説明

一酸化炭素変成装置及び方法並びに水素製造装置

【課題】 一酸化炭素変成装置の一酸化炭素濃度転化率を変成触媒の使用量を増加させずに向上させる。
【解決手段】 変成触媒層を少なくとも前後2段に分割して、上流側に第1触媒、下流側に第2触媒を夫々備え、第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性を有し、第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくなる第1触媒と第2触媒の組み合わせを用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反応ガス中に含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成装置及び方法に関する。
【背景技術】
【0002】
近年、燃料電池等のクリーンエネルギの開発が積極的に進められており、燃料電池等の燃料源として高純度な水素製造に対するニーズが高くなっている。当該水素燃料としては、炭化水素やアルコール等の改質によって得られる改質ガスを用いるが、改質ガス中には水素以外に10%程度の一酸化炭素及び二酸化炭素が含まれている。100℃以下の低温で動作する固体高分子形燃料電池の場合には、電極に用いる白金触媒が改質ガスに含まれる一酸化炭素によって被毒されるため、一酸化炭素濃度を100ppm以下、好ましくは10ppm以下に低下させる必要がある。
【0003】
改質ガス中の一酸化炭素を10ppm以下まで除去するには、一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成反応(水成ガスシフト反応)により、一酸化炭素濃度を1%以下に低下させ、引き続き、微量の酸素(空気)を供給し白金系の触媒等を用いて一酸化炭素を選択酸化して、更に一酸化炭素濃度を10ppm以下まで低下させる。下流側の工程では、上流側の一酸化炭素変成反応後の一酸化炭素濃度が高いと、供給する酸素量が多くなり、改質ガス中の水素が不要に酸化されるため上流側の一酸化炭素変成反応において、一酸化炭素濃度を十分に低下させておく必要がある。
【0004】
一酸化炭素変成反応は、下記の化1に示す平衡反応(発熱反応)であり、温度が低いと右側に片寄った組成が得られる。従って、反応温度が低い方が一酸化炭素の転化には有利であるが、反応速度が遅くなるという問題がある。また、一酸化炭素の転化(右側への反応)が進むと化学平衡上の制約から当該反応が抑制される。従って、一酸化炭素濃度を十分に低下させるためには、大量の変成触媒が必要となる。当該大量の変成触媒を必要とすることが、触媒の加熱に時間を要し、変成器の小型化及び起動時間短縮の要請に対する阻害要因となっていて、特に、水素ステーション用改質システム、家庭用燃料電池システム等において課題となっていた。
【0005】
(化1)
CO + HO → H +CO
【0006】
一酸化炭素変成反応は、1段の反応で行う場合もあるが、上述の如く発熱反応であるため、反応の進行とともに温度が上昇するため、有利なガス組成を得るために触媒層を分割して途中で冷却する構成が通常用いられている(例えば、下記の非特許文献1、特許文献1の段落[0002]〜[0006]の記載等参照)。ここで、変成触媒としては、下流側の中温低温用触媒として、150℃〜300℃で使用可能な銅亜鉛系触媒、銅クロム系触媒等が用いられ、高温用触媒として300℃以上で機能する鉄クロム系触媒等が用いられている。銅系の変成触媒、特に、銅亜鉛系触媒は、150℃〜300℃の低温で変成反応が可能である点及び一酸化炭素転化率の点で高温用触媒より有利で、貴金属等の高価な材料を使用しない点でコスト的に有利なため、燃料電池に限らず水素製造プロセスに広く用いられている。一方、銅系の変成触媒の活性種は還元された金属銅であるが、触媒出荷時には酸化銅を約30〜45%含んでいるため、使用前に水素等の還元ガスで触媒を還元して活性化する必要がある。これに対して、耐熱性の高い貴金属触媒を用いて当該還元処理を短時間で行うことが提案されている(例えば、下記の特許文献2、3参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−75474号公報
【特許文献2】特開2000−178007号公報
【特許文献3】特開2003−144925号公報
【非特許文献】
【0008】
【非特許文献1】触媒手帳 ズードケミー触媒株式会社 平成13年7月1日発行 第22〜23頁
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述のように、変成触媒として種々の組成のものが存在するが、一酸化炭素濃度を1%以下に十分低減させるためには、一酸化炭素転化率の点で有利な低温で高活性な触媒を大量に使用する必要があった。従来、変成触媒の反応を制約する要因として、一酸化炭素変成反応が進行すると化学平衡上の制約から当該反応が抑制されることが主たる要因と考えられていたため、一酸化炭素濃度を更に低下させるには、大量の変成触媒を必要とすると考えられていた。
【0010】
本発明は、上述の変成触媒における問題点に鑑みてなされたものであり、その目的は、変成触媒の使用量を増加させずに、一酸化炭素濃度転化率を向上させる一酸化炭素変成装置及び方法を提供することにある。
【課題を解決するための手段】
【0011】
本願発明者の鋭意研究により、変成触媒の中には、化学平衡上の制約とは別に、触媒の活性種が一酸化炭素変成反応の生成物である二酸化炭素に被毒することで、触媒活性が低下する触媒が存在する一方で、二酸化炭素の被毒による触媒活性の低下が顕著に現れない触媒が存在することを見出した。更に、二酸化炭素の被毒により触媒活性が低下する触媒において、反応温度を制御することによって触媒活性の低下が抑制されることを見出した。
【0012】
従って、本発明に係る一酸化炭素変成装置及び方法は、上記目的を達成するために、本願発明者の上記新知見に基づいて、一酸化炭素変成反応を少なくとも上流側と下流側の2段に分割し、上流側の触媒層に第1触媒を、下流側の触媒層に第2触媒を夫々備え、前記第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性を有し、前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さいことを第1の特徴とする。
