説明

Fターム[4G169CC26]の内容

Fターム[4G169CC26]に分類される特許

1 - 20 / 112


【課題】高温セラミック膜反応装置の分野では、これらの潜在的な運転上の問題に対処しこれらを克服する新しい膜モジュール及び反応装置システム設計に対するニーズが存在する。
【解決手段】(a)各々反応物質ゾーン、酸化剤ゾーン、該反応物質ゾーンと該酸化剤ゾーンを分離する単数又は複数のイオン輸送膜、反応物質ガス入口領域、反応物質ガス出口領域、酸化剤ガス入口領域及び酸化剤ガス出口領域を含む2つ以上の膜酸化段;(b)各々の膜酸化段対の間に配置されかつ該対の第1の段の反応物質ガス出口領域を該対の第2の段の反応物質ガス入口領域と流動連絡状態に置くように適合されている段間反応物質ガス流路;及び(c)各々、任意の段間反応物質ガス流路又は段間反応物質ガスを収容する任意の膜酸化段の反応物質ゾーンと流動連絡状態にある、単数又は複数の反応物質段間フィードガスライン、を含んで成るイオン輸送膜酸化システムを提供する。 (もっと読む)


【課題】 イオン液体を反応場とする高効率な一酸化炭素除去システムを提供する。
【解決手段】イオン液体もしくは担体及び触媒の表面に吸着又は担持したイオン液体、さらに吸着又は担持したイオン液体を重合して高分子化したイオン性化合物の内、少なくとも1つと一酸化炭素及び水蒸気を含むガスが接触することにより水性ガスシフト反応させて、炭化水素系化合物の水蒸気改質により生じた一酸化炭素を10ppm以下に除去するシステム。 (もっと読む)


【課題】
Oの添加量の増加を必要とすることなく、また、機器を増やすことなく、CO転化性能を向上させることが可能なシフト触媒を提供する。
【解決手段】
燃料ガス中に含まれるCOを触媒によりCOへ転換するシフト触媒において、シフト反応を行うシフト機能を有する成分とシフト反応によって生成したCOを吸着除去するCO吸着機能を有する成分を同一の基材に具備させる。例えば、層状化合物の構成元素をシフト機能成分として層状化合物基材3を構成し、この層状化合物基材3にCO吸着成分4を添加する。 (もっと読む)


【課題】活性及び耐久性の高い一酸化炭素変成触媒を提供する。
【解決手段】銅、亜鉛、アルミニウム及び酸素を含む銅−亜鉛−アルミニウム触媒よりなる一酸化炭素変成触媒であって、前記銅、亜鉛、及びアルミニウムを、それぞれ、CuO、ZnO、及びAl23に換算したときに、CuOが30〜90質量%、ZnOが3〜30質量%、及びAl23が7〜60質量%であり、比表面積が80〜200m2/g、CuO結晶子径が120Å以下、嵩密度が0.6〜1.5g/cm3、細孔容積が0.3〜0.6cm3/g、及び平均細孔半径が45〜120Åであることを特徴とする一酸化炭素変成触媒。 (もっと読む)


【課題】従来の粉末状のCOシフト触媒では使用できなかった部位に使用することができる板状合金製のCOシフト触媒を提供する。
【解決手段】Arイオンビームの照射領域にCu−Znからなるナノ・マイクロ突起が成長・形成されている板状合金を用いたことを特徴とするCOシフト触媒。Cu−Znからなるナノ・マイクロ突起は、その形状が円錐体、円柱を含む横断面丸形または角錐台のものであり、3μm以下の底面外形に対する長さの比であるアスペクト比が5以上であって、真空中で板状のCu−Zn合金表面に多摩エネルギービームを照射することにより、励起した金属原子の表面拡散によって形成される。 (もっと読む)


