説明

ロードセルの故障診断装置

【課題】計量器に使用されるロードセルの2つのハーフブリッジ回路の出力において零点変動分を除去してスパン変動分のみを精確に検出する。
【解決手段】ロードセルへの負荷荷重に対して、2個の端子から出力される荷重信号Wa,Wbがそれぞれ同じ大きさの荷重信号となるように演算処理する2個の荷重信号算出部と、2個の荷重信号算出部より出力される2個の荷重信号の差の絶対値又は2個の荷重信号のそれぞれの値を表示する表示装置54とを備える構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、計量器に使用されるストレインゲージ式ロードセルに生じるスパンの異常を検出するロードセルの故障診断装置に関するものである。
【背景技術】
【0002】
1個のロードセルに生じるスパンの異常を検出する装置として、例えば特許文献1に開示されるものがある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平5−172661号公報
【0004】
上記特許文献1に開示された故障診断装置においては、計量器が特定の状態、例えば作業者が計量台上に被計量物がない状態であるとの判断をして零点調整装置を手動操作するか、自動的に行う場合には物品センサにて計量台上の被計量物の有無を検知することによる零点の自動検出手段による零点判断を受けて、荷重センサのフルブリッジ回路を構成する2つのハーフブリッジ回路のそれぞれの出力を零点の出力に基づいて予め定めた許容値と比較し、その比較の結果、いずれかのハーフブリッジ回路の出力が許容値を超えていれば故障報知するようにされている。
【0005】
しかし、上記従来の故障診断装置においては、スパンの異常の判定に関し、以下のような問題点がある。
【0006】
(1)特定の力又は荷重を印加した状態でハーフブリッジ回路の出力を比較するようにしているので、通常の計量作業の中でスパン異常を検出することができない。
(2)零点が異常になるとき、同時にスパンの異常も発生する場合が多いが、温度変化の過渡期などでは、2つのハーフブリッジ回路の零点は、ロードセルが正常の範囲であっても異なることがたびたびあり、許容値を設定して零点の異常を警報する場合に、小さい許容値を設定すると零点異常が頻繁に警報出力され、使いにくい。
(3)零点の変動は多少大きくても作業者が通常の計量作業の中で零点調整スイッチによって調整できるので、あまり小さい零点変動に対して異常警報することは適切でない。これに対して、スパンの異常は、零点の変動のように作業者が容易に調整することができず、また、その変動量が小さい場合でも、変動量の定格荷重に対する割合が仕様の計量精度を超える場合があるので、精確に異常を判定して警報する必要がある。ところが、零点変動とスパン変動が生じている場合に、スパンの変動分だけを抽出して通常の計量作業の中で警報することについては何ら示されていない。
(4)2つのハーフブリッジ回路のそれぞれは同じ負荷荷重に対する出力の大きさが異なっており、スパンが異なると、両方の出力を比較しても精確に違いを判定できないので、精確にスパンの異常を検出することができない。
(5)2つのハーフブリッジ回路のそれぞれでヒステリシス誤差特性の異なるものがあり、特定の負荷荷重でスパン調整しても、任意の負荷荷重において、スパンが異常でなくても大きい誤差を生ずる場合があり、任意の負荷荷重に対して精確なスパンの異常を検出することができない。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、前述のような問題点に鑑みてなされたもので、計量器に使用されるロードセルの2つのハーフブリッジ回路の出力においてそれぞれ個別に零点変動分を除去し、さらにヒステリシス誤差をそれぞれ個別に補正することによってスパン変動分のみを精確に検出することのできるロードセルの故障診断装置を提供することを目的とするものである。
【課題を解決するための手段】
【0008】
前記目的を達成するために、第1発明によるロードセルの故障診断装置は、
起歪部に貼付した複数個のストレインゲージで構成されるホイートストーンブリッジ回路における2個の端子からの出力信号を荷重信号とするロードセルの故障診断装置において、
前記ロードセルへの負荷荷重に対して、前記2個の端子から出力される荷重信号がそれぞれ同じ大きさの荷重信号となるように演算処理する2個の荷重信号出力手段を備えることを特徴とするものである。
【0009】
第2発明は、第1発明において、前記2個の荷重信号出力手段より出力される2個の荷重信号をそれぞれ個別に表示、又は2個の荷重信号の差の絶対値を表示する荷重信号表示手段を備えることを特徴とするものである。
【0010】
第3発明は、第1発明において、前記2個の荷重信号出力手段より出力される2個の荷重信号をそれぞれ個別に零点調整する零点調整手段を備えることを特徴とするものである。
【0011】
第4発明は、第1発明において、前記2個の荷重信号出力手段より出力される2個の荷重信号の差の絶対値が零若しくは零近傍の値である状態、又は零若しくは零近傍の値でない状態を表示する零点調整状態表示手段を備えることを特徴とするものである。
【0012】
また、第5発明は、前記第3発明又は第4発明において、前記2個の荷重信号出力手段より出力される2個の荷重信号の増減に応じて生じるヒステリシス誤差を個別に補正するヒステリシス誤差補正手段を備えることを特徴とするものである。
【0013】
また、第6発明は、前記第5発明において、前記ヒステリシス誤差補正手段を、前記2個の荷重信号のそれぞれが零点付近を起点とする単調増加であることを判定する単調増加判定手段を備え、この単調増加判定手段により前記2個の荷重信号が零点付近を起点とする単調増加であると判定されたときに、前記ヒステリシス誤差補正手段はヒステリシス誤差を補正するように構成したものである。
【0014】
第7発明によるロードセルの故障診断装置は、