【0013】
上記第1の特徴の一酸化炭素変成装置及び方法によれば、上流側の第1触媒が、供給される反応ガス中の一酸化炭素濃度が一定の場合に、反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低くなる特性を有する場合において、つまり、二酸化炭素の被毒により触媒活性が低下する触媒である場合において、一酸化炭素変成反応によって、触媒層の下流側ほど二酸化炭素濃度が高くなって触媒活性が低下しても、下流側の第2触媒として、二酸化炭素被毒に対する耐性が第1触媒より大きい触媒を使用するため、触媒活性低下の影響を抑制でき、一酸化炭素濃度転化率を向上させることができる。
【0014】
更に、上記第1の特徴の一酸化炭素変成装置及び方法は、前記第1触媒が銅亜鉛系触媒で、前記第2触媒が貴金属系触媒、特に、白金系触媒であることが好ましく、更に、前記第2触媒の担体が酸化セリウムであることが好ましい。更に、前記第2触媒の体積が前記第1触媒の体積以下であることが好ましい。上述の如く、銅亜鉛系触媒は、150℃〜300℃の低温で変成反応が可能であるが、後述するように、二酸化炭素被毒により触媒活性が低下することが本願発明者の鋭意研究により明らかとなった。一方、白金系触媒は、銅亜鉛系触媒と比較してより良好な低温活性を呈するとともに、銅亜鉛系触媒と比較して二酸化炭素被毒に対する耐性が高いことが本願発明者の鋭意研究により明らかとなった。ここで、銅亜鉛系触媒を触媒層の全域或いは下流側に使用した場合、当該被毒の影響によって一酸化炭素転化率が低下し、一酸化炭素転化率を向上させるには、銅亜鉛系触媒の使用量を増やす必要があり、他方、白金系触媒を触媒層の全域に使用すると貴金属触媒であるためコスト的に不利となる。これらに対して、上流側に銅亜鉛系触媒を用い、下流側に白金系触媒を用いることで、銅亜鉛系触媒に対する二酸化炭素被毒の影響を抑制しつつ、白金系触媒の使用によるコスト増も抑制しつつ、両触媒の利点を夫々享受して、一酸化炭素濃度転化率を向上させることができる。
【0015】
更に、上記第1の特徴の一酸化炭素変成装置及び方法では、前記第1触媒と前記第2触媒の反応温度が共通に制御される場合と夫々独立に制御される場合がある。前者では、触媒層全体の温度制御を一括して行え、温度制御の簡素化が図れる。一方、後者では、上流側の触媒層と下流側の触媒層を夫々に最適な温度領域に制御することで、一酸化炭素濃度転化率を更に向上させることができる。
【0016】
更に、上記第1の特徴の一酸化炭素変成装置及び方法は、前記第1触媒と前記第2触媒が同じ組成及び構造の場合において、前記第1触媒と前記第2触媒の各反応温度を、前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくなるように夫々独立に制御することを第2の特徴とする。
【0017】
本願発明者の鋭意研究により、同じ触媒であっても反応温度を制御することで、二酸化炭素被毒の影響を抑制できることを見出しため、第1触媒と第2触媒が同じ触媒であっても、反応温度を夫々独立に制御して、第2触媒における二酸化炭素被毒の感度を低下させることで、上記第1の特徴の作用効果を奏することが可能となる。
【0018】
更に、上記第2の特徴の一酸化炭素変成装置及び方法は、前記第1触媒及び前記第2触媒が銅亜鉛系触媒であることが好ましい。上述の如く、銅亜鉛系触媒は、150℃〜300℃の低温で変成反応が可能であるが、後述するように、二酸化炭素被毒により触媒活性が低下すること、更に、当該触媒活性の低下が温度に依存して変化することが本願発明者の鋭意研究により明らかとなった。ここで、銅亜鉛系触媒を触媒層の全域或いは下流側に同じ温度制御下で使用した場合、当該被毒の影響によって一酸化炭素転化率が低下し、一酸化炭素転化率を向上させるには、銅亜鉛系触媒の使用量を増やす必要があるためコスト的に不利となる。これに対して、上流側と下流側で銅亜鉛系触媒に対して夫々独立に温度制御を行うことで、下流側の銅亜鉛系触媒に対する二酸化炭素被毒の影響を上流側により抑制することで、一酸化炭素濃度転化率を向上させることができる。
【0019】
更に、本発明に係る水素製造装置は、上記特徴の一酸化炭素変成装置と、当該一酸化炭素変成装置で処理されたガス中の一酸化炭素濃度を選択酸化により低下させる一酸化炭素選択酸化器とを備えてなることを特徴とする。
【0020】
上記特徴の水素製造装置によれば、一酸化炭素選択酸化器での一酸化炭素の燃焼が減少すると同時に、水素の燃焼も大幅に減少するため、燃料電池に適用した場合に、当該燃料電池の発電効率の向上が図れ、更には、一酸化炭素選択酸化器の小型化、低コスト化が図れる。
【図面の簡単な説明】
【0021】
【図1】本発明に係る一酸化炭素変成装置の一実施形態における概略構成を模式的に示す構成図
【図2】本発明に係る一酸化炭素変成方法の実験装置の概略構成を模式的に示す構成図
【図3】図2に示す実験装置に使用した被処理ガスのガス組成を一覧表示した図
【図4】第1触媒と第2触媒の夫々単独での一酸化炭素転化率の特性を示す特性図
【図5】第1触媒と第2触媒の夫々単独での一酸化炭素転化率のCO濃度依存性を示す特性図
【図6】第1触媒と第2触媒の夫々単独での一酸化炭素転化率のCO濃度依存性を示す特性図
【図7】第1触媒と第2触媒におけるCO被毒特性の測定結果を示す特性図
【図8】第1触媒と第2触媒におけるCO被毒特性の測定結果を示す特性図
【図9】本発明に係る一酸化炭素変成装置と触媒層構造の異なる比較例の一酸化炭素転化率の特性を示す特性図
【図10】本発明に係る一酸化炭素変成装置の他の実施例と触媒層構造の異なる比較例の一酸化炭素転化率の特性を示す特性図
【図11】本発明に係る一酸化炭素変成装置に用いる第1触媒だけを備える比較例の触媒量と一酸化炭素転化率の関係を示す特性図
【図12】本発明に係る一酸化炭素変成装置に用いる第2触媒の白金担持量の影響を示す表
【図13】本発明に係る一酸化炭素変成装置に用いる第2触媒の白金担持量の影響を示す特性図
【図14】本発明に係る一酸化炭素変成装置を用いた水素製造装置の実験装置の概略構成を模式的に示す構成図
【図15】本発明に係る一酸化炭素変成装置の別実施形態における概略構成を模式的に示す構成図
【発明を実施するための形態】
