説明

ローカル測位用の改良レーダシステム

本発明の測位システムは、1又は複数の能動ランドマーク及びデバイスを備える。デバイスは、偏波を有する電磁パルスを送信し、或る期間にわたってリターン信号を受信する。デバイスは、偏波を有するリターン信号を優先的に受信することができる。リターン信号は、少なくとも1つの能動ランドマークからの少なくとも1つのリターン被変調パルスを含む。デバイスは、リターン信号からリターン被変調パルスを分離して、デバイスから能動ランドマークまでの距離を求めるように、リターン信号を処理する。デバイスは、オプションとして、リターン信号を受信している間、特定の方向に移動し、リターン信号のリターン被変調パルス部分におけるドップラーシフトを検出し、特定の方向と、デバイスと能動ランドマークとの間の直線との間の角度を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、包括的には、測位システムに関し、より具体的には、コヒーレント無線周波数測距技法を介して、複数の能動ランドマークを基準とした移動デバイスの位置を求めるためのシステム及び方法に関する。
なお、本願は、2003年7月3日に出願された係属中の米国特許出願第10/614,097号の一部継続出願である。米国特許出願第10/614,097号は、その全内容が参照により本明細書に援用されている。
【背景技術】
【0002】
ローカル測位システムは、特に、自律走行車(自動車)の用途及び精密施工ツールの用途で、ナビゲーション能力を必要とする移動デバイスを実現するために重要な存在となってきている。GPS等のグローバル測位システムは、通常、10cm程である中程度の精度の位置情報しか提供せず、水平線近くまで空の澄んだ視界を必要とする。能動コンポーネント又は受動コンポーネントのいずれかが作業範囲に分散されているローカル測位システムは、はるかに高い精度(<1cm)の測位を可能にすることができ、最も複雑な閉鎖形状(enclosed geometry)であっても、必要に応じてユーザによるシステムの拡張を可能にする。
【0003】
従来のローカル測位システムは、アコースティック(音波)測距システム及びレーザ測距システムを含む。アコースティックシステムは、通常、トランスポンダビーコンを使用して、デバイスのネットワーク内における距離を測定する。それらのデバイスのいくつかは、固定されてローカル座標系を形成する。しかしながら、アコースティックシステムは、空気中の音波伝播特性のために、1cm以上の精度までの距離しか測定することができず、比較的短い間隔にわたってしか測定することができない。レーザに基づくローカル測位システムは、デバイスとプリズム等の1又は複数の反射物体との間の角度及び距離の双方の測定値を利用して、デバイスの位置を三角測量又は三辺測量(trilateralate)する。しかしながら、レーザシステムは、現在、システムコストが3万ドル以上となってしまうことがある高価な指示メカニズム(pointing mechanism)を使用している。
【発明の開示】
【発明が解決しようとする課題】
【0004】
2次元(2D)又は3次元(3D)の位置を数ミリメートルの精度まで求めることができる比較的低コスト(≦2000ドル)のローカル測位システムは、屋内での精密施工及び屋外での精密施工、採鉱、精密農業、並びにスタジアムフィールドの草刈り及び処置のような応用分野に適用可能な、多大な可能性を与える製品となる。本発明の目的は、従来のローカル測位システムのコストの限界及び制度の限界を克服することである。
【課題を解決するための手段】
【0005】
低コストで、さらに高い精度のローカル測位システムにおいて、電磁パルスが、距離、及び、オプションとしてデバイスと複数の能動ランドマークとの間の角度を求めるのに使用される。電磁パルスの伝播速度は、アコースティック信号の伝播速度ほどには、環境条件と共に強く変化せず、測距においてすぐれた精度を提供する。電磁パルスを送信するのに使用されるアンテナの空間帯域幅は、レーザの空間帯域幅よりもかなり広く、多大なコストを要するポインティングメカニズムの必要性がなくなる。能動ランドマークを使用することによって、ランドマークそれぞれの異なる特性(シグネチャ)を求めることができるようなパルスの変調が可能になる。
【0006】
一実施の形態では、1又は複数の能動ランドマークを基準としたデバイスの位置は、偏波及び第1の搬送波信号周波数を有するパルスをデバイスから送信し、偏波を有するリターン信号を優先的に受信することを含めて、或る期間にわたりリターン信号を受信することによって求められる。リターン信号は、少なくとも1つの能動ランドマークからのリターン被変調パルス(return modulated pulse)を含む。リターン信号は処理されて、該リターン信号からリターン被変調パルスが分離され、リターン被変調パルスの到達時間に基づき、デバイスから少なくとも1つの能動ランドマークまでの距離が求められる。
【0007】
リターン被変調パルスは、振幅変調又は周波数変調を使用して変調される。いくつかの実施の形態では、方形波が、リターン被変調パルスの周波数変調に使用される。方形波は、リターン被変調パルスの到達時間の不明確さを取り除くように符号化することができる。また、方形波は、送信パルスの繰り返し周期の倍数であるラウンドトリップ経路を区別するように周期的に符号化することもできる。加えて、2つ以上の能動ランドマークを有する実施の形態では、各能動ランドマークからのリターン被変調パルスの変調は、他のすべての能動ランドマークによって使用される変調と異なるものとすることができる。
【0008】
いくつかの実施の形態では、デバイス又は各能動ランドマークは、受信を行っている間、特定の方向に既知の速度で移動している。デバイスは、リターン信号のリターン被変調パルスにおけるドップラーシフトを検出し、特定の方向と、デバイスと各能動ランドマークとの間の直線との間の角度を、検出されたドップラーシフトの関数として求める。いくつかの実施の形態では、この方法は、第2のデバイスによるレーダ間測距を使用して、デバイスの位置を求めることを含む。
いくつかの実施の形態では、デバイスは、送信アンテナ及び受信アンテナを別々に備え、また、送信アンテナと受信アンテナとの間のクロストークを低減するデコヒーレンスプレートも備える。
いくつかの実施の形態では、デバイスは、少なくとも各能動ランドマークの少なくとも較正された遅延を記憶するようにさらに構成され、デバイスから能動ランドマークまでの距離は、較正された遅延を使用して求められる。
【0009】
いくつかの実施の形態では、能動ランドマークは、送信された電磁パルスに対応する受信信号を受信するための受信アンテナと、受信信号を増幅するための増幅器と、変調(modulating)信号を生成するための信号ジェネレータと、変調信号で受信信号を変調して送信被変調(modulated)信号を生成するためのミキサと、送信被変調信号に対応するリターン電磁被変調パルスを送信するための送信アンテナとを含む。送信アンテナ及び受信アンテナは、共通アンテナとして一体化することができる。加えて、能動ランドマークを受動反射構造体に近接させて、能動ランドマークのレーダ断面積を増加させることができる。
【発明を実施するための最良の形態】
【0010】
図面中、同様の参照符号は、図面のいくつかの図を通じて対応する部分を示している。
本発明の実施形態を詳細に説明する。実施形態の例は、添付図面に示されている。以下の詳細な説明では、本発明の徹底した理解を提供するために、多数の詳細な具体例を説明している。しかしながら、本発明は、これらの詳細な具体的例がなくても実施できることは、当業者には明らかであろう。それ以外の場合には、本発明の態様を不必要に分かりにくくしないようにするために、既知の方法、手順、コンポーネント、及び回路を詳細には説明しない。
【0011】
図1を参照すると、ローカル測位システム100は、デバイス110及び複数の能動ランドマーク112を含む。能動ランドマーク112の位置は固定されているか、又は、その平均位置が固定されている。能動ランドマーク112は、測量されたロケーションに配置することができる。或いは、能動ランドマーク112は、初期システム自己較正手順の期間中に自動的に求められた任意の位置に、配置することもできる。いずれの場合も、各距離がデバイス110と能動ランドマーク112_1等の能動ランドマークとの間の間隔に関係する1又は複数の距離を求めることによって、デバイス110の位置が、能動ランドマーク112の1又は複数の位置を基準として求められる。
【0012】
デバイス110は、少なくとも1つの電磁パルス114を複数の方向116に送信するように構成されている。いくつかの実施形態では、デバイス110は、パルス114等の複数の電磁パルスを複数の方向116に送信するように構成されている。例示的な一実施形態では、電磁パルス114は、継続時間が約1ナノ秒(ns)であり、約6ギガヘルツ(GHz)の搬送波信号周波数を有する。パルス114の通常の繰り返し周期は、約1マイクロ秒である。他の実施形態は、パルス継続時間及び搬送波信号周波数の組み合わせとして、1ns及び24GHz;5ns及び6GHz;並びに1ns及び77GHzの組み合わせを使用することができる。パルス継続時間を短くし且つ搬送波信号周波数を高くすることによって、距離概算値の精度を増大させることができるが、これは、いくつかの実施形態では、関連する回路部のコスト及び複雑さの増大を犠牲にして得られる。
【0013】
さらに、デバイス110は、或る期間にわたってリターン信号118を受信するようにも構成されている。リターン信号118は、1又は複数の能動ランドマーク112からのリターン被変調電磁パルスを含む。リターン信号は、複数の受信方向118からの信号から成る。いくつかの受信方向118は、リターン被変調パルスを戻す能動ランドマーク112以外の物体である「クラッタ」からの反射パルスを含む。たとえば、木の葉120は、方向116_2に沿って送信された電磁パルスにより照射されると、方向118_2に沿って電磁パルスを反射する。同様に、建物122は、方向116_3に沿って送信された電磁パルスにより照射されると、方向118_3に沿って電磁パルスを反射する。