起歪部に貼付した複数個のストレインゲージで構成されるホイートストーンブリッジ回路における2個の端子からの出力信号を荷重信号とするロードセルの故障診断装置において、
前記ロードセルへの負荷荷重に対して、前記2個の端子から出力される荷重信号がそれぞれ同じ大きさの荷重信号となるように演算処理する2個の荷重信号出力手段と、
前記2個の荷重信号出力手段より出力される2個の荷重信号の安定判別を行う安定判別手段と、前記安定判別手段による安定判別に基づき生成された最新の安定重量値と、
この最新の安定重量値の一つ前のタイミングにおいて生成された安定重量値との差を検出する荷重変化量検出手段と、
この荷重変化量検出手段により検出された最新の安定重量値と一つ前の安定重量値との差に基づき、前記ロードセルのスパンの異常を判定するスパン異常判定手段と
を備えることを特徴とするものである。
【0015】
第8発明は、前記第7発明において、前記スパン異常判定手段を、前記2個の荷重信号出力手段のうちの一方の荷重信号出力手段から生成される最新の安定荷重値と一つ前の安定重量値との差と、他方の荷重信号出力手段から生成される最新の安定荷重値と一つ前の安定重量値との差とを比較し、一方の差が他方の差より大きい場合に前記ロードセルのスパンが異常であると判定するように構成したものである。
【0016】
また、第9発明は、前記第7発明又は第8発明において、前記2個の荷重信号出力手段より出力される2個の荷重信号の増減に応じて生じるヒステリシス誤差を個別に補正するヒステリシス誤差補正手段を備えることを特徴とするものである。
【0017】
また、第10発明は、第9発明において、前記ヒステリシス誤差補正手段を、前記2個の荷重信号のそれぞれが零点付近を起点とする単調増加であることを判定する単調増加判定手段を備え、この単調増加判定手段により前記2個の荷重信号が零点付近を起点とする単調増加であると判定されたときに、前記ヒステリシス誤差補正手段はヒステリシス誤差を補正するように構成したものである。
【発明の効果】
【0018】
本発明によれば、作業者が個別にハーフブリッジ毎に零点調整できるようにすることによって、あるいは作業者が零点調整スイッチの操作を忘れた場合で、個別ハーフブリッジ毎に異なる零点ドリフトがあっても、各ハーフブリッジの出力において零点変動分を除去してスパン変動分のみを精確に検出することができ、スパン異常の判定を精確に行うことができる。しかも、このスパンの異常判定を特別な作業を要することなく、通常の計量作業を継続する中で実施することができる。
本発明において、2個の荷重信号の増減に応じて生じるヒステリシス誤差を個別に精確に補正するようにすれば、2つのハーフブリッジにおいて負荷荷重の増減に応じて現れる出力の大きさが異なってもより精確にスパンの異常を検出することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の一実施形態に係るロードセルの故障診断装置が適用されるロードセルの使用状態図で、圧縮型ロードセルに使用した状態図(a)および二重ビーム式ロードセルに使用した状態図(b)
【図2】本発明の一実施形態に係るロードセルの故障診断装置の概略システム構成図
【図3】中央演算処理装置の機能ブロック図
【図4】ロードセルのフルブリッジ回路出力電圧図
【図5】ロードセルのハーフブリッジ出力のヒステリシス特性図(a)およびハーフブリッジ出力誤差を示す図(b)
【図6】各ハーフブリッジ出力によるスパン異常判定演算の手順を示すフローチャート
【図7】本発明の他の実施形態に係るロードセルの故障診断装置の概略システム構成図
【発明を実施するための形態】
【0020】
次に、本発明によるロードセルの故障診断装置の具体的な実施の形態について、図面を参照しつつ説明する。
【0021】
図1には、本発明の一実施形態に係るロードセルの故障診断装置が適用されるロードセルの使用状態図で、圧縮型ロードセルに使用した状態図(a)および二重ビーム式ロードセルに使用した状態図(b)がそれぞれ示されている。また、図2には、本実施形態に係るロードセルの故障診断装置の概略システム構成図が示されている。
【0022】
図1(a)に示される圧縮型ロードセル1は、支持部2と、この支持部2上に設けられる起歪部3と、この起歪部3の上部に設けられる力の受衝部4とよりなり、受衝部4が力を受けたときに起歪部3が圧縮されるように構成されている。起歪部3には、ストレインゲージ11a,13aが起歪部3の軸方向に平行に貼り付けられるとともに、ストレインゲージ12a,14aが起歪部3の軸方向に直角に貼り付けられている。ストレインゲージ11a,13aは圧縮力を検出し、ストレインゲージ12a,14aは引張力を検出する。
【0023】
図1(b)に示される二重ビーム式ロードセル5においては、2つの梁(ビーム)6,7を構成するように起歪部8が形成されている。ビーム6にはストレインゲージ11b,12bが、ビーム7にはストレインゲージ13b,14bがそれぞれビームの長手方向に沿って貼り付けられている。起歪部8に結合された計量台9上に被計量物10を載せると、その被計量物10の重量に応じた荷重が起歪部8に作用し、ストレインゲージ12b,14bは、ゲージ接着面が伸びる方向の曲げ応力を受け、ストレインゲージ11b,13bは、ゲージ接着面が縮む方向の曲げ応力を受ける。
【0024】
以下の説明において、ストレインゲージ11a,11bを総称してストレインゲージ11と呼び、ストレインゲージ12a,12bを総称してストレインゲージ12と呼び、ストレインゲージ13a,13bを総称してストレインゲージ13と呼び、ストレインゲージ14a,14bを総称してストレインゲージ14と呼ぶこととする。
【0025】
図2に示されるように、ストレインゲージ11,12,13,14は、フルブリッジ回路15を構成するように互いに接続されている。ここで、フルブリッジ回路15において、対向する辺を構成しているストレインゲージ12,14がどちらも引張力なら引張力を、対向する辺を構成しているストレインゲージ11,13がどちらも圧縮力なら圧縮力というように同じ型の力を受けるように結線されている。