【0022】
本発明に係る一酸化炭素変成装置及び方法(以下、適宜「本発明装置」及び「本発明方法」と称す。)の実施の形態につき、図面に基づいて説明する。
【0023】
本発明装置1は、図1に模式的に示すように、筒状の反応管2内に、銅亜鉛系の一酸化炭素変成触媒(第1触媒)を充填した第1触媒層3を上流側に、白金系の一酸化炭素変成触媒(第2触媒)を充填した第2触媒層4を下流側に夫々備えて構成される。被処理ガスG0(反応ガス)は反応管2の入口5から反応管2内に供給され、第1及び第2触媒層3,4の通過時に変成反応が起こり、反応後の処理済ガスG1が反応管2の出口6から流出する。反応温度の制御は、周知の方法により反応管2を図示しない電気炉或いは恒温層内に設置することで行われる。本実施形態では、反応管2内の温度が一定温度に制御されるため、第1触媒層3内の反応温度と第2触媒層4内の反応温度は同じ温度に共通に制御される。
【0024】
本実施形態では、一例として、第1触媒は、一酸化炭素変成触媒として一般的な製法(共沈法)により調製された組成が酸化銅、酸化亜鉛、アルミナ(担体)からなる市販の銅亜鉛系触媒(Cu/Zn触媒)を使用し、第2触媒は、ジニトロジアンミン白金結晶(Pt(NO(NH )の所定濃度の硝酸溶液を調製し、酸化セリウム(CeO)に担持し、乾燥させたものを水素気流中300℃で還元することにより調製されたPt/CeO触媒を使用する。
【0025】
本発明装置及び方法は、改質ガス等の被処理ガスG0に含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成装置及び方法である。以下、上記構成の本発明装置1を用いることにより、一酸化炭素転化率が大幅に向上することを、本発明方法によって行われた実験データを参照して説明する。
【0026】
先ず、以下の実験で用いた実験装置について説明する。図2に、実験装置の概略構成を模式的に示す。図2に示すように、H、CO、COの各単体ガスが、夫々の供給源に連通するストップバルブ、減圧弁、電磁弁、マスフローコントローラー、逆止弁、圧力計等(図示せず)を途中に介装した供給管11〜13から供給され、合流して生成されたH、CO、COの混合ガスが、混合ガス供給管14から気化器15の入口に注入される。一方、気化器15の入口には、水タンク16から、図示しないポンプ、逆止弁、抵抗器等(図示せず)を途中に介装した水供給管17を介して、精製水が注入される。気化器15に注入された精製水は約200℃の温度で気化され、H、CO、CO、HOの混合ガス(被処理ガスG0)が生成され、反応管2に注入される。尚、本実験では、先ず気化器15からスチーム(HO)だけを反応管2内に導入し、触媒層まで十分にスチームが到達した後に、H、CO、COの混合ガスの供給を開始する。反応管2の出口から排気管20を経由して流出した処理済ガスG1は、精製水が封入されたドレインタンク(冷却器)21内を通過して冷却され、水分が除去された処理済ガスG1’が、圧力計、背圧弁、3方電磁弁等(図示せず)を途中に介装した排気管22を通過して、ガスクロマトグラフィー分析装置23に供給される。
【0027】
反応管2は、環状の電気炉18内に収容され、入口及び出口が夫々マントルヒータ19で覆われている。反応管2の中央部分に、上述の第1触媒と第2触媒が前後2段に挿入され、第1及び第2触媒層3、4が構成され、その前後にガラスウールを充填して、各触媒層3,4が移動しないように固定されている。また、反応管2内には、出口側から第2触媒層4の直近まで鞘管(図示せず)が挿入され、その鞘管内に熱電対が挿入されている。斯かる構成により、反応管2内の反応温度を熱電対により測定して、電気炉18及びマントルヒータ19の加熱を調整して、反応管2内の反応温度を一定に制御する。
【0028】
本実験装置では、反応管2は、管本体部分、入口と出口の各プラグ及びレデューサ部分等は、ステンレス等の金属製のものを使用しているが、反応管2の構造、大きさ及び材料等は、一酸化炭素変成反応の処理量等に応じて、適宜、適切なものを選択すれば良い。
【0029】
尚、本実験では、上述の第1触媒(Cu/Zn触媒)と第2触媒(Pt/CeO触媒)として、何れも触媒形状が粒径0.85〜1mmの粒状のもので、200℃、1時間のH還元処理を行ったものを使用した。第2触媒の白金担持量は、実験内容に応じて、10wt%と3wt%と1wt%の3種類を使い分けた。
【0030】
次に、実験に使用した被処理ガスG0のガス組成(H、CO、CO、HOの混合比)について説明する。本実験では、図3のガス組成表に示す9種類の被処理ガスG0を用意し、実験内容に応じて使い分けた。尚、当該9種類の被処理ガスG0の各成分ガス(H、CO、CO、HO)の混合比は、各供給管11〜13からの各成分ガス(H、CO、CO)の供給量及び気化器15への精製水(HO)の供給量を制御することで調整される。ガス#1とガス#2は、全ての成分ガスの体積%が異なる2種類の被処理ガスG0である。ガス#1は、CO、COの体積%が4%と14%で、ガス#2は、CO、COの体積%が10%と5%であり、CO、COの体積%の大小が逆転している。これは、上記化1に示す一酸化炭素変成反応の進行とともに、被処理ガスG0のCO濃度が減少し、逆に、CO濃度が増加するので、ガス#2とガス#1は、触媒層中の上流側の被処理ガスと下流側の被処理ガスを模擬的に表している。ガス#2〜#4は、COの体積%が一定値(5%)に固定され、COの体積%が夫々異なる3種類の被処理ガスG0であり、CO濃度依存性を測定することを目的とする。ガス#5〜#7は、COの体積%が一定値(1%)に固定され、COの体積%が異なる3種類の被処理ガスG0であり、CO濃度依存性を測定することを目的とする。ガス#8とガス#9は、ガス#1とガス#2中のCOをNに置換した比較用ガスで、後述するCO被毒の影響を比較することを目的とする。
【0031】
