3)の炭素粉末とピッチと溶融性有機物とを加熱混練する方法が好ましい態様である。
【0036】
《第二工程》(ピッチおよび溶融性有機物を被覆した炭素質粒子の球状化)
得られたピッチおよび溶融性有機物を被覆した炭素質粒子に対し、繰り返し、粒同士を圧縮、摩擦、衝突させることにより外部から機械的エネルギーを付与し続けることで、粒子の表面が徐々に削り取られて球状化される。球状化により発生した炭素微粉が軟化したピッチ及び溶融性有機物の混合層を介して粒子表面に埋め込まれるため、粒子径アスペクト比は1.0〜2.0に調整される。また、球状化処理後に粒子の表面が徐々に削り取られた微粉は残存しない。また、炭素粒子の黒鉛結晶層が折れ曲がることも混在し、最終的には粒同士の摩擦抵抗が小さい安定な球状に落ち着く。この際、ピッチおよび溶融性有機物の混合層が軟化し、粒同士の摩擦により表面は平滑化される。外部から機械的エネルギーを付与する具体的な装置としては、メカノフージョンシステム(ホソカワミクロン(株)製)、ハイブリダイザー((株)奈良機械製作所製)などが挙げられるが、これらの装置に限定されるものではない。
【0037】
例えば、粉体に対して機械的エネルギーを付与する方法としては、図1に示すハイブリダイザー((株)奈良機械製作所製)内に第一工程にて得られた粉体を原料投入口1より投入し、回転周速20〜100m/sで1〜3分間処理する。ハイブリダイザーは原料循環路2を通してドラム6と回転部8の隙間に投入した原料に対し、ドラム6と回転部8との回転速度の差異により生じる圧縮力、摩擦力、および衝突力を利用し、機械的エネルギーを与える装置である。3はステーター、4はジャケット、5は原料排出部、7はブレードである。
【0038】
ハイブリダイザー処理中における装置内部の温度は、機械的エネルギー付与により上昇するが、(ピッチの軟化点+20℃)の以下の温度に調整することが好ましい。(ピッチの軟化点+20℃)を超える温度雰囲気の場合、溶融ピッチが粒子間隙より溶出し、溶出したピッチが装置内部に付着するため、定常的な連続運転が不可能になる不具合が生じる。逆にピッチの軟化点が250℃以上では軟化状態が悪く、球状化が困難となるため好ましくない。
【0039】
回転周速は20〜100m/sが好ましい。回転周速20m/s以下では粒子が受ける機械的エネルギーが小さく、球状化が進行しないため好ましくない。回転周速100m/s以上と100m/sでは得られる粉体に性能上、大差はなく、コスト的な面、装置の安全性等を考慮すると上限は100m/sとするのが好ましい。処理時間30秒以下では粒子径アスペクト比がまだ大きく、5分以上では粒子径アスペクト比が変化しないため、処理時間は30秒〜5分が好ましい。生産面を考慮すると1分〜3分がより好ましい。また、粒同士の摩擦力、圧縮力が強すぎて、回転周速が上昇して粒子の破壊が生じてしまう場合には、粒同士の磨耗を減らすために上記で説明した溶融性有機物を添加するのが好ましい。投入量、コスト、処理時間を考慮して、適宜、投入量は調節する。
【0040】
《第三工程》(ピッチおよび溶融性有機物で被覆された球状化炭素質粒子の炭素化・解砕・分級)
機械的エネルギーを付与する処理により得られたピッチおよび溶融性有機物で被覆された球状化炭素質粒子は、非酸化性雰囲気下にて1,000℃〜3,000℃で溶融性有機物の揮散およびピッチを焼成炭化する。その後、解砕、分級して得られた粉体をリチウムイオン二次電池用の負極材とする。1,000℃未満では溶融性有機物の揮散が十分でなく、またピッチの低分子有機未燃分が残存し、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化するので好ましくない。3,000℃を超えると、ピッチの炭化成分の黒鉛結晶子が発達し、高速放電効率の低下するため好ましくない。また、3,000℃を超えると、熱処理コストが高く、製造コストの増加を招くため好ましくない。
【0041】
解砕装置としては、(株)マツボー製ターボミル、(株)セイシン企業製クイックミル、日清エンジニアリング(株)製スーパーローターなどの装置が例示される。分級工程では、最小粒子径1μm以上、最大粒子径55μm以下、メディアン粒子径5〜30μmに調整する。上記方法により、リチウムイオン二次電池用負極材として好適な炭素質粒子表面に炭素バインダーを被覆した球状化炭素質粒子を製造することが可能となる。
【0042】
上記の工程により、体積基準メディアン径が10〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下で、タッピング比重が好ましくは1.0〜1.3の特性をそなえる球状化炭素質粒子からなるリチウム二次電池用炭素質負極材が得られる。
【0043】
本発明により得られる球状化炭素質粒子の性状について説明する。
《比表面積》
BET比表面積はNガスを用いたBET、10点法により算出した値とする。なお、窒素吸着比表面積は、表面積計((株)島津製作所製全自動表面積測定装置)を用い、測定対象(ここでは黒鉛材料)に対して窒素流通下350℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET10点法によって測定した値である。得られる最終粉体のBET比表面積は1.5〜5m/gが好ましい。1.5m/g未満ではリチウムイオンの脱挿入に要する反応面積が小さいため出力特性を維持できず、5m/gを超えると反応面積が大きく、初回充電時に大きなロスを生じてしまうため好ましくない。比表面積の調節は黒鉛質炭素粒子を被覆するピッチの厚みやハイブリダイザー、粉砕機の回転速度、分級条件を調節することで可能となる。
【0044】
《体積基準粒子径》