【0026】
フルブリッジ回路15において、対向する2つの接続点16,17には、励磁用の直流電圧が印加され、これら接続点16,17と直角に位置する接続点18,19からは力または荷重の検出電圧が取り出される。
【0027】
上述のフルブリッジ回路15に対して故障診断装置20が設けられる。この故障診断装置20は、2つの電圧参照用の固定抵抗器21,22と、アナログ加算回路23と、2つのアナログ−デジタル変換器(以下、「A/D変換器」と称する。)24,25と、演算回路26とを備えている。ここで、固定抵抗器21,22は、互いに直列接続されるとともに、フルブリッジ回路15の接続点16,17に接続されている。また、固定抵抗器21,22とストレインゲージ12,13とにより、ハーフブリッジ回路15aが形成され、固定抵抗器21,22とストレインゲージ11,14とにより、ハーフブリッジ回路15bが形成されている。
【0028】
アナログ加算回路23は、第1演算増幅器31と、第2演算増幅器32と、第3演算増幅器33と、第4演算増幅器34とを備えて構成されている。
第1演算増幅器31において、入力正端子31aはフルブリッジ回路15の接続点18に接続され、入力負端子31bは出力端子31cに接続され、出力端子31cは抵抗器40に接続されている。
第2演算増幅器32において、入力正端子32aは2つの固定抵抗器21,22の接続点41に接続され、入力負端子32bは出力端子32cに接続され、出力端子32cは抵抗器42,43に接続されている。
第3演算増幅器33において、入力正端子33aは回路のアース44に接続され、入力負端子33bは、抵抗器40,42に接続されるとともに、抵抗器45を介して出力端子33cに接続され、出力端子33cはA/D変換器24に接続されている。
第4演算増幅器34において、入力正端子34aはフルブリッジ回路15の接続点19に接続され、入力負端子34bは、抵抗器43に接続されるとともに、抵抗器46を介して出力端子34cに接続され、出力端子34cはA/D変換器25に接続されている。
【0029】
A/D変換器24,25は、アナログ加算回路23からのアナログ荷重信号をデジタル荷重信号に変換するものである。A/D変換器24,25からのデジタル荷重信号は演算回路26に向けて出力される。
【0030】
演算回路26は、入出力回路(I/O)51と、中央演算処理装置(CPU)52と、メモリブロック(MEM)53とを備えて構成されている。
演算回路26において、A/D変換器24,25の出力信号は、入出力回路51から中央演算処理装置52を介してメモリブロック53に読み込まれる。
メモリブロック53は、データを入力、出力、演算のために一次記憶するRAMや設定データを継続記憶するEEPROMや所定プログラムを継続記憶するPROMなどの記憶素子(半導体素子)から成るものである。
後述する荷重信号Wan,Wbnやヒステリシス誤差Ea1,Eb1などの計算式はPROMに記憶され、後述するスパン異常を判定するための許容値Rhや零点変動の許容値Wzの値はEEPROMに設定される。
演算回路26には、表示装置(DIS)54やキースイッチ(KEY)55、警報器(ALARM)56などが接続されており、後述するWan,Wbnの値は表示装置54に表示され、データの設定や零点調整などの操作はキースイッチ55によって実施され、故障を報知する警報は警報器56から発せられる。
【0031】
中央演算処理装置52においては、メモリブロック53に格納されている所定プログラムが実行されることにより、図3に示されるような、フィルタ処理部52a、荷重信号算出部52b、安定判別部52c、荷重変化量算出部52d、ヒステリシス誤差補正部52e、スパン異常判定部52f等のそれぞれの機能が実現される。
【0032】
フィルタ処理部52aは、A/D変換器24,25からのデジタル荷重信号に対し所定のフィルタリング処理を行う。
荷重信号算出部52bは、A/D変換器24およびA/D変換器25からのそれぞれのデジタル荷重信号が、同じ大きさの負荷荷重に対して同じ大きさの出力信号となるような演算処理を実行する。
安定判別部52cは、圧縮型ロードセル1または二重ビーム式ロードセル5に対して任意の大きさの力または荷重が負荷された状態にあるときに、A/D変換器24からのデジタル荷重信号と、A/D変換器25からのデジタル荷重信号とが所定の計量精度または所定の定格荷重に基づいて定められる許容値を超えているか否かによって安定であるか否かを判定する。
荷重変化量算出部52dは、安定判別部52cのより求められた最新の安定重量値と、この最新の安定重量値の一つ前のタイミングにおいて生成された安定重量値との差を検出する。
ヒステリシス誤差補正部52eは、荷重信号算出部52bによる演算処理を経て得られるA/D変換器24からのデジタル荷重信号とA/D変換器25からのデジタル荷重信号とに基づいて、各荷重信号の増減に応じて生じるヒステリシス誤差を個別に補正する。
スパン異常判定部52fは、荷重信号算出部52bによる演算処理を経て得られるA/D変換器24からのデジタル荷重信号とA/D変換器25からのデジタル荷重信号とに基づいて、ロードセルのスパンが異常であるか否かを判定する。
【0033】
以上に述べたような構成の故障診断装置20において、2組のハーフブリッジ回路15a,15bから出力されるアナログ荷重信号eoa,eobは、図2に示されるように、アナログ加算回路23を経てアナログ荷重信号eoa´,eob´とされる。これらアナログ荷重信号eoa´,eob´は、A/D変換器24,25によってデジタル荷重信号Wa,Wbに変換される。これらデジタル荷重信号Wa,Wbは、演算回路26に取り込まれ、図3に示されるように、フィルタ処理部52aにて所定のフィルタリング処理が施されてデジタル荷重信号Wax,Wbxとされる。
【0034】