次に、第1触媒と第2触媒の夫々単独での一酸化炭素転化率の特性を調べた結果を、図4〜図6に示す。図4〜図6の各(a)図に、第1触媒の測定結果を、各(b)図に、第2触媒の測定結果を、夫々示す。図4は、ガス#1とガス#2を使用した測定結果を、図5は、ガス#2〜#4を使用した測定結果(CO濃度依存性)を、図6は、ガス#5〜#7を使用した測定結果(CO濃度依存性)を、夫々反応温度別に示す。第2触媒は白金担持量10wt%のものを使用した。尚、図4〜図6に示す測定では、図示した測定条件(反応温度、被処理ガスG0のガス組成)以外には、使用した触媒量及び被測定触媒の被処理ガスG0との接触時間は一定にしている。具体的には、使用した触媒量は夫々0.5ccである。また、図5に示すCO濃度依存性の測定では、使用したガス#2〜#4のCO濃度は一定であり、CO濃度の影響が排除されており、図6に示すCO濃度依存性の測定では、使用したガス#5〜#7のCO濃度は一定であり、CO濃度の影響が排除されている。
【0032】
図4に示すように、第1触媒と第2触媒は何れも高温ほど触媒活性が高まり、一酸化炭素転化率が向上する。しかしながら、第1触媒と第2触媒の触媒活性のCO濃度感度とCO濃度感度が相違していることが分かる。
【0033】
先ず、CO、COの体積%が4%と14%のガス#1とCO、COの体積%が10%と5%のガス#2を使用した図4(a)と図4(b)を比較すれば、一酸化炭素転化率が、第1触媒ではガス#1よりガス#2に対する方が高いのに対して、第2触媒では、ガス#2よりガス#1に対する方が高くなっており、両触媒で逆の傾向を示している。これは、第1触媒の方が第2触媒より触媒層の上流側のガス組成に適しており、第2触媒の方が第1触媒より触媒層の下流側のガス組成に適していることを示唆しており、更に、第1触媒と第2触媒間で、CO濃度感度とCO濃度感度の少なくとも何れか一方が大きく異なることを示唆している。
【0034】
次に、COの体積%が10%、4%、2%のガス#2〜#4を使用した図5(a)と図5(b)を比較すれば、反応温度が140℃〜200℃の範囲で、第1触媒と第2触媒は何れもCO濃度が高い方が、一酸化炭素転化率が低下する傾向が共通している。図4(a)と図5(a)のCOの体積%が10%と4%の場合を比較すれば、図4(a)では、CO濃度が10vol%の方が、一酸化炭素転化率が高いのに対して、図5(a)では、CO濃度が4vol%の方が、一酸化炭素転化率が高い。従って、図4(a)と図5(a)では、CO濃度感度が逆転しているが、その理由は、CO濃度が、図4(a)では変化しているのに対して、図5(a)では、CO濃度が5vol%と一定であるので、第1触媒では、CO濃度が変化することで、CO濃度感度が大きく変化することが分かる。一方、図4(b)と図5(b)のCOの体積%が10%と4%の場合を比較すれば、何れも、CO濃度が4vol%の方が、一酸化炭素転化率が高く、CO濃度が変化している場合と一定の場合で、CO濃度感度は同様の傾向を示す。つまり、第1触媒は、第2触媒と比較して、CO濃度の変化に敏感であることが分かる。
【0035】
次に、COの体積%が14%、5%、1%のガス#5〜#7を使用した図6(a)と図6(b)を比較すれば、第1触媒と第2触媒は何れもCO濃度が高い方が、一酸化炭素転化率が低下する傾向がある。しかしながら、CO濃度の差(1vol%から14vol%への増加)に対する一酸化炭素転化率の差(低下の程度)が、反応温度が140℃〜200℃の範囲で測定したところ、第1触媒では約31%〜42%と大きいのに対して、第2触媒では約8%〜28%と第1触媒より抑制されている。また、CO濃度の差(1vol%から5vol%への増加)に対する一酸化炭素転化率の差(低下の程度)が、反応温度が140℃〜200℃の範囲で、第1触媒では約9%〜26%と大きいのに対して、第2触媒では約0%〜8%と第1触媒と比較して大幅に抑制されている。要約すれば、第1触媒は、CO濃度が1vol%の低レベルからの上昇とともに一酸化炭素転化率が大幅に低下するのに対して、第2触媒は、CO濃度が5vol%程度からの上昇とともに一酸化炭素転化率が僅かに低下する傾向があり、第1触媒と第2触媒間でCO濃度感度が大きく異なることが分かる。つまり、第1触媒は、1vol%程度以上のCO濃度で、一酸化炭素変成反応の生成物であるCOに被毒し、触媒活性が著しく低下する傾向があるものと判断できる。
【0036】
図6に示した上記実験結果では、使用したガス#5〜#7が、CO濃度以外に、HとHOの濃度もCO濃度の変化に合わせて変化しているので、CO、H、HOの各濃度を一定にして、CO被毒の程度を測定するために、ガス#1とガス#1中のCOをNに置換したガス#8を使用した実験結果を図7に、ガス#2とガス#2中のCOをNに置換したガス#9を使用した実験結果を図8に、夫々示す。図7及び図8の実験では、第1触媒と第2触媒の夫々単独での一酸化炭素転化率を反応温度別に測定した。尚、図7及び図8に示す測定では、図示した測定条件(反応温度、被処理ガスG0のガス組成)以外には、使用した触媒量及び被測定触媒の被処理ガスG0との接触時間は一定にしている。第2触媒は白金担持量10wt%のものを使用した。また、使用した触媒量は夫々0.5ccである。
【0037】
図7及び図8より、被処理ガスG0中のCOをNに置換することにより、第1触媒は一酸化炭素転化率が大きく向上するのに対し、第2触媒では、当該一酸化炭素転化率の向上が殆ど無いか、或いは、第1触媒に比べて極めて小さいことが分かる。また、図7と図8の測定結果を比較すると、図7で使用したガス#1の方が、図8で使用したガス#2よりCO濃度が高いため、上記置換によって、第1触媒において一酸化炭素転化率が大きく増加している。以上より、第1触媒では、供給される反応ガス中のCO濃度及び反応温度が一定の場合において、当該供給される反応ガス中のCO濃度が高い程、一酸化炭素転化率が低下する特性、つまり、CO被毒が顕著に現れるのに対して、第2触媒では、供給される反応ガス中のCO濃度の増加に対する一酸化炭素転化率の低下の程度が第1触媒より小さく、CO被毒の程度が極めて小さいことが明確となった。換言すれば、図7及び図8に示す置換実験により、第1触媒及び第2触媒のCO被毒特性を比較することができる。
【0038】
以上説明したように、第1触媒が1%程度以上のCO濃度でCOに被毒し、触媒活性が著しく低下する傾向があることから、一酸化炭素変成装置の触媒層を第1触媒のみで構成した場合には、触媒層の下流側ほどCO濃度が高くなり触媒活性が著しく低下することになる。これに対して、上述のように第1触媒と第2触媒間でCO濃度感度が大きく異なることに着目すれば、触媒層の下流側にCO濃度感度の比較的低い、つまり、CO被毒の程度の小さい第2触媒を使用することで、触媒層を第1触媒のみで構成する場合と比較して一酸化炭素転化率を大幅に改善することが可能となり、触媒層全体での触媒使用量も節減できる。以下、この点について実験した結果を説明する。