【課題】燃料電池のように温度の昇降が繰り返される条件でも、活性及び耐久性の高い銅−亜鉛−アルミニウム触媒、その製造方法等を提供する。
【解決手段】銅、亜鉛、アルミニウム及び酸素を含む銅−亜鉛−アルミニウム触媒であって、銅がCuO換算で60〜90質量%、亜鉛がZnO換算で2〜15質量%、及びアルミニウムがAl23換算で5〜30質量%であり、比表面積が50〜200m2/g、CuOの結晶子径が200Å以下、嵩密度が0.6〜2.0g/cm3、細孔容積が0.30〜0.60cm3/g、平均細孔半径が45〜120Åであり、X線回折パターンが、格子面間隔d(Å)2.44±0.05及び2.86±0.05に半値幅1.0度以上のブロードなピークを有し、格子面間隔d(Å)2.48±0.05、2.81±0.05及び2.60±0.05のいずれにもピークを有しない銅−亜鉛−アルミニウム触媒。 (もっと読む)


【課題】CuOおよびCuAlを含むアルミナ担持Cu触媒の触媒活性および熱安定性を向上させる。
【解決手段】Alと、Zr,Ti,Hf,Rfから選択される少なくともいずれか一種の金属成分とを担体として含み、第1焼成温度で焼成して第1中間体を製造し、その後第2焼成温度で焼成して、前記担体にCuOおよびCuAlが担持されている触媒。 (もっと読む)


【課題】炭素系燃料及び酸化剤から水素及び一酸化炭素の混合ガス又は水素リッチガスを製造するとともに、炭素系燃料に含まれる炭素を二酸化炭素として回収する場合において、シフト反応に必要な水蒸気の量を低減し、シフト反応に必要な水蒸気を製造する設備を不要として低コスト化するとともに、熱効率を向上し、二酸化炭素の回収率を向上させる。
【解決手段】炭素系燃料を酸化剤により反応させて生成ガスを発生させるガス化部と、前記生成ガスに含まれる煤塵を回収する脱塵部と、前記生成ガスに含まれる一酸化炭素及び水蒸気を反応させて水素及び二酸化炭素に変換するシフト反応部とを含み、前記ガス化部又は前記ガス化部の下流側に水を供給する水供給部及び微粉砕した鉄鉱石又は石灰石である触媒を供給する触媒供給部を設け、前記脱塵部にて前記煤塵とともに前記触媒を回収して前記ガス化部に還流する煤塵還流部を設けた水素を主成分とするガスの製造装置を用いる。 (もっと読む)


【課題】石炭ガス化プラントにおいて、エネルギーロスを抑制でき、イニシャルコストの低減とシステムの合理化を行うことが可能なシフト触媒、ガス精製方法及びガス精製設備を提供する。
【解決手段】HSを含むガス中のCOをHOと反応させてCOとHへ変換するシフト反応を促進させるシフト触媒であって、少なくともMo及びNiを含む。または、HSを含むガス中のCOをHOと反応させてCOとHへ変換するシフト反応を促進させるシフト触媒であって、少なくともMo及びポーリングの電気陰性度が1.8〜2.0の金属元素を含む。Al、TiO、及びZrOの中から選ばれる1種以上の無機酸化物を含むのが好ましい。 (もっと読む)


【課題】 一酸化炭素変成装置の一酸化炭素濃度転化率を変成触媒の使用量を増加させずに向上させる。
【解決手段】 変成触媒層を少なくとも前後2段に分割して、上流側に第1触媒、下流側に第2触媒を夫々備え、第1触媒が、供給される反応ガス中の一酸化炭素濃度及び反応温度が一定の場合において、当該供給される反応ガス中の二酸化炭素濃度が高い程、一酸化炭素転化率が低下する特性を有し、第2触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度が、第1触媒における供給される反応ガス中の二酸化炭素濃度の増加に対する一酸化炭素転化率の低下の程度より小さくなる第1触媒と第2触媒の組み合わせを用いる。 (もっと読む)