次に、演算回路26におけるデジタル荷重信号Wax,Wbxに基づく演算処理の内容について、二重ビーム式ロードセル5に計量台9が装備されてなる計量器(図1(b)参照)を例にして以下に説明することとする。
【0035】
計量器の調整時点で、計量台9(計量ホッパなどの計量容器でもよい。)上には被計量物10を置かず二重ビーム式ロードセル5に電源を印加すると2組のハーフブリッジ回路15a,15bからはブリッジ抵抗のアンバランス成分や風袋荷重分が加わったアナログ荷重信号eoa,eobが出力される。これらアナログ荷重信号eoa,eobは、アナログ加算回路23、A/D変換器24,25およびフィルタ処理部52aを経てデジタル荷重信号Wax,Wbxに変換される。このときのデジタル荷重信号Wax,Wbxとして、Wax=Wai、Wbx=Wbiが得られたとする。これらWai,Wbiの値は、初期荷重として、キースイッチ55における初期荷重記憶キースイッチの操作によって、メモリブロック53の初期荷重メモリに記憶される。
【0036】
いま、ハーフブリッジ回路15a側の出力荷重信号Wanおよびハーフブリッジ回路15b側の出力荷重信号Wbnの算出式として、それぞれ下記の式(1)(2)を定める。
Wan=ka・(Wax−Wai)−Wza ・・・(1)
Wbn=kb・(Wbx−Wbi)−Wzb ・・・(2)
ここで、ka,kbはスパン係数、Wza,Wzbは零点荷重メモリである。
【0037】
上記式(1)(2)は、両方のハーフブリッジ回路15a,15bの出力荷重信号Wan,Wbnに対してそれぞれ独自にスパン係数ka,kb、初期荷重メモリWai,Wbiおよび零点荷重メモリWza,Wzbを設け、同じ負荷荷重に対してWan,Wbnが同一値であるようにし、零点調整機能をそれぞれ独立に実施できるようにすることを考慮した式である。これらの式を定義することによって、例えば温度変化の過渡期等で、ストレインゲージが貼付される起歪部金属への伝熱が一様でないために両ハーフブリッジ回路に共通でない零点変動が起きた場合でも、その零点変動が出力荷重信号Wan,Wbnにそのまま含まれて出力差として現れるといった不都合が生じるのを回避することができる。
なお、初期荷重値Wai,Wbiを初期荷重メモリへ記憶した時点ではWax=Wai、Wbx=Wbiであるからスパン係数ka,kbの0でない任意の数値に対して、Wan=Wbn=0である。
【0038】
スパン係数ka,kbは、定格荷重Ws(Wsの値は既知)を置いたときにWanの値とWbnの値がそれぞれWsの値を表すように、すなわち次式を満たすように調整されている。
Wan=Wbn=Ws ・・・(3)
こうして、被計量物の重量測定値は、次式でもって算出され、表示される。
Wn=1/2・(Wan+Wbn) ・・・(4)
なお、Wan,Wbn,Wnは実際に計量器における被計量物の重量測定値としての表示値の分解能に比べ、少なくとも4倍の分解能を有するように設定されている。
【0039】
次に、各ハーフブリッジ出力の零点変動への対応について説明する。
(1)零点変動を手動調整手段により行う場合
計量作業中のスパンの異常については、スパン変動率に対する許容値Rhを予め仕様の計量精度に対応させて設定し、次式が成立したときにスパンが異常であると判定する。
|Wan−Wbn|/{(Wan+Wbn)/2}>Rh・・・(5)
【0040】
計量器に設けた零点調整スイッチを手動操作すれば、2つの出力荷重信号Wan,Wbnはそれぞれ同時に個別に零点調整される。すなわち、Wanの値がWzaに加算され、その結果Wan=0に調整され、Wabの値がWzbに加算され、その結果Wbn=0に調整される。
しかし、例えばWanとWbnとがそれぞれ正負方向に同じ量または略同じ量だけ零点から変動している場合、従来の表示方式である上記式(4)によって荷重信号を表示すれば、双方の零点変動量が加算され大きい値となるので、スパンが異常であると誤って判定することになる。そこで、作業者の零点調整スイッチによる零点調整操作に頼って精確なスパン異常の判定を行うには、零点評価として、差の絶対値である|Wan−Wbn|の値を表示させるようにする。あるいは2つのハーフブリッジ回路15a,15bの出力荷重信号Wan,Wbnをそれぞれ表示させるようにしても良い。
【0041】
計量台上に被計量物がないときに、この値|Wan−Wbn|が零でなければ、被計量物を載置したとき、Wan,Wbnのいずれかにスパン変動がなくてもいずれかのハーフブリッジ回路15a,15bのスパン変動として評価されてしまうので、この値|Wan−Wbn|を作業者に零点調整スイッチを押すことを促す指標値とする。
【0042】
または零点変動の許容値としてwzを定め、
|Wan−Wbn|>wz
が成立すれば、正しく零点が調整されていない旨のサイン(零点変動サイン)をランプ等の表示器によって表示させ、作業者に零点調整スイッチを押すことを促すようにする。
また、反対に、上記不等式が成立しないことを持って表示器に表示させ、作業者に零点調整スイッチを押す必要がないことを判断させるようにすることもできる。
【0043】
(2)零点変動を自動調整手段により行う場合
自動的に精確にスパン異常を検出するには、ハーフブリッジ回路15a,15bの出力荷重信号Wan,Wbnに対して次のように負荷荷重による変動量のみを算出する荷重変化量検出手段を設ける。
すなわち、Wan(Wbn)はA/D変換器24(25)から読み込まれる荷重信号によって時間間隔Ta(=数100msec)で生成されるものとし、M個のシフトレジスタを用意し、このシフトレジスタにWan(Wbn)を生成順に、最も古い値を捨て常に最新のM個のWan(Wbn)が記憶されるようにする。また、予め安定限界の許容値を設定しておき、M個のWan(Wbn)の値が許容値以内であれば安定であると判定する。この安定判別は時間間隔Taで逐次行われる。こうして、シフトレジスタに記憶された値の平均値を算出して重量測定値用のWan(Wbn)とすることで、最短で時間間隔Ta毎に被計量物の安定重量値を得ることができる。
【0044】