【0039】
図9に、反応管2内に触媒層の構成を、本発明装置1と同様に、上流側に第1触媒、下流側に第2触媒を用いた本発明構成Aと、比較例として、全て第1触媒を用いた比較構成Bと、全て第2触媒を用いた比較構成Cと、上流側に第2触媒、下流側に第1触媒を用いた比較構成Dの4つの触媒層構成について、一酸化炭素転化率の接触時間との関係を測定した結果を示す。触媒層の触媒量は何れも3ccで、本発明構成Aと比較構成Dでは、第1触媒と第2触媒の分量は同量(1.5cc)とした。反応温度は160℃と180℃の2通りにつき、被処理ガスG0としてガス#2を用いて、測定を行った。尚、第2触媒は白金担持量10wt%のものを使用した。また、比較構成Dについては、反応温度は160℃の1通りである。各図の横軸に示す接触時間(単位:秒)は、被処理ガスG0の触媒層での滞留時間(空間速度の逆数)であり、被処理ガスG0の反応管2内の流速で制御した。
【0040】
図9より、接触時間が長くなると一酸化炭素変成反応の進行とともに一酸化炭素転化率が平衡転化率に近づき、飽和してくることが分かる。反応温度が160℃の場合において、接触時間約8.7秒での一酸化炭素転化率は、触媒層が全て第1触媒の比較構成Bで約93.9%、触媒層が全て第2触媒の比較構成Cで約79.6%、上流側に第1触媒、下流側に第2触媒を用いた本発明構成Aで約99.3%である。図9の比較構成Bと比較構成C間での一酸化炭素転化率の差は、被処理ガスG0がガス#2の場合の図4に示す第1触媒と第2触媒間の比較結果と符号するものであり、この結果だけを見れば、第2触媒を用いるより第1触媒を用いる方が、一酸化炭素転化率が高いのであるから、第1触媒と第2触媒を半々で組み合わせた本発明構成Aでは、比較構成Bより一酸化炭素転化率が低下するものと一見考えられるが(後述するように、比較構成Dではそうなっている。)、実際は、図9に示すように、第2触媒を第1触媒の下流側に配した本発明構成Aの方が、一酸化炭素転化率が高くなっている。これは、上述のように、第1触媒が1%程度以上のCO濃度でCOに被毒し、触媒層の下流側ほど被毒の程度が大きくなり触媒活性が著しく低下する傾向があるため、下流側を第1触媒から第2触媒に変更することで、一酸化炭素転化率が大幅に改善されるのである。同じく第1触媒と第2触媒を半々で組み合わせた比較構成Dでは、接触時間約8.7秒での一酸化炭素転化率は、87.8%と、比較構成Cよりは改善されるものの、比較構成Bよりは悪化している。
【0041】
反応温度が180℃の場合、一酸化炭素転化率がより短い接触時間で飽和するため、接触時間約2.9秒では、本発明構成A、比較構成B及びCの何れも一酸化炭素転化率は略飽和状態であり、本発明構成Aで98.2%、比較構成Bで92.7%、比較構成Cで95.9%となっている。反応温度が180℃の場合も、反応温度が160℃の場合と同様に、本発明構成Aの方が、比較構成B及びCの何れよりも一酸化炭素転化率が改善されている。また、本発明構成Aの方が比較構成B及びCの何れよりも一酸化炭素転化率が改善されるのは、一定の接触時間経過後に現出することから、一酸化炭素変成反応の進行とともに、触媒層の下流側でのCO濃度が上昇するにつれ、本発明の効果が顕著に現れてくるものと推察される。また、当該効果は、接触時間に差があるものの、反応温度が160℃と180℃の何れにおいても同様に発揮される。以上より、上流側に第1触媒、下流側に第2触媒を用いることで、一酸化炭素転化率が大幅に改善されることが明らかとなった。
【0042】
次に、本発明構成Aにおける第1触媒と第2触媒の分量比と一酸化炭素転化率の改善効果の関係について説明する。図9に示す本発明構成Aでは、第1触媒と第2触媒の分量比は1対1であったが、当該分量比を10対1として、第2触媒の分量比を小さくした場合の一酸化炭素転化率の改善効果を確認する。図10に、第1触媒と第2触媒の分量比が10対1の本発明構成Aと、全て第1触媒を用いた比較構成Bの2つの触媒層構成について、一酸化炭素転化率の接触時間(秒)との関係を測定した結果を示す。触媒層の全触媒量は何れも3.3ccで、本発明構成Aの第2触媒の分量は0.3ccである。反応温度160℃の1通りにつき、被処理ガスG0としてガス#2を用いて、測定を行った。尚、第2触媒は白金担持量10wt%のものを使用した。
【0043】
図10より、接触時間が約8.7秒(流速:約20.8cc/min)での一酸化炭素転化率は、比較構成Bで約96.7%であるのに対して、本発明構成Aでは、約98.5%に改善されている。これを変成反応後の一酸化炭素濃度に換算すると、本発明構成Aの場合が0.15%、比較構成Bの場合が0.33%となるため、比較構成Bと比較して本発明構成Aでは、第1触媒と第2触媒の分量比が10対1の場合でも、一酸化炭素濃度が約45%に低減されている。図11に参考例として、比較構成Bにおいて、第1触媒が3.3ccと5ccの場合の一酸化炭素転化率の接触時間(秒)との関係を示す。図11より、第1触媒の量が3.3ccと5ccの場合で、略同じ一酸化炭素転化率となり、第1触媒の量を1.5倍ほど増やしても、接触時間を長くしなければ一酸化炭素濃度が低下しないことが分かる。つまり、比較構成Bでは、一酸化炭素濃度を更に半減させるには、多くの触媒と接触時間を必要とするところ、本発明構成Aでは、僅かな第2触媒の使用で同等以上の効果が得られることが分かる。
【0044】
次に、本発明構成Aにおける第2触媒の白金担持量と一酸化炭素転化率の改善効果の関係について説明する。第2触媒の白金担持量を3wt%とし、第1触媒と第2触媒の分量比が23対10と、28対5の2通りの本発明構成A(前者をA1、後者をA2とする。)と、全て第1触媒を用いた比較構成B(比較構成B1)の3つの触媒層構成について、接触時間9.5秒における一酸化炭素転化率を測定した結果を図12に示す。更に、本発明構成A1,A2で使用した第1触媒よりアルミナの分量を増して強度を増した市販の銅亜鉛系触媒を第1触媒として使用し、第2触媒の白金担持量を1wt%、3wt%、10wt%の3通りとした本発明構成A(白金担持量の小さい順にA3,A4,A5とする。)と、全て当該強度を増した第1触媒を用いた比較構成B(比較構成B2)の4つの触媒層構成について、一酸化炭素転化率の接触時間との関係を測定した結果を図13に示す。本発明構成A1〜A5、比較構成B1及びB2は、触媒層の全触媒量が何れも3.3ccで、第2触媒の分量は、本発明構成A1で1.0cc、本発明構成A2で0.5ccとし、本発明構成A3〜A5で、0.3ccとした。図12及び図13の一酸化炭素転化率の測定において、反応温度160℃の1通りにつき、被処理ガスG0としてガス#2を用いて、測定を行った。