【課題】水添脱硫器を適温に保ち、さらに水添脱硫器が一体型となったコンパクトな水素生成装置およびそれを備えた燃料電池システムを提供すること。
【解決手段】原料ガス中に含まれる硫黄化合物を硫化水素に変換するように構成された第1触媒層11と硫化水素を吸着するように構成された第2触媒層12を有する水添脱硫器51と、水添脱硫器51を通過した原料ガスを用いて改質反応により水素含有ガスを生成する改質器52と、改質器52に隔壁53を介して隣接するように配設され、改質器52より送出された水素含有ガスが通流する水素含有ガス流路54と、を備え、水添脱硫器51は、水素含有ガス流路54を通流する水素含有ガスにより第1触媒層11及び第2触媒層12の順に加熱されるよう構成されている、水素生成装置。 (もっと読む)


【課題】CO濃度が高い条件で運転されても、充填された触媒の劣化を抑制できるCOシフト反応装置を提供する。
【解決手段】直列接続された複数のシフト反応器22、24、26と、主ガスライン21から分岐して最上流のシフト反応器22をバイパスさせるガス流量を調節する第1の流量調節手段29及び/又は30と、最下流のシフト反応器26から流出されるガスを昇圧して、最上流のシフト反応器22の上流に戻すリサイクルガスライン64と、リサイクルガスの流量を調節する第2の流量調節手段66と、シフト反応用蒸気ミキサー32とを備え、最上流のシフト反応器22の出口部のガス温がシフト反応触媒の耐熱限界温度より低く、かつCOをCOとHにシフトさせる温度以上になるように、前記第1及び第2の流量調節手段により最上流のシフト反応器22に流入するガス流量を調節する。 (もっと読む)


【課題】活性、耐久性ともに優れる水性ガスシフト反応触媒の製造方法を提供すること。
【解決手段】Cu2(CO3)(OH)n〔nは自然数〕で表わされるマラカイトと(Cu、Zn)8-xAlx(OH)16CO2・nH2O〔xおよびnは自然数〕で表わされるハイドロタルサイトを含む触媒前駆体を焼成する一酸化炭素転換用触媒の製造方法であって、該触媒前駆体中のハイドロタルサイトの割合を25質量%以下とすることを特徴とする一酸化炭素転換用触媒の製造方法である。 (もっと読む)


【課題】高活性かつ嵩密度の大きい一酸化炭素転化用触媒、同触媒の製造方法、同触媒を用いる一酸化炭素転化方法および同一酸化炭素転化方法による燃料電池システム用水素の製造方法を提供すること。
【解決手段】ZnAl24および酸化銅を含み、酸化銅成分30〜85質量%、亜鉛成分(酸化亜鉛換算)5〜50質量%、およびアルミニウム成分(酸化アルミニウム換算)10〜50質量%であり、比表面積が100〜300m2/g、嵩密度が1.4g/ml以上である一酸化炭素転化用触媒、銅、亜鉛およびアルミニウムを含む金属塩水溶液と塩基性物質を含む水溶液とを混合して沈殿物を生成させる沈殿工程、該沈殿物の洗浄工程、乾燥工程、焼成工程および成型工程を含む触媒の製造方法において、沈殿工程を温度15〜50℃、pH9.5〜12で実施することを特徴とする一酸化炭素転化用触媒の製造方法、同触媒を用いる一酸化炭素転化方法および同一酸化炭素転化方法による燃料電池システム用水素の製造方法である。 (もっと読む)


パラジウムを含む触媒製品ならびに関連する調製方法および使用方法を開示する。開示されるのは、基質上に形成される第1の触媒層であって、セリアを含まない酸素貯蔵成分に含浸させたパラジウムと、耐火性金属酸化物に含浸させた白金とを含む第1の触媒層と、セリアを含有する酸素貯蔵成分に含浸させた白金およびロジウムを含む、第1の触媒層上に形成される第2の触媒層とを含む触媒製品である。触媒製品のパラジウム成分は、他の白金族金属成分と比較してより高い割合で存在する。触媒製品は、特に、リッチなエンジン運転条件下で、排ガス中の一酸化炭素の変換率の向上を提供する。 (もっと読む)