この場合、計量台に被計量物を載置したために、あるタイミングに読み取ったWan(Wbn)の値によってシフトレジスタの値が許容値を外れ安定条件が成立しなくなることを考慮し、安定条件を外れる1つ手前のタイミングでシフトレジスタに入った最新の値は許容範囲の限界値である場合も想定されるので、安定重量値としてWan(Wbn)の値を算出するには、最も新しく入った値は除外し、M−1個の値でもって平均値を求めるのが適切である。
【0045】
このために、Wan(Wbn)の値が不安定になる直前の安定重量値を記憶するための記憶メモリを1個用意し、計量台上に被計量物が無いときに連続的に生成される安定重量値をその記憶メモリにストアさせてその内容を更新する。ただし、更新の際には、前記記憶メモリから記憶データ(=1つ前の安定重量値)を別のメモリへ呼び出してから新たな安定重量値に更新するようにする。
【0046】
このように構成すれば、計量台上に被計量物を載置すると、その載置によって荷重信号が振動する間は安定判別条件が成立せず、記憶メモリは更新されなくなるので、該記憶メモリには被計量物の載置直前の安定条件が成立した最終のデータが記憶された状態にある。そして、荷重信号の振動が収束すると、安定判別条件が成立し、最新の安定重量値が得られる。そのとき記憶メモリから呼び出されたデータが一つ以前のタイミングの安定重量値で、最新の安定重量値が今回のタイミングの安定重量値である。
この間は被計量物を載置して荷重信号の振動の収束に要する時間差であるから短く、この間に荷重信号が零点ドリフトすることはないか、あるいは仮に零点ドリフトするとしても極めて小さい。したがって、これらの安定重量値の差は零点ドリフト分を含まず、精確に被計量物の重量に相当した変化量を表すので、零点の変動成分を除外してスパン変動のみの精確な評価に用いるのに適している。
【0047】
上述の説明では、計量台上に被計量物が無い状態から被計量物を載置する場合について述べたが、既に計量台上に被計量物が滞在し、その上に新たに被計量物を載置する場合についても同様に行うことができる。この場合、安定重量値の差が新たに載置した被計量物の重量に相当する。よって、長い時間計量台上に被計量物が滞在し、計量台上で累積的に計量するような重量測定装置であっても、零点変動に影響されずに精確にスパン異常を診断することができる。
【0048】
このような場合には、一つ以前のタイミングと、今回のタイミングの安定状態にある出力荷重信号WanをそれぞれWanu,Wanvとしたとき、ハーフブリッジ出力の負荷荷重による変化量Wanpを次式にて計算する。
Wanp=|Wanv−Wanu| ・・・(6)
そして、この変化量Wanpを所定の値Whと比較して、次式
Wanp>Wh ・・・(7)
が成立すれば、スパンの異常を判定するに十分な荷重変化量であるとして演算処理中においてフラグを立てる。この変化量Wanpが小さければノイズとのS/N比が小さくなり精確な判定ができない。変化量Wanpが小さく上記式(7)が成立しない場合にはフラッグはリセットされる。
【0049】
同様にして、出力荷重信号Wbnについての演算によるフラグが揃うと、揃ってフラグがセットされた時点のハーフブリッジ出力の負荷荷重による変化量WanpとWbnpとでもって、スパンの異常を判定させる。スパン異常判定は、上記式(5)と同様に、次式にて実施する。
|Wanp−Wbnp|/{(Wanp+Wbnp)/2}>Rh・・・(8)
【0050】
このようにすれば、作業者が零点調整スイッチの操作を忘れたり、個別ハーフブリッジ毎に異なる零点ドリフトがあっても、重量測定値Wan,Wbnにおける零点変動値分が相殺され、精確なスパン異常の判定を行うことができる。
【0051】
次に、2つのハーフブリッジ出力のヒステリシス誤差を補正し、スパンの異常をより精確かつ容易に判定するための手法について説明する。
【0052】
2組のハーフブリッジ回路15a,15bの出力荷重信号Wan,Wbnは、定格荷重の負荷に対して同じ出力であるようにスパン係数を調整していても、それぞれが異なるヒステリシス特性を持っているため、図5(a)に示されるように、負荷荷重を漸増(単調増加)させる場合の出力と漸減(単調減少)させる場合の出力とは途中の負荷荷重に対して異なる値となる。なお、図5(a)において、a1は出力荷重信号Wanの負荷荷重漸増時の出力軌跡、a2は出力荷重信号Wanの負荷荷重漸減時の出力軌跡を示し、b1は出力荷重信号Wbnの負荷荷重漸増時の出力軌跡、b2は出力荷重信号Wbnの負荷荷重漸減時の出力軌跡を示している。
【0053】
ハーフブリッジにスパン変動が起きていなくても、このようなヒステリシス誤差特性によってWan−Wbnの値は荷重の変化に応じて差を生じるので、この差の分だけスパン異常判定の精確性が損なわれる。このヒステリシスの量は、ストレインゲージのロードセル起歪部への貼付状態(例えば接着剤の厚みなど)によって異なるので、ハーフブリッジ別に誤差特性が異なる。このため、ハーフブリッジの出力を精確に比較するにはそれぞれ単独にヒステリシス誤差を補正することが必要となる。
【0054】
このヒステリシス誤差は、荷重が零点と定格荷重との間で種々の大きさで増減変化したときに複雑に変化するので、容易にかつ精確に補正することができず、かえって精確性を損ねる場合がある。ここで、被計量物の測定値そのものを補正するのではなく、スパンの異常を精確に検出できれば良いのであるから、2個のハーフブリッジの出力を個別に負荷荷重の増減におけるヒステリシス誤差を補正してもよいが、異常判定にとって好都合な簡単化したヒステリシス補正方法を採用するのが好ましい。
【0055】
荷重が定格荷重に向けて単調に増加する過程、または定格荷重から零へ向けて単調に減少する過程においては、発生するヒステリシス誤差はほぼ一様に連続的に変化するので、荷重に応じた誤差の推定は比較的容易である。また、計量作業の性質から、定格荷重まで負荷荷重を単調に増加させる過程、つまり計量台上へ1つの被計量物を載置したとき、さらにはその上に別の被計量物を積み増すとき、被計量物を載置する度にスパンの異常を判定する操作を実施するのが好ましい。