【0045】
図12より、一酸化炭素転化率は、比較構成B1で約96.6%であるのに対して、本発明構成A1,A2では、夫々、約98.7%、約97.3%、であり、何れも比較構成B1より改善されている。これを変成反応後の一酸化炭素濃度に換算すると、本発明構成A1の場合が0.13%、本発明構成A2の場合が0.27%、比較構成B1の場合が0.34%となるため、比較構成B1と比較して、本発明構成A1では、第1触媒と第2触媒の分量比が23対10の場合で、一酸化炭素濃度が約38%に低減され、本発明構成A2では、第1触媒と第2触媒の分量比が28対5の場合で、一酸化炭素濃度が約79%に低減されている。第2触媒の触媒活性は、白金担持量が少ないと低下するが、第2触媒の白金担持量を3wt%とした場合でも、一酸化炭素転化率が改善されることが明らかとなった。
【0046】
更に、図13より、接触時間9.5秒では、一酸化炭素転化率は、比較構成B2で約92.9%であるのに対して、本発明構成A3,A4,A5では、夫々、約93.5%、約93.9%、約97.9%であり、何れも比較構成B1より改善されている。第2触媒の白金担持量が少なくなるか、或いは、第2触媒の総触媒量に対する分量比が小さくなるとと本発明構成A全体での触媒活性が低下して、本発明の効果が低下するが、本発明の効果は、第1触媒と第2触媒の相対的な関係に依存するため、第1触媒自体の触媒活性が低く、第1触媒のCO被毒の程度が大きい場合には、第2触媒の白金担持量が1wt%、第2触媒の総触媒量に対する分量比が10%と小さい場合でも、一酸化炭素転化率の改善効果を奏することが分かる。
【0047】
次に、本発明装置1を実際の固体高分子形燃料電池システムで使用する場合を想定し、本発明装置1の下流側に一酸化炭素選択酸化器を設け、改質ガス中の一酸化炭素濃度を10ppm以下(例えば、5ppm)まで低下させる水素製造装置を構成した場合における、本発明装置1を適用することの効果について検証する。図14に、当該効果を検証するための実験装置の概略構成を模式的に示す。図14に示す実験装置は、図2に示す実験装置の排気管20の下流側に、ドレインタンク(冷却器)21、排気管22、及び、ガスクロマトグラフィー分析装置23に代えて、一酸化炭素選択酸化器24、空気ポンプ25、及び、冷却水ポンプ26を設けて構成される。一酸化炭素変成装置の反応管2から排出される処理済ガスG1は、排気管20を経由して一酸化炭素選択酸化器24に導入される。一酸化炭素選択酸化器24にはアルミナにルテニウム(Ru)が担持された触媒が充填されている。排気管20には、処理済ガスG1に選択酸化用の酸素を添加するための空気ポンプ25が設けられ、更に、一酸化炭素選択酸化器24には、その外周面を冷却するための冷却水ポンプ26が備えられている。図示しないが、排気管20から一酸化炭素選択酸化器24に入る処理済ガスG1は空冷により100℃に冷却される構造になっている。尚、排気管20より上流側の一酸化炭素変成装置とその周辺機器の構成は、図2に示す実験装置と同じであるため、重複する説明は割愛する。
【0048】
本検証実験は、反応管2内に触媒層の構成を、本発明装置1と同様に、上流側に第1触媒、下流側に第2触媒を用いた本発明構成Aと、比較例として、全て第1触媒を用いた比較構成Bの2つの触媒層構成について行った。触媒層の触媒量は何れも3ccで、本発明構成Aでは、第1触媒と第2触媒の分量は同量(1.5cc)とした。反応温度は160℃とした。処理済ガスG1を一酸化炭素選択酸化器24に供給し、一酸化炭素選択酸化器24から排出される処理済ガスG2中の一酸化炭素濃度が5ppmになるように空気ポンプ25の出力を制御した。更に、一酸化炭素選択酸化器24の内部の温度が110℃になるよう、冷却水ポンプ26の制御を行った。一酸化炭素選択酸化器24では、以下の化2に示す選択酸化反応(発熱反応)と同時に、化3に示す水素を消費する反応が生じるため、燃料電池で使われる有効な水素が減少するという問題が生じる。
【0049】
(化2)
2CO+O → 2CO
(化3)
2H+O→ 2H
【0050】
本発明構成Aと比較構成Bの何れにおいても、処理済ガスG2中の一酸化炭素濃度が5ppmになるように空気ポンプ25の出力を制御したため、処理済ガスG1の一酸化炭素濃度に応じて、処理済ガスG1に供給する酸素量に違いが現れ、具体的には、空気ポンプ25の消費電力の差となって現れた。以下の表1に2通りの接触時間について、空気ポンプ25の消費電力を測定した結果を示す。
【0051】
【表1】

【0052】
接触時間が長いほど、ガス量が少なく低負荷となり、消費電力は減少している。特に、接触時間が8.7秒で本発明構成Aの場合には転化率が非常に高いため測定不能な程度の値になっている。これより、本発明装置1を用いることにより、一酸化炭素選択酸化器24での一酸化炭素の燃焼が減少すると同時に、水素の燃焼も大幅に減少していることが分かり、燃料電池発電効率の向上に大きく役立っていることが分かった。また、燃料電池の負荷の大きい状況(接触時間の短い状況)でも消費電力低減に大きな効果のあることが分かった。更に、固体高分子形燃料電池発電システムを構成する機器の中で、一酸化炭素選択酸化器では、触媒上で直接酸化反応(発熱反応)が生じているため、触媒寿命に限界があり、4万時間或いは9万時間の寿命を達成するためには、一酸化炭素選択酸化器の大きさを必要以上に大きくする必要があったが、本発明装置1と併用する構成によれば、反応量が極端に減少するため一酸化炭素選択酸化器の小型化及び低コスト化が可能になる。
【0053】
以下に、本発明装置及び方法の別実施形態につき説明する。
【0054】