レーザー回折法により測定したメディアン径は5〜30μmが好ましい。メディアン径は、(株)島津製作所製SALD2000にて測定した値である。5μm未満の粒子はスラリー調整時における液中への分散が悪く、また比表面積が大きいため好ましくない。体積基準メディアン径が30μmを上回る場合には、リチウムイオン二次電池とし大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性の低下を招くため好ましくない。また、活物質層塗工時における膜厚が制限され、より出力特性に優れる電極構造を設計する際、薄く均一な活物質層を塗工することが困難となる。通常、5〜30μm、より好ましくは10〜25μm、さらに好ましくは10〜20μmである。粒度調整は黒鉛質炭素粒子の粒子径、炭素前駆体配合比、粉砕機の回転速度、分級条件を調節することで可能となる。
【0045】
《粒子径アスペクト比》
粒子径アスペクト比は1.0〜2.0が好ましい。SEM観察にて、球状化黒鉛質炭素粒子100個を任意に選び出し、粒子の最長径を最小径で除した値、その平均値を粒子径アスペクト比とする。粒子径アスペクト比が2.0より大きくなると、活物質層塗工時において黒鉛層方向が基盤と平行に配向しやすく、活物質層が基盤から剥離しやすくなり、サイクル特性が劣化する不具合が生じる。粒子径アスペクト比は通常1.0〜2.0、より好ましくは1.0〜1.6、さらに好ましくは1.0〜1.3である。
【0046】
《ラマンスペクトル》
粒子表層の結晶構造の乱れ具合はラマンスペクトルで議論するのが妥当である。波長514.5nmのArレーザーを用いたラマン分光分析器(日本分光(株)製、NR1100)で測定し、表層での結晶欠陥および積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360を炭素六角網面内の格子振動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除したものである。ラマンスペクトルの強度比R=I1360/I1580で粒子表層の結晶構造の乱れ具合を表すことができる。
【0047】
初回充電時の容量ロスを抑えつつ、優れた出力特性を有するには0.60以下が好ましい。ラマンスペクトルの強度比R=I1360/I1580の調節はハイブリダイザー、粉砕機の回転速度、使用する黒鉛質炭素粒子、炭素前駆体を選定することで調節可能である。
【0048】
《X線回折法により得られる黒鉛結晶子のd(002)面の層間距離》
粒子内部の結晶性はX線回折法により得られる黒鉛結晶子の(002)面の面間隔d(002)面で議論するのが妥当である。CuKα線をX線源、標準物質に高純度シリコンを使用し、(002)面の回折パターンのピーク位置、半値幅から学振法に基づきd(002)を算出する。d(002)は0.3500nm未満が好ましく、0.3500nm以上では放電可逆容量が小さくなるため好ましくない。天然黒鉛では理想黒鉛の0.3354nmに近い値を有し、易黒鉛化コークスは2,800℃以上の熱処理を施すことで0.3400nm未満にすることが可能である。通常、0.3500nm以下、より好ましくは0.3400nm以下、さらに好ましくは0.3358nm以下である。
【実施例】
【0049】
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。
【0050】
実施例1
(粉体調製)
メディアン径10.9μm、d(002)=0.3355nmの鱗片状天然黒鉛((株)中越黒鉛工業所製、BF−10A)100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)(炭素前駆体)を30重量部、溶融性有機物として空気中で400℃に加熱した場合に70%が揮発し、かつ不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油(直鎖状有機高分子体)5重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
【0051】
次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数4,800rpm(回転周速60m/s)で3分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.5の角取りされた球形化粉体であった。上記の製造条件を表1に示す。
【0052】
【表1】

【0053】
引き続き、得られた球形化粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、解砕(装置名:日清エンジニアリング(株)製スーパーローター)し、分級(装置名:日清エンジニアリング(株)製ターボクラシファイア)してメディアン径13.6μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とした。粉体物性を表2に示す。
【0054】
【表2】

【0055】
(リチウムイオン二次電池の作製)
(スラリーの調製)
上記炭素粒子100重量部に対し、増粘剤として1wt%のカルボキシメチルセルロース(CMC)水溶液を適量投入して30分間攪拌混合した後、結合剤として40wt%のスチレン−ブタジエンゴム(SBR)水溶液を適量投入して5分間攪拌混合し、負極合材ペーストを調製した。
【0056】
(作用極の作製)
得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して溶媒を完全に揮発させた。得られたシートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて作用極を得た。
【0057】
(対極の作製)
不活性雰囲気下、リチウム金属箔をポンチで打ち抜いたニッケルメッシュ(集電体)にめり込ませ、対極を得た。
【0058】
(可逆放電容量評価用ボタン型電池の作製)