【0056】
これらの点を考慮し、本実施形態では、ヒステリシス補正を以下のようにして行う。すなわち、調整モードにおいて、計量台に対して0から大きさの異なる何種類かの既知の負荷荷重を、漸増(単調増加)させながら定格荷重Wsまで掛け、Wsまで掛けた後は大きさの異なる何種類かの既知の負荷荷重を掛けて荷重の単調増加変化に対する2つのハーフブリッジ出力のヒステリシス誤差データを得る。そして、この誤差データによって、最小自乗法などの方法で荷重の単調増加時の荷重変化Wan,Wbnとヒステリシス誤差Ea1,Eb1との関係を、2次式以上の多次式の関数(誤差補正関数)でもって次式のように表わす。そして、この式を演算回路26のメモリブロック53に記憶させる。
Ea1=fa(Wan)
Eb1=fb(Wbn) ・・・(9)
【0057】
図5(b)に示される誤差Ea1,Eb1は、負荷荷重が0から定格荷重Wsに向けて単調に増加する場合のみ現れるもので、例えば負荷荷重がWs/2まで増加した後に一旦減少し、再び定格荷重Wsに向けて増加しても、誤差は図5(b)の通りには現れない。
【0058】
こうして、調整モードにおいて決定した誤差関数fa(Wan)およびfb(Wbn)を使用し、スパン異常の検出は負荷荷重が零付近又は零以下から単調増加する過程のみにおいて行わせるものとする。
【0059】
要するに、単調増加過程のヒステリシス誤差を補償したスパンの異常判定を行う際には、次の条件を満たすものとする。
(1)2組の出力荷重信号Wan,Wbnが共に安定条件を満足すること。
(2)2組の出力荷重信号Wan,Wbnが共に、零点を起点にした単調増加の過程にあること。そのため、出力荷重信号の増加過程で一旦所定値以上の減少があるときは、Wan,Wbn共に零付近にまで戻らなければ、改めて異常判定に適用しない。その理由は、増加過程の中で所定値異常の荷重減少があると、単調増加に基づいて設定した関数とは全く異なる誤差が発生するためであり、零点を起点に単調増加する荷重を補正するものとする。
(3)前回の記憶荷重出力と今回の荷重出力の変化量の差で判定するので、Wan,Wbn共に今回測定値と前回の記憶値との差が所定値以上に大きいこと(例えば定格荷重Wsの1/4以上の変化量をもってスパンの異常を判定する。)。
ここで、補正された出力をそれぞれWan′,Wbn′とすると、誤差補正は式(9)によって、次式となる。
Wan′=Wan−fa(Wan)
Wbn′=Wbn−fb(Wbn) ・・・(10)
【0060】
次に、負荷荷重を0から計量器の定格荷重Wsに向けて単調増加させる場合の各ハーフブリッジ出力によるスパン異常判定演算の手順を、図6に示されるフローチャートにしたがって説明する。なお、このフローチャートにおいて、S1〜S16は各ステップを示している。
【0061】
S1〜S2:最新のM個のWan,Wbnを読み込み、それぞれの値をM個のシフトレジスタに記憶させる。そして、予め安定限界の許容値を設定しておき、M個のWan,Wbnの値が許容値以内であるか否かによって安定判別を実施する。
S3〜S7:安定条件が成立した場合には、Wan,Wbnについての安定重量値を算出する。なお、安定条件が成立しない場合には元に戻る。
荷重変化の単調増加過程は、両方の出力Wan,Wbnが零付近又は零以下になったときから開始される。そこで、今回の零付近出力Wan,Wbnをメモリにストアする。ただし、Wan,Wbnがマイナス値の場合には0に置き換え、0をストアする。Wan,Wbnの値が零付近以下の値である場合には、単調増加の過程にあることを示すフラグFzを1にセットし、単調増加の開始条件が成立したものとする。
【0062】
S8:次のWan,Wbnの読み込みタイミングで、再び両出力Wan,Wbnが零付近以下であれば、上述の操作を繰り返すが、ステップS6の判定において、Wan,Wbnのいずれか一方、または両方が零付近以下を超える出力である場合には、今回の読み込み荷重の前回の読み込み荷重からの変化量が所定値Wq(例えばWq=Ws/4)を超える大きさであるか否か、言い換えれば次式が成立するか否かを判定する。
Wan−Wanu>Wq
Wbn−Wbnu>Wq ・・・(11)
ただし、Wanu,WbnuはそれぞれWan,Wbnの一つ前の安定重量値である。
【0063】
S9〜S13:式(11)が成立すれば、ステップS9にて、2つの出力が両方共単調増加の過程にあるか否か(Fz=1であるか否か)を判定し、単調増加の過程にある(Fz=1)であるなら、ステップS10以下の処理において、前回の記憶値Wanu,Wbnuをメモリから呼び出し、式(10)に基づいて誤差補正してWanv,Wbnvにする。そして、ステップS13にて、今回と前回の補正出力による2つのハーフブリッジ出力の変化量である、
Da=Wanv−Wanu
Db=Wbnv−Wbnu ・・・(12)
でもって、次式
|Da−Db|/{(Da+Db)/2}>Rab・・・(13)
ただし、Rabは予め設定されたスパン変動率の許容値
が成立するか否かを判定する。そして、式(13)が成立すればスパン異常であるとして警報する。ここで、Rabの値は、例えば計量器の計量精度が仕様の上でEであれば、Rab=Eに設定する。
【0064】
負荷荷重が途中で減少するような経過があれば、その後荷重が再び増加する過程があって式(11)が満足されステップS9に至っても、単調増加過程の条件が崩れていてフラグFzは0にリセットされているので異常判定は行われない。つまり、両方の出力が一旦零付近以下に戻り、Fz=1がセットされるまでは異常判定は実施されない。
【0065】
S14〜S16:ステップS8の判定において式(11)が成立しない場合であるが、これには今回の読み込み値Wan,Wbnのいずれか一方の出力のみが零付近以下の場合と、いずれの出力も零付近以下のレベルを超えて大きい出力であっても前回との変化量が小さい場合とがある。これらの場合にはステップS14に進むことになる。