〈1〉上記実施形態では、第1触媒として銅亜鉛系触媒(Cu/Zn触媒)、第2触媒としてPt/CeO触媒を想定したが、第1及び第2触媒が、何れも一酸化炭素変成触媒であって、第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性(つまり、二酸化炭素に被毒して触媒活性が低下する性質)を有し、第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さい第1触媒と第2触媒の組み合わせであれば、上記実施形態で例示した触媒以外であっても、本発明の効果を奏し得る。第2触媒として、Pt/CeO触媒以外の触媒、例えば、同じ白金系触媒で担体がセリア(CeO)以外の触媒、或いは、白金以外の貴金属系触媒であっても、第2触媒の方が第1触媒よりCO被毒に対する耐性が高い場合は、本発明の効果を奏し得る。更に、第2触媒層4を一種類の第2触媒で構成するのではなく、複数種の第2触媒を例えば2段以上設けて構成するようにしても構わない。
【0055】
〈2〉本発明の効果を検証する上記実験装置では、第1触媒層3と第2触媒層4の触媒量が合計で5cc以下であったため、第1及び第2触媒層3、4を収容する反応管2は、電気炉或いは恒温層内に設置され、反応管2内の温度が一定温度に制御される場合を説明した。しかし、反応管2を電気炉或いは恒温層内に設置するのではなく、断熱構造として、反応管2に送入される処理前の反応ガスの温度を調整することで、第1触媒層3と第2触媒層4の反応温度を共通に制御する断熱制御を行っても良い。当該断熱制御は、処理能力を増加させるために第1触媒層3と第2触媒層4の各触媒を大量に使用して本発明装置が大型化する場合に適した温度制御方法である。当該断熱制御では、一酸化炭素変成反応が発熱反応であるため、反応管2内の反応温度は下流側ほど高くなり、平衡状態に近づくと温度上昇が飽和してくる。従って、反応管2内の反応温度は、上記実験装置の場合とは異なり、一定温度に維持されることはないが、第1触媒層3を通過した反応ガスは、そのままの温度で第2触媒層4に流入するので、第1触媒層3の下流側の第1触媒と第2触媒層4の上流側の第2触媒について見れば、上記実験装置の場合と同じ状況となっている。従って、第1触媒層3と第2触媒層4の各触媒が大量である場合であっても、第1触媒層3の下流側のCO濃度の高い領域において第1触媒が二酸化炭素に被毒している部分を第2触媒に置き換えて得られる本発明の効果は、上記実験装置の場合と同様である。
【0056】
〈3〉上記実施形態では、第1触媒層3と第2触媒層4は、図1に示すように同じ反応管2の中に形成される場合を想定したが、図15に示すように、第1触媒層3と第2触媒層4を夫々個別の反応管2a,2b内に形成して、2つの反応管2a,2bを直列に接続するのも好ましい実施の形態である。この場合、第1触媒層3と第2触媒層4における反応温度を個別制御するのが容易となる。従って、第1触媒層3と第2触媒層4に対して、夫々に注入される被処理ガスの一酸化炭素濃度及び二酸化炭素濃度に応じた最適な反応温度を個別に調整可能となる。
【0057】
〈4〉上記実施形態では、第1触媒として銅亜鉛系触媒(Cu/Zn触媒)、第2触媒としてPt/CeO触媒を想定したが、第1触媒層3と第2触媒層4に対して、夫々独立に反応温度の制御が可能な構成(例えば、図15に示すような構成)であれば、第1触媒と第2触媒が同じ触媒(例えば、銅亜鉛系触媒)であっても、下流側の第2触媒の反応温度を第1触媒の反応温度より高く設定する制御を行うことで、第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度を、第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくすることが可能となり、本発明の効果を奏し得る。例えば、上流側の第1触媒(銅亜鉛系触媒)の反応温度を160℃に制御し、下流側の第2触媒(銅亜鉛系触媒)の反応温度を200℃以上に制御することで、実現できる。この点は、図6(a)、図7及び図8の実験結果より明らかである。第1触媒と第2触媒に銅亜鉛系触媒を使用する場合、図7及び図8の実験結果を参照すれば、上流側の第1触媒を通過後の処理ガス中の二酸化炭素濃度が高い程、第2触媒の反応温度を高めに設定することで、第2触媒のCO被毒を抑制できることが分かる。また、図7の実験結果より、第2触媒の反応温度は200℃より高温に設定することで、CO被毒が更に抑制されることが分かる。尚、第1触媒と第2触媒を同じ触媒で構成する場合、従来の平衡論的考え方によれば、上述の如く、反応温度が低い方が一酸化炭素の転化には有利であるので、下流側の反応温度を上流側より低く設定するのが一般的であるが、当該触媒が反応生成物である二酸化炭素に被毒する性質を有する場合には、逆に、下流側の反応温度を上流側より高くしてでも、CO被毒を抑制する方が一酸化炭素転化率の改善が図れることになる。
【0058】
下流側の第2触媒の反応温度を第1触媒の反応温度より高く設定する制御を行う上述の別実施形態の効果を確認する実験を以下の要領で行った。反応管2内の触媒層の構成を、本発明装置1と同様に、上流側に第1触媒、下流側に第2触媒を用い、図14に示すような構成で第1触媒と第2触媒の反応温度を夫々独立に制御する本発明構成E及びFと、全て第1触媒を用いた比較構成Bの3つの触媒層構成について、処理済ガスG1中の一酸化炭素濃度を測定した。3つの触媒層構成において第1触媒に銅亜鉛系触媒を用いた。第2触媒には、本発明構成Eでは第1触媒と同じ銅亜鉛系触媒を用い、本発明構成Fでは白金担持量10wt%のPt/CeO触媒を用いた。尚、上記各構成に対して、ガス#2を流量83.4cc/minで供給した。比較構成Bにおける反応温度160℃での処理済ガスG1中の一酸化炭素濃度は1.88vol%であった。これに対して、本発明構成Eにおいて、第1触媒の反応温度を比較構成Bと同じ160℃とした場合の処理済ガスG1中の一酸化炭素濃度は、第2触媒の反応温度220℃で1.45vol%、第2触媒の反応温度250℃で1.33vol%と、比較構成Bより低下した。これより、第1触媒と第2触媒が同じ銅亜鉛系触媒であっても、下流側の第2触媒の反応温度を第1触媒の反応温度より高く設定する制御を行うことで、一酸化炭素転化率の改善されることが明らかとなった。更に、第2触媒を銅亜鉛系触媒からPt/CeO触媒に変えた本発明構成Fでは、第1触媒の反応温度160℃、第2触媒の反応温度220℃での処理済ガスG1中の一酸化炭素濃度は1.01vol%と、第2触媒が銅亜鉛系触媒の本発明構成Eより更に低下した。このことは、第2触媒の反応温度を第1触媒の反応温度より高くした場合においても、第2触媒としてPt/CeO触媒を使用することで、更に一酸化炭素転化率の改善が図れることを示している。