【0014】
デバイス110と能動ランドマーク112_1等の能動ランドマークとの間の各距離を求めるために、デバイス110は、少なくとも或るリターン信号から少なくとも或るリターン被変調パルスを分離する必要がある。リターン信号は、クラッタからの反射パルスも含む場合がある。能動ランドマーク112_1からのリターン被変調パルスの分離を容易にするために、能動ランドマーク112_1は、リターン被変調パルスを変調する。いくつかの実施形態では、デバイス110は、能動ランドマークがリターン被変調パルスを生成するのに使用する信号のレプリカを使用してリターン信号を復調することにより、リターン信号からリターン被変調パルスを分離する。
いくつかの実施形態では、能動ランドマークがリターン被変調パルスを生成するのに使用する変調は、単側波帯変調、両側波帯変調、又は両側波帯搬送波抑圧変調等の振幅変調である。
【0015】
図3Aの周波数スペクトル300は、周波数312の関数としての振幅310を示すものであり、1未満の変調深さを有する正弦波を使用する能動ランドマークによるリターンパルスの振幅変調を示している。側波帯周波数316を有する側波帯を伴った搬送波信号周波数314が存在する。この例では、側波帯周波数316は、搬送波信号周波数314に対して正弦波周波数318だけシフトされている。この周波数シフトは、デバイス110(図1)及びデバイス110のレーダ検出エリア内にある物体の相対運動に関連するドップラーシフトに対応する周波数の帯域320の幅よりも大きい。
他の実施形態では、変調は、狭帯域周波数変調及び広帯域周波数変調を含む周波数変調である。図2は、周波数変調を使用する一実施形態を示している。周波数変調によって、デバイス110は、木の葉120からの反射パルスを含むリターン信号からリターン被変調パルス124を分離することが可能になる。
【0016】
図3Bの周波数スペクトル322は、リターン被変調パルス124(図2)が基本周波数326を有する方形波を使用して周波数変調されている、例示的な一実施形態を示している。正弦波等の他の変調信号を使用する周波数変調では、変調は、中心周波数によって特徴付けられる。図3Bに示す例では、(変調に使用される)方形波の基本周波数326は、主リターンパルス信号の搬送波信号周波数314よりもはるかに小さく、その結果、変調指数は小さくなる。結果として、周波数スペクトル322では、一次単側波帯しか示されていない。しかしながら、方形波変調を使用する結果、複数の側波帯が生じる。これらの側波帯は、側波帯周波数316及び324を有する方形波の基本調波及び第3高調波に対応し、図3Bに示されている。この例では、側波帯周波数316及び324は、搬送波信号周波数314に対して、基本周波数326及び第3高調波周波数328だけシフトされている。基本周波数326及び第3高調波周波数328の双方は、デバイス110及びデバイス110のレーダ検出エリア内における物体の相対運動に関連するドップラーシフトに対応する周波数の帯域320よりも大きい。例示的な一実施形態では、基本周波数326は数百ヘルツである。
【0017】
図1を再び参照すると、複数の能動ランドマーク112を含む実施形態では、能動ランドマーク112_1等の或る能動ランドマークからのリターン被変調パルスは、他のすべての能動ランドマーク112によって使用されるリターン被変調パルスと異なるものとすることができる。たとえば、方形波変調の場合、能動ランドマーク112はそれぞれ、異なる基本周波数326(図3B)を有することができる。正弦波等の他の変調信号の場合、能動ランドマーク112はそれぞれ、異なる中心周波数を有することができる。若しくは、複数の能動ランドマーク112からのリターン被変調パルスは、互いに異なるものとすることもできる。この場合、これらのリターン被変調パルスは、互いに異なる基本周波数又は異なる中心周波数を有することができる。周波数分割多重接続に加えて、他の実施形態では、時間分割多重接続又は符号分割多重接続を使用することによって、複数の能動ランドマーク112からのリターン被変調パルスを互いに区別することができる。
【0018】
リターン被変調パルスとクラッタからの反射パルスとをさらに弁別するために、いくつかの実施形態では、デバイス110は、偏波(polarization)を有するパルス114を送信する。能動ランドマーク112によって生成されたリターン被変調パルスも、同じ偏波を有する。偏波として、直線偏波、楕円偏波、右旋楕円偏波、左旋楕円偏波、右旋円偏波(RHCP)、及び左旋円偏波(LHCP)が適している。右旋楕円偏波、左旋楕円偏波、RHCP、及びLHCPは、特に好都合である。一例として、RHCPを想定して説明する。ただし、説明は、他の右旋偏波及び左旋偏波にも関連する。
【0019】
デバイス110が、RHCPを有するパルス114を送信すると、クラッタ、たとえば木の葉120は、殆ど反転した円偏波、すなわちLHCP、を有する電磁パルスを受信方向118_2に沿って反射する。同様に、建物122からの単純反射(single-bounce reflection)の結果、反射パルスは、受信方向118_3に沿ってLHCP偏波を有する。一方、能動ランドマーク112からのリターン被変調パルスはRHCPを有する。したがって、デバイス110は、送信された電磁パルス114と同じ偏波を有する信号を優先的に受信するように構成されている受信機を使用することにより、能動ランドマーク112_1によって送信されたリターン被変調パルス等のリターン被変調パルスをさらに分離することができる。リターン被変調パルスの分離を改良することに加えて、これらの実施形態では、送信パルス及びリターン被変調パルスの共通の偏波によって、デバイス110及び能動ランドマーク112は、送信用及び受信用に単一のアンテナを使用することが可能になる。
【0020】
能動ランドマーク112_1等の能動ランドマーク112からのリターン被変調パルス124等のリターン被変調パルスが、デバイス110によって受信されたリターン信号から分離されると、デバイス110と能動ランドマーク112_1との間の距離が求められる。パルスは直線で進むものと仮定し、且つ、マルチパス伝播はないものと仮定して、デバイス110によって送信されて、デバイス110から或る間隔r離れた物体により反射されたパルス114は、到達時間(ToA)
ToA=2r/c (式1)
でデバイス110に到達する。ここで、cは、電磁信号の伝播速度である。電磁信号の伝播速度cは、真空では約3.0*10m/sであることが分かっている。通常の大気条件では、電磁信号の伝播速度は、この値から300ppm(百万分の1)未満の値だけずれる。高度及び他の環境因子についての情報を使用することによって、測位システムの環境における電磁信号の伝播速度を100ppm以内まで求めることができる。能動ランドマーク112からのリターン被変調パルスの場合、送信パルス114に対応する受信信号の受信、受信信号を変調信号で変調して送信被変調信号を生成すること、及び能動ランドマーク112の送信被変調信号に対応するリターン被変調パルスの送信に関連する付加的遅延Δが存在し得る。到達時間の修正式は、
ToA=2r/c+Δ (式2)
となる。遅延Δは、各能動ランドマーク122について同じではない場合がある。しかしながら、各能動ランドマークの遅延Δは、較正手順(たとえば、システム自己較正手順)の期間中に較正することができ、リターン被変調パルスの到達時間は、その後の測定中に訂正することができる。したがって、1又は複数のリターン被変調パルスに対応する到達時間を求めることは、デバイス110と1又は複数の能動ランドマーク112との間の距離を正確に求めるのに使用することができる。
【0021】
図1は、2つの能動ランドマーク112しか示していないが、他の実施形態では、これよりも多くの能動ランドマーク112又はこれよりも少ない能動ランドマーク112が存在する場合がある。いくつかの実施形態では、使用される能動ランドマーク112の個数は、位置がすでに測量されている能動ランドマーク112を基準としたデバイス110の位置を明確に求めるのに十分なものである。たとえば、同一直線上にない3つの能動ランドマーク112の位置が、たとえばそれらの位置を前もって測量することにより知られており、且つ、デバイス110及び能動ランドマーク112がほぼ2次元平面内に位置している場合、デバイス110から能動ランドマーク112のそれぞれまでの距離の情報から、デバイス110の位置を明確に求めることが可能である。或いは、能動ランドマーク112及びデバイス110がほぼ同一平面上に存在しない場合、位置が知られている4つの能動ランドマーク112を使用することによって、デバイス110から能動ランドマーク112のそれぞれまでの距離の情報から、デバイス110の位置を明確に求めることが可能になる。1又は複数の距離に基づいて位置を求めるためのアルゴリズムは、当業者に既知である。これについては、たとえば、The Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (1991, San Juan, Puerto Rico)第441〜423ページのH. Edelsbruneer及びT. S. Tan著「Quadratic time algorithm for the minmax length triangulation」を参照されたい。この文献は、その全体が参照により本明細書に援用される。
【0022】
図4Aを参照すると、デバイス110から、能動ランドマーク112_1等の1つ又は2つ以上の能動ランドマーク112までの距離を求めることに加えて、ローカル測位システム400等のいくつかの実施形態では、デバイス110は、パルス114(図1)を送信している間、特定の方向412に速度v410で移動する。デバイス110は、或る期間にわたってリターン信号を受信する。デバイス110によって受信される、能動ランドマーク112_1からのリターン被変調パルスは、周波数が、