前記の作用極、対極を使用し、評価用電池として図2に示すボタン型電池を不活性雰囲気下で組み立てた。電解液は1mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0.2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を可逆放電容量とした。図2において、9は負極側ステンレスキャップ、10は負極、11は銅箔、12は絶縁ガスケット、13は電解液含浸セパレータ、14はニッケルメッシュ、15は正極側ステンレスキャップ、16は正極である。
【0059】
出力特性評価はSOC=100%の満充電状態から10mA/cmで放電した際の容量維持率で負極材の出力特性を調べた。測定結果を表2に示した。
【0060】
(サイクル耐久性評価用ボタン型電池の作製)
対極をリチウムコバルト酸化物に変え、上記と同様、ボタン型電池を組み立てて、60℃、0.2Cの電流密度にて4.1V〜3.0V間を100回、繰り返し充放電を行った後の容量維持率を調べた。測定結果を表2に示した。
【0061】
実施例2
メディアン径19.2μm、d(002)=0.3359nmの石油系ニードルコークス黒鉛化品100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―E、軟化点89℃)を20重量部、実施例1の溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が63%、不活性雰囲気中で800℃に加熱した際の残炭率が0.4%のステアリン酸5重量部を、混練機にて150℃、60分間、混練した後、室温に冷却した。
【0062】
次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を85±5℃に保ちながら、回転数8,000rpm(回転周速100m/s)で30秒間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.7の角取りされた球形化粉体であった。上記の製造条件を表1に示す。
【0063】
引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、2,100℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径20.2μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示した。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示した。
【0064】
実施例3
メディアン径25.5μm、d(002)=0.3359nmの人造黒鉛電極粉砕粉(オリエンタル産業(株)製、AT−No.10S)100重量部に対し、メソフェーズピッチ(JFEケミカル(株)製MCP−250D、軟化点250℃)を5重量部、実施例1の溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が63%、不活性雰囲気中で800℃に加熱した際の残炭率が0.4%のステアリン酸5重量部、混練機にて250℃、90分間、混練した後、室温に冷却した。
【0065】
次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を250±5℃に保ちながら、回転数8,000rpm(回転周速100m/s)で5分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.7の角取りされた球形化粉体であった。上記の製造条件を表1に示す。
【0066】
引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、3,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径27.3μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示した。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0067】
実施例4
実施例1で使用した鱗片状天然黒鉛の代わりにメディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)を使用した以外は実施例1と同様の処理を行ない、メディアン径16.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0068】
比較例1
実施例1において、溶融性有機物としての溶融機械油を使用しない他は、実施例1と同じ方法で溶融混練し、混練物を実施例1と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を12.9μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0069】
比較例2
実施例1において、溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が60%、不活性雰囲気中で800℃に加熱した際の残炭率が4.4%のPVC(ポリ塩化ビニル)を用いた他は、実施例1と同じ方法で溶融混練し、混練物を実施例と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を13.1μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0070】
比較例3
実施例1において、ハイブリダイザー装置による処理を行わない他は、実施例1と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を15.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0071】
比較例4