【産業上の利用可能性】
【0059】
本発明は、反応ガス中に含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成装置及び方法に利用可能であり、特に、燃料電池等の燃料源として使用される改質ガス中の一酸化炭素濃度を低下させるのに有用である。
【符号の説明】
【0060】
1: 一酸化炭素変成装置
2: 反応管
3: 第1触媒層
4: 第2触媒層
5: 入口
6: 出口
11〜13: 供給管
14: 混合ガス供給管
15: 気化器
16: 水タンク
17: 水供給管
18: 電気炉
19: マントルヒータ
20,22: 排気管
21: ドレインタンク(冷却器)
23: ガスクロマトグラフィー分析装置
24: 一酸化炭素選択酸化器
25: 空気ポンプ
26: 冷却水ポンプ
G0: 被処理ガス(反応ガス)
G1、G1’: 処理済ガス
G2: 被処済ガス(選択酸化後)

【特許請求の範囲】
【請求項1】
反応ガス中に含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成装置であって、
変成触媒層を少なくとも上流側と下流側の2段に分割して、上流側に第1触媒、下流側に第2触媒を夫々備え、
前記第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性を有し、
前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さいことを特徴とする一酸化炭素変成装置。
【請求項2】
前記第1触媒が銅亜鉛系触媒で、前記第2触媒が貴金属系触媒であることを特徴とする請求項1に記載の一酸化炭素変成装置。
【請求項3】
前記第2触媒が白金系触媒であって、前記第2触媒の担体が酸化セリウムであることを特徴とする請求項2に記載の一酸化炭素変成装置。
【請求項4】
前記第2触媒の体積が前記第1触媒の体積以下であることを特徴とする請求項2または3に記載の一酸化炭素変成装置。
【請求項5】
前記第1触媒と前記第2触媒の反応温度が共通に制御されることを特徴とする請求項1〜4の何れか1項に記載の一酸化炭素変成装置。
【請求項6】
前記第1触媒と前記第2触媒の反応温度が夫々独立に制御されることを特徴とする請求項1〜4の何れか1項に記載の一酸化炭素変成装置。
【請求項7】
前記第1触媒と前記第2触媒が同じ組成及び構造の場合において、前記第1触媒と前記第2触媒の各反応温度を、前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくなるように夫々独立に制御することを特徴とする請求項1に記載の一酸化炭素変成装置。
【請求項8】
前記第1触媒及び前記第2触媒が銅亜鉛系触媒であることを特徴とする請求項7に記載の一酸化炭素変成装置。
【請求項9】
反応ガス中に含まれる一酸化炭素と水蒸気を反応させて二酸化炭素と水素に転化させる一酸化炭素変成方法であって、
変成反応工程を連続する少なくとも2つの変成反応工程に分割し、上流側の第1の変成反応工程で第1触媒を用い、下流側の第2の変成反応工程で第2触媒を用い、
前記第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性を有し、
前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さいことを特徴とする一酸化炭素変成方法。
【請求項10】
前記第1触媒が銅亜鉛系触媒で、前記第2触媒が貴金属系触媒であることを特徴とする請求項9に記載の一酸化炭素変成方法。
【請求項11】
前記第2触媒が白金系触媒であって、前記第2触媒の担体が酸化セリウムであることを特徴とする請求項10に記載の一酸化炭素変成方法。
【請求項12】
前記第2触媒の体積が前記第1触媒の体積以下であることを特徴とする請求項10または11に記載の一酸化炭素変成方法。
【請求項13】
前記第1触媒を通過した反応ガスが温度調整されずに前記第2触媒に送入されることを特徴とする請求項9〜12の何れか1項に記載の一酸化炭素変成方法。
【請求項14】
前記第1触媒と前記第2触媒の反応温度を夫々独立に制御することを特徴とする請求項9〜12の何れか1項に記載の一酸化炭素変成方法。
【請求項15】
前記第1触媒と前記第2触媒が同じ組成及び構造の場合において、前記第1触媒と前記第2触媒の各反応温度を、前記第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、前記第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくなるように夫々独立に制御することを特徴とする請求項9に記載の一酸化炭素変成方法。
【請求項16】
前記第1触媒及び前記第2触媒が銅亜鉛系触媒であることを特徴とする請求項15に記載の一酸化炭素変成方法。
【請求項17】
請求項1〜8の何れか1項に記載の一酸化炭素変成装置と、前記一酸化炭素変成装置で処理されたガス中の一酸化炭素濃度を選択酸化により低下させる一酸化炭素選択酸化器とを備えてなることを特徴とする水素製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−31055(P2012−31055A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2011−149656(P2011−149656)
【出願日】平成23年7月6日(2011.7.6)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成20年度独立行政法人新エネルギー・産業技術総合開発機構「水素製造・輸送・貯蔵システム等技術開発/水素製造機器要素技術に関する研究開発/CO2膜分離法を用いた水素製造装置改質システムの開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(305009898)株式会社ルネッサンス・エナジー・リサーチ (9)
【出願人】(304028726)国立大学法人 大分大学 (181)
【Fターム(参考)】