f=f(1+v・cosθ/c) (式3)
に従ったドップラーシフトを受けることになる。ここで、fは、搬送波信号周波数314(図3)であり、fは、デバイス110によって受信されたリターン被変調パルスの受信搬送波信号周波数であり、cは、デバイス110と能動ランドマーク112_1との間の空間を満たす大気における電磁信号の伝播速度であり、θは、デバイスの移動方向412と、デバイス110と能動ランドマーク112_1との間の直線416との間の角度414である。したがって、1又は複数のリターン被変調パルスの受信搬送波信号周波数から、デバイス110は、角度θ414を求めることができる。しかしながら、各受信搬送波信号周波数fについて、式3を満たす少なくとも2つの角度が存在することに留意されたい。このように2つの角度が存在する理由は、式3の解となる任意の角度θについても、角度−θも式3の解となるからである。図4Aでは、これら2つの角度は、角度θ414及び角度−θ420に対応する。角度θ414は、方向412と、デバイス110と能動ランドマーク112_1との間の線416との間の角度であり、角度−θ420は、方向412と線418との間の角度である。図4Bに示すように、実施形態422等のいくつかの実施形態では、能動ランドマーク112_1は、移動の結果生じるドップラーシフトから角度θ414を求めることを可能にする平均固定位置の周囲を特定の方向412に速度v424で移動する。これらの実施形態では、ドップラーシフトは、角度θ414の余角についての情報を提供することに留意されたい。
【0023】
距離情報と、必要ならば、デバイス110と能動ランドマーク112との間の角度情報とを組み合わせることによって、デバイス110の位置を求めることが可能になる。通常、ローカル測位システムは、1cmの分解能又はこれよりも良好な分解能で能動ランドマーク112_1等の能動ランドマークの位置を特定すなわち求めることができる。この状態を、図5のローカル測位システム500に関連して説明する。能動デバイス112(図1)は、(リターン被変調パルスの到達時間から求められた)距離r、r、r、及びrによって規定される距離ビン510並びに角度512、514、516、及び518によって規定される角度ビン520に存在する。例示的な一実施形態では、1cmの精度又はそれよりも良好な精度でデバイス110の位置を求めることができる。
【0024】
方形波等の単純な変調信号を使用してリターン被変調信号を変調することは、ローカル測位システムのコストを最小にすることを促進するのに好都合である。デバイス110(図1)の距離、したがって、位置を、リターン被変調パルスの到達時間からどのように求めるかの前記説明を考慮すると、方形波変調の使用は、さらに別の課題も提示する。詳細には、方形波は、反転操作及び位相シフト操作の下で同一である。これによって、搬送波信号の位相の不明確さの解決、したがって、リターン被変調パルスの到着時間の不明確さの解決がより難しくなる。これは、変調信号の位相がデバイス110(図1)による復調中に失われることから、搬送波信号の位相を1周期の半分以内でしか知ることができないためである。いくつかの実施形態では、この不明確さは、方形波信号がどの位相シフトで反転されても同一でないように方形波信号を符号化することにより、低減することができる。能動ランドマークが使用できる符号化技法には、オンオフキーイング、直交振幅変調、周波数シフトキーイング、連続位相周波数シフトキーイング、位相シフトキーイング、差動位相シフトキーイング、直交位相シフトキーイング、最小シフトキーイング、ガウス型最小シフトキーイング、パルス位置変調、パルス振幅変調、及びパルス幅変調が含まれる。
【0025】
1つの可能な符号化パターンは、周期的なバイナリ位相シフトキーイング(BPSK)波形++−である。ここで、+は、正の振幅を有するパルスを示し、−は、負の振幅を有するパルスを示し、BPSK波形のビットセルに対応するチップレートは、方形波のチップレートと同じである。しかしながら、ゼロ周波数でエネルギを有する波形は、クラッタに関連する信号と相互作用するので、DCフリー波形を有することも望ましい。ゼロ平均の周期的なBPSK波形の例は、++−−+−及び++++−−−+−−である。これらの波形は、一定包絡線を有する符号化技法以外の符号か技法、例えば位相変調と共に使用することができる。位相変調は、多くの場合、ほとんどの他の符号化技法よりも実施が容易であり、且つ、コストがかからない。
【0026】
BPSK波形は、上記した正弦曲線の位相変調を有する方形波の例等の複素位相を有することに加えて、異なる振幅列で実施することもできる。適している振幅列には、擬似ランダム雑音列、ウォルシュ符号、ゴールド符号、バーカー符号、並びに、ゼロ時間オフセットでほぼ1に近い値を有し、非ゼロ時間オフセットでほぼ0に近い値を有する(到達時間の不明確さを低減又は除去する)自己相関及び/又は(デバイス110及び/又は複数の能動ランドマーク112等の複数のデバイスを有する実施形態用の)相互相関を有するDCフリー符号等の符号が含まれる。
【0027】
ローカル測位システムで一定の繰り返し周期を使用することも、課題を提示する。詳細には、システムは、リターン信号の強度の解析及びランドマークの既知のレーダ断面積の使用によることを除いて、到達時間の点で、繰り返し時間の倍数分、分離された物体を区別できない場合がある。これは、能動ランドマーク112(図1)からのリターン被変調パルスがすべて互いに異なるとは限らない場合に、特に問題である。たとえば、ナノ秒の継続時間のパルスが、1マイクロ秒毎にデバイス110(図1)によって送信される場合、1100nsの到達時間を有する物体からのリターン信号は、100nsの到達時間を有する物体からのリターン信号と部分的に重なることになる。ゼロ時間遅延で1の自己相関及び非ゼロ時間遅延でほぼ0に近い自己相関を有する列からの連続ビットで送信パルスを周期的に符号化することは、この不明確さを取り除く1つの方法である。理想的には、非ゼロ時間遅延における列の自己相関は0である。適している列は、ウォルシュ関数によって提供される。たとえば、連続パルスが、BPSK符号化列+++−(4パルス毎に繰り返す符号化)の連続ビットを使用して変調される場合、0ns〜1000ns、1000ns〜2000ns、2000ns〜3000ns、及び3000ns〜4000nsの到達時間を有する物体からのリターン信号を区別することができる。
【0028】
いくつかの実施形態では、各パルス114の送信後、リターン信号には、符号化列の現在のビットが乗算されて、0ns〜1000nsの到達時間を有するリターン信号を検出することが可能になる。或いは、各パルス114の送信後、リターン信号には、符号化列の前のビットが乗算されて、1000ns〜2000nsの到達時間を有するリターン信号を検出することが可能になる。同様に、リターン信号に、符号化列の前のビットよりもさらにシフトされたビットを乗算することによって、他の到達時間を有するリターン信号を検出することが可能になる。この技法は、符号化列のビット数を増加させることによって、より長い到達時間に拡張することができ、したがって、より長い距離に拡張することができる。
【0029】
図11を参照して、ローカル測位システム1100の第1のデバイス1110の位置は、少なくとも第2のデバイス1112とのレーダ間測距(radar-to-radar ranging)を使用して求めることもできる。第1のデバイス1110と第2のデバイス1112との間で交換される信号1114は、レーダ間測距に必要とされるデータ情報を符号化する。レーダ間測距は、受動ランドマークを使用するローカル測位システムにおいて、長距離Rにおける信号損失を克服するのに役立つことから好都合である。長距離Rにおける信号損失はRに比例する。図1を参照すると、能動ランドマーク112の使用も、この問題を克服するのに役立つが、レーダ間測距は能動ランドマーク112と共に使用することができ、それによって、特に、能動ランドマーク112からのリターン被変調パルスの送信電力に制約がある場合、たとえば、能動ランドマーク112がバッテリによって電力供給を受けている場合に、しきい値よりも大きな距離について、デバイス110の位置を求めることが可能になる。いくつかの実施形態では、このしきい値は、50m、100m、250m、500m、1000m、5000m、又は10000mとすることができる。レーダ間測距は、2003年7月3日に出願された「Two-Way RF Ranging System and Method for Local Positioning」という発明の名称の米国特許出願第10/614,098号にさらに記載されている。この米国特許出願の内容は、参照により援用される。
【0030】
図6を参照すると、ローカル測位システム600の一実施形態におけるデバイス610は、以下のコンポーネントの少なくともサブセットを備える。
・少なくとも電磁パルスを送信するためのアンテナ612;
・リターン信号を受信するためのオプションのアンテナ644;
・オプションの送受信アイソレータ646;
・無線周波数(RF)トランシーバ614;
・デジタル/アナログ(D/A)及びアナログ/デジタル(A/D)変換器616;
・信号ジェネレータ618;
・オプションの通信集積回路(IC)620;
・プロセッサ622;
・オプションの電気機械インターフェース回路640;
・デバイス610を特定の方向に或る速度で移動させるためのオプションの移動メカニズム642;
・メモリ624
メモリ624は、高速ランダムアクセスメモリを含むことができ、また、1又は複数の磁気ストレージデバイス等の不揮発性メモリも含むことができる。メモリ624は、以下のモジュール、命令、及びデータの少なくとも1つのサブセットを記憶するのに使用することができる。