実施例1で使用した鱗片状天然黒鉛の代わりにメディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)を使用し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)40重量部とをウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
【0072】
次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数4,800rpm(回転周速60m/s)で3分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.6の角取りされた粉体が混在するものであった。上記の製造条件を表1に示す。
【0073】
引き続き、得られた球形化粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径15.6μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。
【0074】
比較例5
メディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)100重量部に、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)を40重量部、溶融性有機物として空気中で400℃に加熱した場合に70%が揮発し、かつ不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油5重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
【0075】
次に、ハイブリダイザー装置による処理を行うことなく、実施例4と同様の処理を行ない、メディアン径17.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
【0076】
比較例6
メディアン径10.9μm、d(002)=0.3355nmの鱗片状天然黒鉛((株)中越黒鉛工業所製、BF−10A)100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)を30重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
【0077】
引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径13.6μmに調整した。上記の製造条件を表1に示す。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。
【0078】
表2に示すように、本発明に従う実施例1〜4においては、黒鉛結晶子の破壊を抑えることで比表面積の増加を抑えることが可能となり、高い初期効率を有しており、また、粒子径アスペクト比が2以下であるため電池基盤と活物質層との接着が強く、サイクル維持率も高い値を有しており、優れた電池特性が達成されているのが認められる。
【図面の簡単な説明】
【0079】
【図1】粉体に対して機械的エネルギーを付与するハイブリダイザーを示す図である。
【図2】ボタン型電池を示す図である。
【符号の説明】
【0080】
1 原料投入口
2 原料循環路
3 ステーター
4 ジャケット
5 原料排出部
6 ドラム
7 ブレード
8 回転部
9 負極側ステンレスキャップ
10 負極
11 銅箔
12 絶縁ガスケット
13 電解液含浸セパレータ
14 ニッケルメッシュ
15 正極側ステンレスキャップ
16 正極

【特許請求の範囲】
【請求項1】
ピッチおよび溶融性有機物で被覆された炭素質粒子を焼成炭化して得られるリチウム二次電池用炭素質負極材であって、体積基準メディアン径が5〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下の特性をそなえることを特徴とするリチウムイオン二次電池用負極材。
【請求項2】
体積基準メディアン径が1μm〜30μmの炭素質粒子と、軟化点70℃〜250℃のピッチと、空気中で400℃に加熱した時の揮発分が50%以上、不活性雰囲気中で800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合することにより、ピッチおよび溶融性有機物で被覆された炭素質粒子を得る工程、得られたピッチおよび溶融性有機物で被覆された炭素質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化炭素質粒子を得る工程、得られた球状化炭素質粒子を引き続き非酸化性雰囲気中で1,000〜3,000℃の温度で焼成炭化し、解砕・分級することを特徴とするリチウムイオン二次電池用負極材の製造方法。
【請求項3】
前記炭素質粒子のX線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満以下であることを特徴とする請求項2記載のリチウムイオン二次電池用負極材の製造方法。
【請求項4】
加熱混合により得られたピッチおよび溶融性有機物で被覆された炭素質粒子は、レーザー回折法により測定した体積基準メディアン径が10〜40μmであることを特徴とする請求項2または3記載のリチウムイオン二次電池用負極材の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2008−305661(P2008−305661A)
【公開日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2007−151602(P2007−151602)
【出願日】平成19年6月7日(2007.6.7)
【出願人】(000219576)東海カーボン株式会社 (155)
【Fターム(参考)】