ここで、式(11)において、荷重変化が単調増加していないか、あるいは現状維持していない、つまり単調増加の条件が崩れたと判定するための出力変化の許容値をWrとすると、Wan,Wbnのいずれか一方に、今回の読み込み値が前回の読み込み値より小さく、差の絶対値がWrより大きい場合、すなわち次式が成立する場合には、単調増加過程は崩れたとしてフラグFzを0にリセットする(ステップS15)。
Wan−Wanu<0で、かつ|Wan−Wanu|>Wr
Wbn−Wbnu<0で、かつ|Wbn−Wbnu|>Wr
ただし、出力がマイナス値を取る場合には0に置き換えているので、Wan,Wanu≧0、Wbn,Wbnu≧0である。
【0066】
Wrの値は、Wr<Wqを満たし、一定の負荷荷重が載置されたときわずかな外乱振動で変化する値よりやや大きめの値に設定される。また、Wrは前回より荷重が減少することがあっても単調増加による誤差発生の状態が変化しない程度の小さい許容荷重とする。しかし、Wr=0にしてしまうと、外乱による荷重のわずかな変動でも単調増加過程の条件が崩れ、一旦計量台上から負荷荷重を降ろさなければ、改めてスパン異常判定ができなくなる。つまり積み増しによるスパン異常が検出できなくなる。
【0067】
一方、ステップS14の判定において、単調増加の過程が維持されていると判定されると、次の判定に備え、今回のWan,Wbnを式(10)に基づいて誤差補正し、メモリに記憶する(ステップS16)。
【0068】
以上のように本実施形態によれば、計量器の荷重変化が零点を起点とした単調増加であることを判定する単調測加判定手段に基づくことによって、容易かつ精確に、2つのハーフブリッジ出力のヒステリシス誤差を補正し、精確にスパンの異常を判定することができる。しかも、本実施形態の方法は通常に計量作業を継続する中で実施可能な方法であり、異常判定のために特別な作業を要することがない。
【0069】
上述の説明では、零点から定格荷重までの間を一つの関数で表現するものとしたが、調整時点で零点からWs/2までの誤差と、Ws/2から定格荷重までの誤差とをそれぞれ別の関数で表現するようにしても良い。
【0070】
<他の実施形態に係る故障診断装置について>
先の実施形態における故障診断装置20のシステム構成に代えて、図7に示されるようなシステム構成とすることもできる。なお、この故障診断装置20Aにおいて、先の実施形態の故障診断装置20と同一または同様の部分については図に同一符号を付すに留めてその詳細な説明を省略することとし、以下においては先の実施形態の故障診断装置20と異なる点を中心に説明することとする。
【0071】
本実施形態の故障診断装置20Aは、フルブリッジ回路15に対して設けられる、アナログ加算回路57と、A/D変換器58と、演算回路26とを備えている。
ここで、フルブリッジ回路15と演算回路26は、先の実施形態の故障診断装置20で使用されたものと共通のものである。
先の実施形態の故障診断装置20では、2つのA/D変換器24,25が用いられているが、本実施形態の故障診断装置20Aでは、1つのA/D変換器58が用いられる。
先の実施形態の故障診断装置20では、フルブリッジ回路15における接続点16の電位が+Vで接続点17の電位が零の直流電圧が印加されているが、本実施形態の故障診断装置20Aでは、接続点16の電位が+Vで接続点17の電位が−Vの直流電圧が印加されている。この場合、先の実施形態の故障診断装置20では必要とされる電圧参照用の固定抵抗21,22によるハーフブリッジ回路15a,15bは不要となる。
【0072】
アナログ加算回路57は、第1演算増幅器61と、第2演算増幅器62と、第3演算増幅器63と、第4演算増幅器64と、第5演算増幅器65とを備えて構成されている。
第1演算増幅器61において、入力正端子61aはフルブリッジ回路15の接続点18に接続され、入力負端子61bは出力端子61cに接続され、出力端子61cは抵抗器66,67に接続されている。
第2演算増幅器62において、入力正端子62aはフルブリッジ回路15の接続点19に接続され、入力負端子62bは出力端子62cに接続され、出力端子62cは抵抗器68および第4演算増幅器64の入力正端子64aにそれぞれ接続されている。
第3演算増幅器63において、入力正端子63aは、抵抗器68に接続されるとともに、抵抗器69を介して回路のアース70に接続され、入力負端子63bは、抵抗器66に接続されるとともに、抵抗器71を介して出力端子63cに接続され、出力端子63cはアナログスイッチ72を介してA/D変換器58に接続されている。
第4演算増幅器64において、入力正端子64aは第2演算増幅器62の出力端子62cに接続され、入力負端子64bは、抵抗器73を介して回路のアース70に接続されるとともに、抵抗器74を介して出力端子64cに接続され、出力端子64cはアナログスイッチ75を介してA/D変換器58に接続されている。
第5演算増幅器65において、入力正端子65aは抵抗器76を介して回路のアース70に接続され、入力負端子65bは、抵抗器67に接続されるとともに、抵抗器77を介して出力端子65cに接続され、出力端子65cはアナログスイッチ78を介してA/D変換器58に接続されている。
【0073】
本実施形態の故障診断装置20Aにおいては、計量器用のアナログ荷重信号は第3演算増幅器63において合成される。接続点18側のハーフブリッジ回路15aの出力荷重信号がeob、接続点19側のハーフブリッジ回路15bの荷重信号がeoaであり、A/D変換器58は全ての信号に兼用して1個のみ設けられ、その入力がアナログスイッチ72,75,78によって切り換えられる。このように適宜A/D変換器の使用個数は選択すれば良い。
【0074】
この故障診断装置20Aにおいては、フルブリッジ出力を、ハーフブリッジ出力と別に検出し、独立にスパン係数を求めて、同じ負荷荷重に対してWn=Wan=Wbnであるように調整し、初期重量記憶メモリ、零点重量記憶メモリを設け、