・オペレーティングシステム626;
・マップデータ628;
・較正データ630;
・プロセッサ622によって実行される少なくとも1つのプログラムモジュール632であって、ドップラー計算634用の命令、距離計算636用の命令、及び遅延較正638用の命令を含むプログラムモジュール632
【0031】
いくつかの実施形態では、プログラムモジュール632は、デバイス610が静止している間、デバイス610の第1の位置において既知の時刻にパルス114(図1)等のパルスを送信するための命令を含む。これらの命令に従って、プロセッサ622は、デジタル信号を生成する通信IC620へ信号を送信する。代替的な実施形態では、通信IC620の機能は、プロセッサ622によって実行され、通信IC620は、デバイス610に含まれない。D/A変換器616は、RFトランシーバ614が搬送波信号周波数を有する搬送波信号を変調するのに使用するパルスを生成する。次に、被変調パルスがアンテナ612によって送信される。いくつかの実施形態では、送信パルスは偏波を有する。
【0032】
プログラムモジュール632は、電磁パルスを送信する命令に加えて、或る期間にわたりリターン信号を受信するための命令も含む。受信アンテナ644は、1又は複数のリターン被変調パルスを含むリターン信号を受信する。いくつかの実施形態では、アンテナ644は、パルス114(図1)等の送信パルスと同じ偏波を有するリターン信号を優先的に受信する。デバイス610は、送受信スイッチ等のオプションの送受信アイソレータ646も備えることができる。他の実施形態では、受信アンテナ644は、デバイス600に備えられず、その代わり、送信アンテナ612が、送信及び受信の双方に使用される。さらに他の実施形態では、デバイス610は、アンテナ612と受信アンテナ644との間のクロストークを低減する接地面(図示せず)をさらに備える。図12を参照して、デバイス1200は、接地面の代わりに、送信アンテナ1210と受信アンテナ1212との間のクロストークを低減するデコヒーレンスプレート1214をさらに備えることができる。この場合、送信アンテナ1210から受信アンテナ1212への一連の経路中の複数の経路について、デコヒーレンスプレート1214は、経路1216及び1218等、180度逆位相の対応する経路を実質的に規定する。デコヒーレンスプレート1214は、アルミニウム、銅、他の金属等の導体を含む材料から作製することができるが、材料はこれらに限定されるものではない。
【0033】
図6を参照する。例示的な一実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、円偏波及び楕円偏波を含む特定の右旋偏波又は左旋偏波を有する電磁パルスを送信し且つ/又は受信するように構成されている。いくつかの実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、能動ランドマーク112(図1)及びデバイス610を含む平面内で等方的に放射を行う。平面内でほぼ等方的に放射を行い、特定の円偏波を有する電磁パルスを送信するアンテナ612、アンテナ644、又は共通アンテナの一例は、背中合わせに配置される2つのキャビティバック型スパイラルアンテナ(cavity-backed spiral antenna)から形成されるアンテナである。このようなアンテナの一例は、Proceedings of the 2001 IEEE Antennas and Propagation Society International Symposium, vol. 4の第124〜127ページのAfsar他著「A new wideband cavity-backed spiral antenna」に記載されている。この文献は、その全体が参照により本明細書に援用される。いくつかの実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、機械的な方位角アクチュエータを有する指向性ホーンアンテナである。他の実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、たとえばロスマンレンズ(Rothman lens)を使用するビーム切り替え型構成を含む。他の実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、電子的操縦可能フェーズドアレイを含む。さらに他の実施形態では、アンテナ612、アンテナ644、又は共通アンテナはそれぞれ、直線偏波アンテナ、双円錐アンテナ、接地面を有する双円錐アンテナ、ヘリカルアンテナ、水平無指向性アンテナ、無指向性アンテナ、半指向性アンテナ、又は等方性アンテナである。
【0034】
リターン信号は、RFトランシーバ614で受信される。RFトランシーバ614において、リターン信号は、搬送波信号周波数に対してベースバンドにダウン変換される。いくつかの実施形態では、RFトランシーバ614は、ベースバンドへの直交位相保存ダウン変換(quadrature phase-preserving down conversion)を使用する。次に、ダウン変換の同相成分、直交成分、又は双方の成分は、A/D変換器616に渡される。A/D変換器616において、それらの成分はサンプリングされる。次に、リターン信号は、リターン信号からリターン被変調パルスを分離するように、通信IC620において、信号ジェネレータ618により生成された変調信号を使用して復調される。この変調信号は、能動ランドマーク112(図1)の1又は複数でリターン被変調パルスを生成するのに使用された変調信号に対応する。他の実施形態では、復調は、リターン信号をベースバンドにダウン変換する前に行われる。さらに他の実施形態では、通信IC620はデバイス610に備えられず、復調はプロセッサ622において行われる。リターン被変調パルスは、リターン信号の復調によって分離され、プロセッサ622によって処理される。いくつかの実施形態では、プロセッサ622は、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、若しくは他の中央処理装置である(又は、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、もしくは他の中央処理装置を含む)。他の実施形態では、プロセッサ622は、特定用途向け集積回路(ASIC)である。プロセッサ622は、リターン被変調パルスを処理して、デバイス610から能動ランドマーク112_1(図1)等の能動ランドマークまでの距離を求める。
【0035】
いくつかの実施形態では、プロセッサ622は、距離較正命令636を実行することによって距離を求める。プロセッサ622は、較正データ630を使用して、能動ランドマーク112_1(図1)等の各能動ランドマークに関連する遅延Δについて、計算された距離を訂正する。較正データ630は、遅延較正命令638を使用して生成することもできるし、能動ランドマーク用の較正データ630は、デバイスには含まれない機器及びプロセスを使用して生成することもできる。他の実施形態では、プロセッサ622は、たとえば、アーキテクチャプラン(architectural plan)又は特定の能動ランドマークのロケーション又は向き等のマップデータ628を介してデバイス610に提供される情報を使用して、距離を求めることができる。他の実施形態では、プロセッサ622は、1又は複数の送信パルスに対応する距離計算の結果をメモリ624に記憶することができる。デバイス610の位置は、追加された送信パルス、及び/又は、リターン被変調パルスにおけるドップラーシフトの検出に基づくデバイス610と1もしくは複数の能動ランドマーク112(図1)との間の角度の測定に基づいて、その後の距離の測定で精緻化することができる。
【0036】
いくつかの実施形態では、プログラムモジュール632は、第2の位置へデバイス610を移動させるための命令を含む。第2の位置は、第1の位置から所定の間隔にあるものとすることができる。プロセッサ622は、シグナリングインターフェース640によってこの命令を実行する。シグナリングインターフェース640は、次に、移動メカニズム642を起動する。いくつかの実施形態では、メカニズム642は電気モータを含み、その速度は、インターフェース640によって提供されるDC電圧のレベルによって制御される。他の実施形態では、インターフェース640及び/又はメカニズム642は、プログラムモジュール632によって求められた位置を車両(図示せず)のコンピュータへブロードキャストする。その後、車両のコンピュータは、位置が求められたことに部分的に基づいて、デバイス610の移動について決定を行う。たとえば、いくつかの実施形態では、車両のコンピュータは、グローバル測位システム(GPS)を含むいくつかの測位システムからの情報を組み合わせる。プログラムモジュール632は、デバイス610の第2の位置におけるパルス114(図1)等のパルスを送信するための命令、及び、デバイス610から1つ又は2つ以上の能動ランドマーク112(図1)までの第2の距離を受信リターン信号から求めるための命令をさらに含む。最後に、プログラムモジュール632は、第1の距離及び第2の距離を処理して、少なくとも1つの見込みのある能動ランドマークと一致する改善された距離を生成するための命令を含む。一実施形態では、プログラムモジュール632は、追加される位置においてこれらのステップを実行するための命令を含む。追加される位置すなわちロケーションは、それぞれ、前の各位置から所定の間隔だけ隔てたものとすることができる。
【0037】