水性ガスシフト反応によって、一酸化炭素、水素および水を含有するガス混合物から水素の豊富なガスを生成するため、および酸化反応によって、低い反応温度で空気から一酸化炭素を除去するために使用できる、担持されたモノリス型金(Au)触媒を製造する方法が記載されている。ウォッシュコートされたモノリス上に高分散された金触媒を製造する方法およびジルコニア(ZrO2)、酸化ランタン(La23)、または酸化マグネシウム(Mnxy)などの第3の金属酸化物の添加によるモノリス触媒担体の安定化のための方法。触媒担体および/またはウォッシュコートは、アルファ酸化鉄(α−Fe23)、酸化セリウム(CeO2)、ZrO2、ガンマアルミナ(γ−Al23)、またはそれらの組合せなどの様々な遷移金属酸化物を含んでもよい。
(もっと読む)


放射状の管状反応器に挿入するための触媒キャリアであって、管を画定する有孔内壁、有孔外壁、環状容器を閉鎖する上面、および環状容器を閉鎖する底面を有する、使用時に触媒を保持するための環状容器;環状容器の内壁によって形成された前記管の底部を閉鎖する面;前記容器の底面の位置、または底面に近い位置から、シールの位置よりも下方の位置へ、環状容器の有孔外壁から上方に延在する覆い;および、上面、または上面の近くに配置され、前記覆いの外面を超える長さで前記容器から延在するシール、を含む触媒キャリア。 (もっと読む)


【課題】改質率を高くし得る改質器を提供する。
【解決手段】炭化水素系化合物を含む原料ガスから水素を含む改質ガスへ改質する改質器1であって、原料ガスを改質するための触媒が担持された平板2と、原料ガスを改質するための触媒が担持されかつ複数の孔3dが形成された波板3を有する。平板2と波板3が重ね合わせられて巻き回される。原料ガス及び/又は改質ガスが平板2と波板3の巻き回し中心側に供給可能な入口5eと、平板2と波板3の巻き回しの外周側において排出可能な出口6eとを有する。 (もっと読む)


下記式(I)により表されるペロフスカイト:AA’(1−x)(1−y)B’3−δ[式中、AおよびA’は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Thを含むランタニド系列およびアクチニド系列の三価希土類元素から選択された少なくとも一種の元素を表し、Bは、Sc、および、Al、Ga、Inを含むがそれらに限定されないIIIA族元素から選択された少なくとも一種の元素を表し、B’は、遷移金属から選択されるが、Ni、Cu、Co、Fe、Mn、Pt、Pd、Rh、Ru、Ir、Ag、Auに限定されない少なくとも一種の元素であり、x=0〜1、貴金属に対して0≦y≦0.2、貴金属以外の遷移金属に対して0≦y≦0.5、そして、δは、酸素欠損量を表す。]が、ここに開示されている。さらに、ペルフォスカイトの調製のための低温プロセスおよびその使用がここに開示されている。 (もっと読む)


【課題】基本的に第1媒体からなる水素発生器を提供する。
【解決手段】本水素発生器は改質ゾーンと、予熱ゾーンと、熱源とを備える。改質ゾーンは改質触媒を収容し、水素生成原料の水蒸気改質反応を実行して水素を生成するために使用される。該熱源は熱を該予熱ゾーンと該改質ゾーンとに提供し、それにより該水素生成原料が先ず該予熱ゾーンで予熱され、次に該改質ゾーンで該水蒸気改質反応を行う。該改質ゾーンと該予熱ゾーンとは約0.5mm以上の最短距離だけ約60W/m-K以上の熱伝導率(K)を有する該第1媒体によって分離されている。 (もっと読む)


1 - 20 / 112