Wn=kab・(Wabx−Wabi)−Wab
として表すようにされる。
【0075】
本実施形態における荷重信号演算部52bが、本発明における「荷重信号出力手段」に対応し、本実施形態における表示装置54が、本発明における「荷重信号表示手段」及び「零点調整状態表示手段」に対応し、本実施形態における安定判別部52cが、本発明における「安定判別手段」に対応し、本実施形態における荷重変化量算出部52dが、本発明における「荷重変化量検出手段」に対応し、本実施形態におけるヒステリシス誤差補正部52eが、本発明における「ヒステリシス誤差補正手段」に対応し、本実施形態におけるスパン異常判定部52fが、本発明における「スパン異常判定手段」に対応する。
【産業上の利用可能性】
【0076】
本発明のロードセルの故障診断装置は、コンベヤスケールやホッパスケール、トラックスケール、台秤、料金秤などの計量器で使用されるストレインゲージ式ロードセルに生じるスパンの異常を検出する用途に好適に用いることができる。
【符号の説明】
【0077】
1 圧縮型ロードセル
5 二重ビーム式ロードセル
9 計量台
15a,15b ハーフブリッジ回路
20,20A 故障診断装置
26 演算回路
52 中央演算処理装置
52b 荷重信号演算部(荷重信号出力手段)
52c 安定判別部(安定判別手段)
52d 荷重変化量算出部(荷重変化量検出手段)
52e ヒステリシス誤差補正部(ヒステリシス誤差補正手段)
52f スパン異常判定部(スパン異常判定手段)
53 メモリブロック
54 表示装置(荷重信号表示手段、零点調整状態表示手段)

【特許請求の範囲】
【請求項1】
起歪部に貼付した複数個のストレインゲージで構成されるホイートストーンブリッジ回路における2個の端子からの出力信号を荷重信号とするロードセルの故障診断装置において、
前記ロードセルへの負荷荷重に対して、前記2個の端子から出力される荷重信号がそれぞれ同じ大きさの荷重信号となるように演算処理する2個の荷重信号出力手段を備えることを特徴とするロードセルの故障診断装置。
【請求項2】
前記2個の荷重信号出力手段より出力される2個の荷重信号をそれぞれ個別に表示、又は2個の荷重信号の差の絶対値を表示する荷重信号表示手段を備えることを特徴とする請求項1に記載のロードセルの故障診断装置。
【請求項3】
前記2個の荷重信号出力手段より出力される2個の荷重信号をそれぞれ個別に零点調整する零点調整手段を備えることを特徴とする請求項1に記載のロードセルの故障診断装置。
【請求項4】
前記2個の荷重信号出力手段より出力される2個の荷重信号の差の絶対値が零若しくは零近傍の値である状態、又は零若しくは零近傍の値でない状態を表示する零点調整状態表示手段を備えることを特徴とする請求項1に記載のロードセルの故障診断装置。
【請求項5】
前記2個の荷重信号出力手段より出力される2個の荷重信号の増減に応じて生じるヒステリシス誤差を個別に補正するヒステリシス誤差補正手段を備えることを特徴とする請求項3又は4に記載のロードセルの故障診断装置。
【請求項6】
前記ヒステリシス誤差補正手段は、前記2個の荷重信号のそれぞれが零点付近を起点とする単調増加であることを判定する単調増加判定手段を備え、この単調増加判定手段により前記2個の荷重信号が零点付近を起点とする単調増加であると判定されたときに、前記ヒステリシス誤差補正手段はヒステリシス誤差を補正することを特徴とする請求項5に記載のロードセルの故障診断装置。
【請求項7】
起歪部に貼付した複数個のストレインゲージで構成されるホイートストーンブリッジ回路における2個の端子からの出力信号を荷重信号とするロードセルの故障診断装置において、
前記ロードセルへの負荷荷重に対して、前記2個の端子から出力される荷重信号がそれぞれ同じ大きさの荷重信号となるように演算処理する2個の荷重信号出力手段と、
前記2個の荷重信号出力手段より出力される2個の荷重信号の安定判別を行う安定判別手段と、前記安定判別手段による安定判別に基づき生成された最新の安定重量値と、
この最新の安定重量値の一つ前のタイミングにおいて生成された安定重量値との差を検出する荷重変化量検出手段と、
この荷重変化量検出手段により検出された最新の安定重量値と一つ前の安定重量値との差に基づき、前記ロードセルのスパンの異常を判定するスパン異常判定手段と
を備えることを特徴とするロードセルの故障診断装置。
【請求項8】
前記スパン異常判定手段は、前記2個の荷重信号出力手段のうちの一方の荷重信号出力手段から生成される最新の安定荷重値と一つ前の安定重量値との差と、他方の荷重信号出力手段から生成される最新の安定荷重値と一つ前の安定重量値との差とを比較し、一方の差が他方の差より大きい場合に前記ロードセルのスパンが異常であると判定することを特徴とする請求項7に記載のロードセルの故障診断装置。
【請求項9】
前記2個の荷重信号出力手段より出力される2個の荷重信号の増減に応じて生じるヒステリシス誤差を個別に補正するヒステリシス誤差補正手段を備えることを特徴とする請求項7又は8に記載のロードセルの故障診断装置。
【請求項10】
前記ヒステリシス誤差補正手段は、前記2個の荷重信号のそれぞれが零点付近を起点とする単調増加であることを判定する単調増加判定手段を備え、この単調増加判定手段により前記2個の荷重信号が零点付近を起点とする単調増加であると判定されたときに、前記ヒステリシス誤差補正手段はヒステリシス誤差を補正することを特徴とする請求項9に記載のロードセルの故障診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−127721(P2012−127721A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2010−277748(P2010−277748)
【出願日】平成22年12月14日(2010.12.14)
【出願人】(000208444)大和製衡株式会社 (535)
【Fターム(参考)】