リターン被変調パルスにおけるドップラーシフトを角度方向に関係付けるために、デバイス610の速度又はデバイス610の速度の少なくとも大きさを知らなければならない。いくつかの実施形態では、移動メカニズム642は、インターフェース640を通じて周波数情報をプロセッサ622に供給する光電センサを含む。移動メカニズム642についての情報と共に、プロセッサ622は、この情報をデバイス610の速度の見積もりに変換する。他の実施形態では、クラッタからのリターン信号は、プラットフォーム速度(すなわち、デバイスの速度)を測定する方法を提供する。十分なクラッタにより、リターン信号電力スペクトルは、最大ドップラーシフトの2倍に等しい帯域幅を有する。最大ドップラーシフトは、計算上、デバイス速度を搬送波信号の波長で割ったものに等しい。デバイス速度のこのタイプの測定値は、いくつかの状況下では、移動メカニズム642から入手可能な測定値よりも正確である。これらの実施形態では、プログラムモジュール632は、プロセッサがリターン信号の電力スペクトルを計算できるように、通信IC620が、クラッタに対応する必要なリターン信号をプロセッサ622に提供するための命令を含む。さらに他の実施形態では、差分方位(differential bearing)及び絶対方位(absolute bearing)の双方についての情報も、リターン信号におけるドップラーシフトから入手可能である。デバイス速度の方向に小さな変更が行われた場合、クラッタからの反射パルス及び能動ランドマーク112(図1)からのリターン被変調パルスの双方の到来角がシフトする。したがって、経時的な角度の相互相関を使用して、統合される方向変化を見積もることができる。
【0038】
クラッタに対応するリターン信号及び/又はリターン被変調パルスにおけるドップラーシフトを検出するために、プログラム変調632は、プロセッサ622によって実行されるドップラー計算命令634を含む。また、プログラム変調632は、デバイス610の特定の運動方向と、デバイス610と能動ランドマーク112_1(図1)等の能動ランドマークとの間の直線との間の角度を求めるための命令も含む。いくつかの実施形態では、プロセッサ622は、ドップラー計算634に高速フーリエ変換(FFT)を使用する。この技法は、デバイス610が、1又は複数のリターン信号を受信している間、一定方向に一定速度で移動する場合に最も正確である。リターン信号を受信している間にデバイス610が加速を受ける場合、事前補正FFT(pre-corrected FFT)を使用して、リターン信号及び/又はリターン被変調パルスにおけるドップラーシフトをより正確に求めることができる。このような事前補正FFTの係数は、いくつかの実施形態では、デバイスの速度及び方向の慣性センサ(図示せず)から求められる。
【0039】
図7を参照すると、ローカル測位システム700の一実施形態における能動ランドマーク710は、以下の構成を備えている。
・電磁パルスを受信し、且つ、リターン被変調パルスを送信するためのアンテナ712;
・送受信アイソレータ714;
・オプションの帯域通過フィルタ716;
・増幅器718;
・ミキサ等の変調器720;
・信号ジェネレータ722;
・オプションの遅延線724;
・制御ロジック726;
・オプションの電気機械インターフェース回路728;
・特定の方向に或る速度で能動ランドマーク710を移動させるためのオプションの移動メカニズム730
【0040】
いくつかの実施形態では、能動ランドマーク710は静止している。デバイス610(図6)によって送信されたパルスに対応する受信信号は、アンテナ712を使用して受信される。デバイス610(図6)によって送信されたパルスが偏波を有する場合、アンテナ712は、この偏波を有する信号を優先的に受信するように構成することができる。受信信号は、送受信回路部を分離する送受信アイソレータ714、受信信号を帯域制限するオプションの帯域通過フィルタ716、及び受信信号を増幅する増幅器718を通過する。受信信号は、変調器720において、信号ジェネレータ722により生成された変調信号で変調され、送信被変調信号が生成される。変調は、上述したように、振幅変調又は周波数変調とすることができる。例示的な一実施形態では、変調信号は、数百ヘルツの基本周波数を有する方形波である。送信被変調信号は、オプションの遅延線724及び送受信アイソレータ714を通ってアンテナ712に渡される。アンテナ712は、送信被変調信号に対応するリターン電磁被変調パルスを送信する。遅延線724が含まれる場合、遅延線724の目的は、受信信号及び送信被変調信号の大幅な重なり合いが存在しないことを確実にすることである。
【0041】
いくつかの実施形態では、送受信アイソレータ714は送受信スイッチである。他の実施形態では、送受信アイソレータ714は回折格子であり、遅延線724は、回折格子が送信被変調信号をアンテナ712へ送るように送信被変調信号の位相を変更する。他の実施形態では、能動ランドマーク710は、バッテリ(図示せず)等の着脱可能なエネルギ源又は再充電可能なエネルギ源を含む。
【0042】
例示的な一実施形態では、アンテナ712は、円偏波若しくは楕円偏波等の特定の右旋偏波又は左旋偏波を有する電磁パルスを受信及び送信するように構成されている。いくつかの実施形態では、アンテナ712は、デバイス610(図6)及び能動ランドマーク710を含む平面内で等方的に放射を行う。平面内でほぼ等方的に放射を行い、特定の円偏波を有する電磁パルスを送受信するアンテナ712の一例は、背中合わせに配置されている2つのキャビティバック型スパイラルアンテナから形成されるアンテナ712である。このようなアンテナの一例は、Proceedings of the 2001 IEEE Antennas and Propagation Society International Symposium, vol. 4の第124〜127ページのAfsar他著「A new wideband cavity-backed spiral antenna」に記載されている。この文献は、その全体が参照により本明細書に援用される。いくつかの実施形態では、アンテナ712は、機械的な方位角アクチュエータを有する指向性ホーンアンテナである。他の実施形態では、アンテナ712は、たとえばロスマンレンズを使用するビーム切り替え型構成を含む。他の実施形態では、アンテナ712は、電子的操縦可能フェーズドアレイを含む。さらに他の実施形態では、アンテナ712は、直線偏波アンテナ、双円錐アンテナ、接地面を有する双円錐アンテナ、ヘリカルアンテナ、水平無指向性アンテナ、無指向性アンテナ、半指向性アンテナ、及び等方性アンテナである。
【0043】
他の実施形態では、能動ランドマーク710は、受信アンテナ及び送信アンテナを別々に有し、各アンテナは、デバイス610(図6)によって送信されたパルスの偏波を有し、送受信アイソレータ714及び遅延線724は備えられていない。
【0044】
いくつかの実施形態では、信号ジェネレータ722によって生成される変調信号をプログラミングすることができ、それによって、制御デバイスは、方形波の基本周波数若しくは方形波の符号化等、変調信号又は変調信号の符号化を変更することが可能になる。信号ジェネレータの変更に対応する制御情報を、デバイス610(図6)によって送信されたパルスに符号化することができる。或いは、制御情報を、デバイス610(図6)と能動ランドマーク710との間の別個の無線信号で送信することもできる。制御ロジック726は、この制御情報を識別して、これらの命令に基づき信号ジェネレータ722の設定を変更する。いくつかの実施形態では、制御情報は、デバイス610とは別個のデバイス、たとえば制御及び較正デバイス、によって提供される。
【0045】
いくつかの実施形態では、別個の無線リンクを使用して、能動ランドマーク710の節電モードを可能にすることができる。これは、能動ランドマークが着脱可能エネルギ源又は再充電可能エネルギ源を備える実施形態で特に有益である。着脱可能エネルギ源又は再充電可能エネルギ源を制約して使用する場合、能動ランドマーク710のメンテナンスは削減される。例示的な一実施形態では、増幅器718は節電モードに設定される。デバイス610(図6)がパルスを送信する前に、増幅器の電力を増加させる同期信号等のコマンド命令を含む無線信号が、能動ランドマーク710へ送信される。制御ロジック726は、この制御情報を識別して、増幅器718の電力を上げる。所定の時間の後、デバイス610(図6)によるパルスの送信を分類し、制御ロジック726は、増幅器718の電力を下げることができる。或いは、増幅器の電力を減少させるコマンド命令を含む第2の無線信号が、デバイス610(図6)によって能動ランドマーク710へ送信される。制御ロジック726は、この制御情報を識別し、増幅器718の電力を下げる。別の実施形態では、デバイス610(図6)及び能動ランドマーク710は、同期クロックを有する。パルスが既知の時刻に送信され、送信を分類する時間の期間中、増幅器718の電力がそれぞれ上下される。これらの手法によって、増幅器718への電力をデバイス610(図6)からの送信パルスと同期させることが可能になる。
【0046】
いくつかの実施形態では、能動ランドマーク710は、平均固定ロケーションの周囲を移動可能である。制御ロジック726は、シグナリングインターフェース728によってこの能力を実施する。シグナリングインターフェース728は、次に、移動メカニズム730を起動する。いくつかの実施形態では、メカニズム730は、電子モータを含み、その速度は、インターフェース728によって提供されるDC電圧のレベルによって制御される。いくつかの実施形態では、制御ロジック726が、デバイス610(図6)からの送信パルス又は別個の無線リンクに符号化されている、デバイス610(図6)からのコマンド信号に応答してこの機能を実行する。デバイス610(図6)が、移動の結果生じたリターン被変調パルスにおけるドップラーシフトから角度情報を求めるために、デバイス610(図6)は、能動ランドマーク710が移動している方向412(図4B)を知る必要がある。
【0047】
能動ランドマーク112(図1)の代替的なものが存在する。いくつかの実施形態では、能動ランドマーク112(図1)は、蛍光灯とすることができる。デバイス610(図6)から送信されたパルスは、蛍光灯から反射される。これらの反射パルスは変調され、それによって、リターン被変調パルスに対応する。蛍光灯からのリターン被変調パルスは、蛍光灯の交流周波数の2倍の中心周波数で周波数変調されている。この変調は、蛍光灯を行き来するプラズマ波の反射特性の対称性の結果である。蛍光灯の交流周波数を調整することによって、各蛍光灯は、異なる変調を有することができる。これらの実施形態は、蛍光灯が天井にすでに設置されて能動ランドマークとして機能できる倉庫環境で有益な場合がある。このような実施形態では、アンテナ612(図6)は等方的とすることができる。
【0048】
他の実施形態では、能動ランドマーク112(図1)は、リターン被変調パルスを振幅変調する、時間的及び空間的に変化する表面反射率を有する。図8は、能動ランドマーク112(図1)のこのような実施形態800を示している。機械的に回転するホイール810は、ホイール810の回転率に対応する振幅変調を生成するためのものである。図9は、セル910の反射率を選択的に変更することによるさらに別のこのような実施形態900を示している。セル910は、セル910に電圧を印加することによって反射率が調整される液晶リフレクタとすることができる。
【0049】
能動ランドマーク710等の能動ランドマーク112(図1)によって、デバイス610(図6)は、リターン信号から1又は複数のリターン被変調パルスを分離することが可能になる。しかしながら、蛍光灯等の能動ランドマーク112(図1)は、限られたレーダ断面積を有する場合がある。この断面積を増加させるために、いくつかの実施形態では、受動リフレクタ構造体が、能動ランドマーク112(図1)に近接して配置される。図10を参照すると、組み合わせランドマーク1000は、変調器を有する能動ランドマーク1014、電磁パルスを反射するための第1の受動リフレクタ1010、電磁パルスを反射するための第2の受動リフレクタ1012、及び第1の受動リフレクタ1010に対して角度1016で第2の受動リフレクタを静的に位置付けるように構成されている静的構造体(図示しないが、場合によっては、能動ランドマークのハウジングコンポーネント又は構造コンポーネントから形成される)を含む。電磁パルスを反射する受動リフレクタ1010及び1012を製造するのに使用できる材料の例には、アルミニウム、銅、他の金属等の導体が含まれるが、これらに限定されるものではない。いくつかの実施形態における受動リフレクタの形状は、図10に示すものの形状と異なり、たとえば、人を傷つける可能性の少ない丸みを帯びたコーナを有するか、又は、プラスチック球体等の保護コンテナ内により簡単に嵌合するように設計されている。
【0050】
組み合わせランドマーク1000の機能の一例示として、第1の円偏波(RHCP又はLHCP)を有する電磁パルスが、第1の受動リフレクタ1010に入射する場合、その電磁パルスは、第2の円偏波(それぞれLHCP又はRHCP)で反射される。その後、第1の受動リフレクタ1010によって反射されたパルスは、第2の受動リフレクタ1012によって、第1の円偏波(それぞれRHCP又はLHCP)で反射される。第2の受動リフレクタ1012によって反射されたパルスが、元の入射パルスの方向と逆の方向に進んで、最終的に、元のパルスを送信したデバイス610(図6)に到達するように、角度1016は約90度である。組み合わせランドマーク1000として配備されると、トレランス(製造公差)及び機械的ディスターバンスのために、角度1016は正確に90度となることが可能でない場合がある。また、リフレクタは有限の長さであり、搬送波信号波長の数倍の長さしかない場合があるので、再放射パターンは、例示の実施形態では、数度にわたって強くなる。いくつかの実施形態では、デバイス610(図6)は、2つ以上の方向にパルスを送信し、2つ以上の方向からのリターン信号に反応し、したがって、角度1016は、90度±3度を含むことができる。他の実施形態では、有用な角度1016として90度±10度を採用することができる。
【0051】
組み合わせランドマーク1000からのリターン信号は、リターン被変調パルスに加えて反射パルスも含む。デバイス610(図6)によって送信されたパルスが偏波されている実施形態では、組み合わせランドマーク1000からのリターン被変調パルス及び反射パルスの双方が同じ偏波を有する。リターン被変調パルスは、各組み合わせランドマーク1000を区別して識別するのに使用でき、反射パルスは、断面積を増加させることによって、デバイス610(図6)におけるリターン信号の全体的な信号対雑音を増加させることができる。
【0052】
上述の例示では、第1の受動リフレクタ1010又は第2の受動リフレクタ1012のエッジに入射した円偏波されている電磁パルスは、第2の受動リフレクタ1012又は第1の受動リフレクタ1010によって1度しか反射されず、したがって、入射したものとは異なる円偏波で反射される。この場合、デバイス610(図6)は、組み合わせランドマーク1000からの反射パルスを、環境における他の物体によって反射されたパルスから分離することができない。この問題を改善するために、いくつかの実施形態では、組み合わせランドマーク1000は、第3の受動リフレクタ1018及び第4の受動リフレクタ1020をさらに含む。静的構造体は、リフレクタ1020に対して約90度の角度(図示せず)でリフレクタ1018を静的に位置付けるようにさらに構成される。静的構造体は、リフレクタ1010に対して0以外の角度(図示せず)でリフレクタ1018を静的に位置付けるようにさらに構成される。リフレクタ1010及び1018の間の角度は、約45度とすることができる。例示的な一実施形態では、リフレクタ1010及び1018の間の角度は、30度〜60度の間である。他の例示の実施形態では、リフレクタ1010及び1018の間の角度は、1度〜89度の間である。リフレクタ1010及び1018は、第1のダイヘデラル(二面)対(dihedral pair)を形成する。同様に、リフレクタ1018及び1020は、第2のダイヘデラル対を形成する。リフレクタ1010に対して0以外の角度でリフレクタ1018を位置付けることによって、円偏波された電磁パルスが第1のダイヘデラル対のリフレクタの一方のエッジに入射した場合に、そのパルスは、第2のダイヘデラル対のリフレクタのいずれのエッジにも入射しない。同様に、第2のダイヘデラル対のリフレクタの一方のエッジに入射したパルスは、第1のダイヘデラル対のリフレクタのいずれのエッジにも入射しない。したがって、組み合わせランドマーク1000に入射するどの円偏波パルスも、同じ円偏波を有する少なくとも1つの反射パルスを生成する。他の実施形態では、組み合わせランドマーク1000は、別名「コーナキューブ」リフレクタとして知られているトリヘデラル(三面)リフレクタを含むことができる。さらに他の実施形態では、組み合わせランドマーク1000は、ルーネンバーグレンズ(Lunenburg lens)を含むことができる。
【0053】
上記の説明は、説明のためのものであり、具体的な用語を使用して本発明の徹底した理解を提供している。しかしながら、これらの具体的な詳細は、本発明を実施するために必要とされないことが当業者には明らかであろう。実施形態は、本発明の原理及びその実用的な用途を最も良く説明し、それによって、他の当業者が、本発明及びさまざまな変更を有するさまざまな実施形態を、検討した特定の使用に適するように最も良く利用することを可能にするために選ばれて説明されたものである。したがって、上記開示は、網羅的であることを目的とするものでもなければ、開示した正確な形に本発明を限定することを目的とするものでもない。多くの変更及び変形が、上記教示を考慮すると可能である。
本発明の範囲は、添付の特許請求の範囲及びその均等物によって規定されるものである。
【図面の簡単な説明】
【0054】
【図1】デバイス、複数の能動ランドマーク、及びさまざまなクラッタ物体を含む測位システムを示す図であり、デバイスは、パルスを送信し、能動ランドマークから、リターン被変調パルスを含むリターン信号を受信する。
【図2】測位システムにおける能動ランドマークからのリターン被変調電磁パルスを示す図である。
【図3A】正弦波によるリターン被変調パルスの振幅変調を示す図である。
【図3B】方形波によるリターン被変調パルスの周波数変調を示す図である。
【図4A】特定の速度で移動し、その結果、リターン信号のリターン被変調パルスがドップラーシフトを含むことになる、デバイスを示す図である。
【図4B】特定の速度で移動し、その結果、リターン信号のリターン被変調パルスがドップラーシフトを含むことになる、能動ランドマークを示す図である。
【図5】能動ランドマークを基準としたデバイスの位置に対応する距離ビン及び角度ビンを示す図である。
【図6】測位システムで使用される通常のデバイスのコンポーネントを示すブロック図である。
【図7】測位システムで使用される能動ランドマークの一実施形態のコンポーネントを示すブロック図である。
【図8】リターン被変調パルスの振幅変調用の機械的変調器の図である。
【図9】リターン被変調パルスの振幅変調用の時間的及び空間的に変化する表面反射率を有することができる能動ランドマークの図である。
【図10】第1の受動反射面、第2の受動反射面、及び第1の面に対して或る角度で第2の面を位置付けるための構造体を備える受動反射構造体に近接している能動ランドマークの図である。
【図11】デバイスと第2のデバイスとの間のレーダ間測距を示す図である。
【図12】デバイスの送信アンテナと受信アンテナとの間のクロストークを低減するデコヒーレンスプレートの図である。

【特許請求の範囲】
【請求項1】
能動ランドマークを基準としたデバイスの位置を決定するための方法であって、
偏波及び第1の搬送波信号周波数を有するパルスを前記デバイスから送信する送信ステップと、
ある期間にわたって、前記能動ランドマークからのリターン被変調(modulated)パルスを含むリターン信号を受信するステップであって、前記偏波を有するリターン信号を優先的に受信する受信ステップと、
前記リターン信号から前記リターン被変調パルスを分離して、前記デバイスから前記能動ランドマークまでの距離を求めるように前記リターン信号を処理する処理ステップと
を含むことを特徴とする方法。
【請求項2】
請求項1記載の方法において、前記偏波は、直線偏波、楕円偏波、右旋楕円偏波、左旋楕円偏波、右旋円偏波、及び左旋円偏波から成る群から選択されることを特徴とする方法。
【請求項3】
請求項1記載の方法において、該方法はさらに、前記送信ステップ及び前記受信ステップの双方において、好適な偏波の少なくとも1つのアンテナを使用するステップを含むことを特徴とする方法。
【請求項4】
請求項1記載の方法において、前記リターン被変調パルスは振幅変調されていることを特徴とする方法。
【請求項5】
請求項1記載の方法において、前記リターン被変調パルスは、周波数変調されるとともに、少なくとも第2の搬送波信号周波数を有し、前記リターン被変調パルスの変調は、前記第1の搬送波信号周波数を基準として、前記第2の搬送波信号周波数を、前記デバイス及び該デバイスのレーダ検出エリア内の物体の相対移動に関連するドップラーシフトに対応する周波数の帯域よりも大きく周波数シフトさせることによって実行されることを特徴とする方法。
【請求項6】
請求項5記載の方法において、前記リターン被変調パルスの前記変調は、中心周波数によって特徴付けられることを特徴とする方法。
【請求項7】
請求項5記載の方法において、前記リターン被変調パルスの前記変調は、基本周波数を有する方形波によって行われることを特徴とする方法。
【請求項8】
請求項7記載の方法において、前記方形波は、前記リターン被変調パルスの到達時間の不明確さを取り除くように符号化されることを特徴とする方法。
【請求項9】
請求項8記載の方法において、前記方形波は、オンオフキーイング、直交振幅変調、連続位相周波数シフトキーイング、周波数シフトキーイング、位相シフトキーイング、差動位相シフトキーイング、直交位相シフトキーイング、最小シフトキーイング、ガウス型最小シフトキーイング、パルス位置変調、パルス振幅変調、パルス幅変調、ウォルシュ符号変調、ゴールド符号変調、バーカー符号変調、擬似ランダム雑音列変調、及び、ゼロの時間オフセットで1の自己相関を有し、非ゼロの時間オフセットでほぼ0に近い自己相関を有するDCフリー符号から成る群から選択される技法を使用して符号化されることを特徴とする方法。
【請求項10】
請求項8記載の方法において、前記方形波は、前記送信されたパルスの繰り返し周期の倍数であるラウンドトリップ経路を区別することができるように、周期的に符号化されることを特徴とする方法。
【請求項11】
請求項1記載の方法において、該方法はさらに、
前記リターン信号における、複数の能動ランドマークに対応する複数のリターン被変調パルスを受信するステップと、
各リターン被変調パルスを前記リターン信号から分離して、前記デバイスから各能動ランドマークまでの距離を求めるように前記リターン信号を処理するステップと
を含んでいることを特徴とする方法。
【請求項12】
請求項11記載の方法において、各能動ランドマークからの前記リターン被変調パルスの変調は、少なくとも複数の他の能動ランドマークによって使用される変調とは異なっていることを特徴とする方法。
【請求項13】
請求項12記載の方法において、各能動ランドマークからの前記リターン被変調パルスは、周波数変調されるとともに、少なくとも第2の搬送波信号周波数を有し、前記リターン被変調パルスの変調は、前記第1の搬送波信号周波数を基準として、前記第2の搬送波信号周波数を、前記デバイス及び該デバイスのレーダ検出エリア内の物体の相対運動に関連するドップラーシフトに対応する周波数の帯域よりも大きく周波数シフトさせることを特徴とする方法。
【請求項14】
請求項13記載の方法において、前記リターン被変調パルスの前記変調は、基本周波数を有する方形波であり、前記複数の能動ランドマークは、それぞれの異なる基本周波数を有することを特徴とする方法。
【請求項15】
請求項13記載の方法において、前記リターン被変調パルスの前記変調は、中心周波数によって特徴付けられ、前記複数の能動ランドマークは、それぞれの異なる中心周波数を有することを特徴とする方法。
【請求項16】
請求項12記載の方法において、各能動ランドマークからの前記リターン被変調パルスは、振幅変調されていることを特徴とする方法。
【請求項17】
請求項1記載の方法において、該方法はさらに、
前記受信ステップの間、特定の方向に或る速度で前記デバイスを移動させるステップと、
前記リターン信号の前記リターン被変調パルスにおけるドップラーシフトを検出するステップと、
前記特定の方向と、前記デバイスと前記能動ランドマークとの間の直線との間の角度を、前記検出されたドップラーシフトの関数として求めるステップと
をさらに含むことを特徴とする方法。
【請求項18】
請求項1記載の方法において、該方法はさらに、
前記受信ステップの間、特定の方向に或る速度で前記能動ランドマークを移動させるステップと、
前記リターン信号の前記リターン被変調パルスにおけるドップラーシフトを検出するステップと、
前記特定の方向と、前記デバイスと前記能動ランドマークとの間の直線との間の角度を、前記検出されたドップラーシフトの関数として求めるステップと
を含むことを特徴とする方法。
【請求項19】
請求項1記載の方法において、該方法はさらに、第2のデバイスとのレーダ間測距を使用して、しきい値よりも大きな間隔にわたって前記デバイスの前記位置を求めるステップを含むことを特徴とする方法。
【請求項20】
請求項19記載の方法において、該方法はさらに、前記デバイスと前記第2のデバイスとによって交換される信号における、レーダ間測距で使用されるデータ情報を符号化するステップを含むことを特徴とする方法。
【請求項21】
測位システムであって、
変調器を含む能動ランドマークと、
偏波及び第1の搬送波信号周波数を有する電磁パルスを送信し、或る期間にわたって前記能動ランドマークから、リターン被変調パルスを含むリターン信号を受信し、且つ、前記リターン信号から前記リターン被変調パルスを分離して、前記デバイスから前記能動ランドマークまでの距離を求めるように、前記リターン信号を処理するように構成されているデバイスと
を備え、前記デバイスは、前記偏波を有するリターン信号を優先的に受信することを特徴とする測位システム。
【請求項22】
請求項21記載の測位システムにおいて、前記偏波は、直線偏波、楕円偏波、右旋楕円偏波、左旋楕円偏波、右旋円偏波、及び左旋円偏波から成る群から選択されることを特徴とする測位システム。
【請求項23】
請求項21記載の測位システムにおいて、前記デバイスは、前記偏波を有する前記信号を優先的に受信するように構成されている少なくとも1つのアンテナをさらに備えることを特徴とする測位システム。
【請求項24】
請求項21記載の測位システムにおいて、前記デバイスは、前記偏波を有する前記パルスを優先的に送信すること及び前記偏波を有する前記信号を優先的に受信することの双方を行うように構成されている少なくとも1つのアンテナをさらに備えることを特徴とする測位システム。
【請求項25】
請求項21記載の測位システムにおいて、前記デバイスは、直線偏波アンテナ及び円偏波アンテナから成る群から選択されるアンテナをさらに備えることを特徴とする測位システム。
【請求項26】
請求項21記載の測位システムにおいて、前記デバイスは、双円錐アンテナ、接地面を有する双円錐アンテナ、ヘリカルアンテナ、水平無指向性アンテナ、無指向性アンテナ、半指向性(hemi-directional)アンテナ、及び等方性アンテナから成る群から選択されるアンテナをさらに備えることを特徴とする測位システム。
【請求項27】
請求項21記載の測位システムにおいて、前記デバイスは、送信アンテナと受信アンテナとの間のクロストークを低減するデコヒーレンスプレート(de-coherence plate)をさらに備え、前記送信アンテナから前記受信アンテナへの一連の経路中の複数の経路について、前記デコヒーレンスプレートは、180度逆位相の対応する経路を実質的に規定することを特徴とする測位システム。
【請求項28】
請求項21記載の測位システムにおいて、前記能動ランドマークは、送信アンテナと受信アンテナとの間のクロストークを低減する接地面をさらに含むことを特徴とする測位システム。
【請求項29】
請求項21記載の測位システムにおいて、前記能動ランドマークに近接している受動反射構造体をさらに備えることを特徴とする測位システム。
【請求項30】
請求項29記載の測位システムにおいて、前記受動反射構造体は、二面角及びコーナキューブリフレクタから成る群から選択されることを特徴とする測位システム。
【請求項31】
請求項21記載の測位システムにおいて、前記デバイスはさらに、
該デバイスを特定の方向に或る速度で移動させるための車両移動メカニズムと、
データプロセッサと、
前記データプロセッサによって実行される少なくとも1つのプログラムモジュールであって、
前記リターン信号の前記リターン被変調パルスにおけるドップラーシフトを検出するためのインストラクションと、
前記特定の方向と、前記デバイスと前記能動ランドマークとの間の直線との間の角度を求めるためのインストラクションと
を含む少なくとも1つのプログラムモジュールと
を備えることを特徴とする測位システム。
【請求項32】
請求項21記載の測位システムにおいて、前記能動ランドマークは、該能動ランドマークを特定の方向に或る速度で移動させるためのメカニズムをさらに含み、
前記デバイスは、
データプロセッサと、
前記データプロセッサによって実行される少なくとも1つのプログラムモジュールであって、
前記リターン信号の前記リターン被変調パルスにおけるドップラーシフトを検出するためのインストラクションと、
前記特定の方向と、前記デバイスと前記能動ランドマークとの間の直線との間の角度を求めるためのインストラクションと
を含む少なくとも1つのプログラムモジュールと
をさらに備えることを特徴とする測位システム。
【請求項33】
請求項21記載の測位システムにおいて、前記デバイスは、前記リターン被変調パルスを前記リターン信号から分離するために、前記リターン被変調パルスを生成するのに使用された変調信号で前記リターン信号を変調することを特徴とする測位システム。
【請求項34】
請求項21記載の測位システムにおいて、前記リターン被変調パルスは振幅変調されていることを特徴とする測位システム。
【請求項35】
請求項21記載の測位システムにおいて、前記リターン被変調パルスは、周波数変調されるとともに、少なくとも第2の搬送波信号周波数を有し、前記第2の搬送波信号周波数は、前記第1の搬送波信号周波数を基準として、前記デバイス及び該デバイスのレーダ検出エリア内の物体の相対運動に関連するドップラーシフトに対応する周波数の帯域よりも大きく周波数シフトされることを特徴とする測位システム。
【請求項36】
請求項35記載の測位システムにおいて、前記リターン被変調パルスは、中心周波数によって特徴付けられる変調を有することを特徴とする測位システム。
【請求項37】
請求項37記載の測位システムにおいて、前記リターン被変調パルスは、基本周波数を有する方形波変調を有することを特徴とする測位システム。
【請求項38】
請求項37記載の測位システムにおいて、前記方形波は、前記リターン被変調パルスの到達時間の不明確さを取り除くように符号化されることを特徴とする測位システム。
【請求項39】
請求項39記載の測位システムにおいて、前記方形波は、オンオフキーイング、直交振幅変調、連続位相周波数シフトキーイング、周波数シフトキーイング、位相シフトキーイング、差動位相シフトキーイング、直交位相シフトキーイング、最小シフトキーイング、ガウス型最小シフトキーイング、パルス位置変調、パルス振幅変調、パルス幅変調、ウォルシュ符号変調、ゴールド符号変調、バーカー符号変調、擬似ランダム雑音列変調、及び、ゼロの時間オフセットで1の自己相関を有し、非ゼロの時間オフセットでほぼ0に近い自己相関を有するDCフリー符号から成る群から選択される技法を使用して符号化されることを特徴とする測位システム。
【請求項40】
請求項38記載の測位システムにおいて、前記方形波は、周期的に符号化され、それによって、前記送信されたパルスの繰り返し周期の倍数であるラウンドトリップ経路を区別することを特徴とする測位システム。
【請求項41】
請求項38記載の測位システムにおいて、該システムはさらに、
複数の能動ランドマークであって、前記リターン信号は該複数の能動ランドマークに対応する複数のリターン被変調パルスを含む、複数の能動ランドマークと、
デバイスであって、各リターン被変調パルスを前記リターン信号から分離して、該デバイスから各能動ランドマークまでの距離を求めるように前記リターン信号を処理するように構成されているデバイスと
を備えることを特徴とする測位システム。
【請求項42】
請求項41記載の測位システムにおいて、各能動ランドマークからの前記リターン被変調パルスは、少なくとも複数の他の能動ランドマークによって使用される変調とは異なる変調を有することを特徴とする測位システム。
【請求項43】
請求項42記載の測位システムにおいて、各能動ランドマークからの前記リターン被変調パルスは、周波数変調されるとともに、少なくとも第2の搬送波信号周波数を有し、該第2の搬送波信号周波数は、前記第1の搬送波信号周波数を基準として、前記デバイス及び該デバイスのレーダ検出エリア内の物体の相対運動に関連するドップラーシフトに対応する周波数の帯域よりも大きく周波数シフトさせることを特徴とする測位システム。
【請求項44】
請求項43記載の測位システムにおいて、各能動ランドマークからの前記リターン被変調パルスは、基本周波数を有する方形波変調を有し、前記複数の能動ランドマークは、それぞれの異なる基本周波数を有することを特徴とする測位システム。
【請求項45】
請求項43記載の測位システムにおいて、各能動ランドマークからの前記リターン被変調パルスは、中心周波数によって特徴付けられる変調を有し、前記複数の能動ランドマークは、それぞれの異なる中心周波数を有することを特徴とする測位システム。
【請求項46】
請求項42記載の測位システムにおいて、各能動ランドマークからの前記リターン被変調パルスは、振幅変調されていることを特徴とする測位システム。
【請求項47】
請求項21記載の測位システムにおいて、前記能動ランドマークは、
前記送信された電磁パルスに対応する受信信号を受信するための受信アンテナと、
前記受信信号を増幅するための増幅器と、
変調信号を生成するための信号ジェネレータと、
前記変調信号で前記受信信号を変調して送信被変調信号を生成するためのミキサと、
前記送信被変調信号に対応するリターン電磁被変調パルスを送信するための送信アンテナと
をさらに備えることを特徴とする測位システム。
【請求項48】
請求項47記載の測位システムにおいて、前記能動ランドマークは、前記受信信号を帯域制限するための帯域通過フィルタをさらに備えることを特徴とする測位システム。
【請求項49】
請求項47記載の測位システムにおいて、前記能動ランドマークは、着脱可能エネルギ源をさらに備えることを特徴とする測位システム。
【請求項50】
請求項47記載の測位システムにおいて、前記信号ジェネレータは、該信号ジェネレータによって生成される前記変調信号を変更するためのインストラクションと、それによって、前記送信被変調パルスの変調を変更するためのインストラクションとを含み、該インストラクションを実行するようにプログラム可能であることを特徴とする測位システム。
【請求項51】
請求項47記載の測位システムにおいて、前記信号ジェネレータは、該信号ジェネレータによって生成される前記変調信号を変更するためのインストラクションと、それによって、前記送信被変調パルスの符号化を変更するためのインストラクションとを含み、該インストラクションを実行するようにプログラム可能であることを特徴とする測位システム。
【請求項52】
請求項47記載の測位システムにおいて、前記送信アンテナ及び前記受信アンテナは、共通アンテナとして結合され、前記能動ランドマークは、時分割信号の送受信分離のための遅延線及び送受信回折格子をさらに含むことを特徴とする測位システム。
【請求項53】
請求項47記載の測位システムにおいて、前記送信アンテナ及び前記受信アンテナは、共通アンテナとして結合され、前記能動ランドマークは、時分割信号の送受信分離のための送受信スイッチをさらに含むことを特徴とする測位システム。
【請求項54】
請求項47記載の測位システムにおいて、前記受信アンテナ及び前記送信アンテナは、直線偏波アンテナ及び円偏波アンテナから選択されることを特徴とする測位システム。
【請求項55】
請求項47記載の測位システムにおいて、前記受信アンテナ及び前記送信アンテナは、それぞれ、双円錐アンテナ、接地面を有する双円錐アンテナ、ヘリカルアンテナ、水平無指向性アンテナ、無指向性アンテナ、半指向性アンテナ、及び等方性アンテナから成る群から選択されることを特徴とする測位システム。
【請求項56】
請求項21記載の測位システムにおいて、前記デバイスは、少なくとも各能動ランドマークの少なくとも較正された遅延を記憶するようにさらに構成され、前記デバイスから前記能動ランドマークまでの前記距離は、前記較正された遅延を使用して求められることを特徴とする測位システム。
【請求項57】
請求項21記載の測位システムにおいて、前記デバイスは、前記能動ランドマークへ無線同期信号を送信するように構成され、該同期信号は、前記能動ランドマークの増幅器への電力を前記送信されたパルスと同期されることを特徴とする測位システム。
【請求項58】
請求項21記載の測位システムにおいて、前記能動ランドマークは蛍光灯であり、前記リターン被変調パルスは、前記蛍光灯の交流周波数の2倍の中心周波数を特徴として周波数変調されていることを特徴とする測位システム。
【請求項59】
請求項21記載の測位システムにおいて、前記能動ランドマークは、前記リターン被変調パルスの振幅変調を決定する、時間変化し且つ空間変化する表面反射率を有することを特徴とする測位システム。
【請求項60】
請求項59記載の測位システムにおいて、前記能動ランドマークは、機械的に回転するホイールをさらに含むことを特徴とする測位システム。
【請求項61】
請求項59記載の測位システムにおいて、前記能動ランドマークは、液晶リフレクタをさらに含むことを特徴とする測位システム。
【請求項62】
請求項21記載の測位システムにおいて、第2のデバイスをさらに備え、しきい値よりも大きな間隔のデバイスの位置は、該デバイスと前記第2のデバイスとの間のレーダ間測距を使用して求められることを特徴とする測位システム。
【請求項63】
請求項62記載の測位システムにおいて、前記デバイスは、変調器及び復調器をさらに含み、前記変調器及び前記復調器は、前記デバイス及び前記第2のデバイスによって交換される信号における、前記レーダ間測距で使用されるデータ情報の符号化及び復号に使用されることを特徴とする測位システム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2008−536121(P2008−536121A)
【公表日】平成20年9月4日(2008.9.4)
【国際特許分類】
【出願番号】特願2008−505334(P2008−505334)
【出願日】平成18年3月14日(2006.3.14)
【国際出願番号】PCT/US2006/009835
【国際公開番号】WO2006/110263
【国際公開日】平成18年10月19日(2006.10.19)
【出願人】(504278123)ナヴコム テクノロジー インコーポレイテッド (28)
【Fターム(参考)】