説明

位置計測システムおよび位置計測方法

【課題】 掘進機の位置および向きを迅速に計測できる位置計測システムおよび位置計測方法を提供することができる。
【解決手段】 本発明は、掘進機の位置および向きの計測に利用される位置計測システムであって、掘進機が地中に形成した構造物に沿って掘進機の進行方向の後方に連なって配置される複数の撮像手段と、掘進機の後部および撮像手段の後部に固定されたターゲット部材と、撮像手段に固定されたターゲット部材を撮像するように配置され、位置および向きが既知の基準撮像手段と、掘進機の位置および向きを算出する位置算出手段とを備え、ターゲット部材は、立体的な位置関係を有する4つ以上の撮像ターゲットを有し、撮像手段は掘進機の進行方向の直前に位置するターゲット部材を撮像し、位置算出手段は撮像手段および基準撮像手段が撮像したターゲット部材の画像データと基準撮像手段の位置および向きとに基づいて掘進機の位置および向きを算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地中を掘進する掘進機の位置および向きの計測に利用される位置計測システムおよび位置計測方法に関する。
【背景技術】
【0002】
地中に上下水道や道路などを設けるにあたり、地上への影響が少ない工法として、地中を掘り進む掘進機を用いる推進工法やシールド工法などが知られている。これらの工法においては、管路やトンネルを所定の計画線に沿って形成するため、掘進機の位置および向きを精度良く計測することが求められている。
【0003】
掘進機の位置および向きを計測する手段として、単体で測距および測角を行うトータルステーションを用いる方法が知られている(たとえば、特許文献1参照)。この特許文献1に記載の発明では、吊り下げ型の測量器械設置用台を利用して、トータルステーションを水平状態に保持している。そして、水平状態に保たれた複数のトータルステーションが、互いに視準可能なように管路に沿って配置されている。特許文献1に記載の発明では、これらのトータルステーションが、坑口側から順次計測を行い、最も掘進機側に配置されたトータルステーションが掘進機の計測を行う。そして、これらのトータルステーションの計測結果に基づいて、所定の演算処理を行うことにより、掘進機の位置計測を行っている。
【特許文献1】特開2006−133213号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、トータルステーションは、測距および測角を行うことにより、1度の計測で計測対象の位置を測ることができるものである。このトータルステーションを用いて掘進機の向きを計測する場合には、掘進機に設けられた複数の視準点の位置計測を行う。そして、これらの視準点の位置関係に基づいて、所定の演算処理を行うことで、掘進機の向きの算出を行う。しかしながら、トータルステーションが、1回に計測できる点は、1点のみであり、複数点を同時に計測することはできない。したがって、上記特許文献1に記載の発明のようにトータルステーションを用いると、掘進機の向きの計測には複数回の計測作業が必要となるため、掘進機の向きの計測に時間がかかるという問題点があった。
【0005】
また、上記特許文献1に記載の発明のようにトータルステーションを用いて計測を行うためには、トータルステーションを水平状態に保つ必要がある。そこで、上記特許文献1に記載の発明では、トータルステーションを水平状態に保持するため、吊り下げ型の測量器械設置用台を用いている。しかしながら、このような吊り下げ型の測量器械設置用台は、掘進機の掘進時などに発生する振動を受けると、振り子のように揺動してしまう。したがって、上記特許文献1に記載の発明では、測量器械設置用台の揺動が収まるまで計測が行えないため、計測作業の迅速な進行が妨げられるという問題点があった。
【0006】
そこで、本発明の課題は、掘進機の位置および向きを迅速に計測できる位置計測システムおよび位置計測方法を提供することである。
【課題を解決するための手段】
【0007】
本発明は、地中を掘進して掘進路に管状の構造物を形成する掘進機の位置および向きの計測に利用される位置計測システムであって、掘進機が地中に形成した構造物に沿って掘進機の進行方向の後方に連なって配置される複数の撮像手段と、掘進機の後部および撮像手段の後部に固定されたターゲット部材と、撮像手段に固定されたターゲット部材を撮像するように配置され、位置および向きが既知の基準撮像手段と、掘進機の位置および向きを算出する位置算出手段と、を備え、ターゲット部材は、立体的な位置関係を有する4つ以上の撮像ターゲットを有し、撮像手段は、掘進機の進行方向の直前に位置するターゲット部材を撮像し、位置算出手段は、撮像手段および基準撮像手段が撮像したターゲット部材の画像データと基準撮像手段の位置および向きとに基づいて、掘進機の位置および向きを算出することを特徴とする。
【0008】
本発明に係る位置計測システムでは、掘進機の後部および撮像手段の後部にターゲット部材が固定されている。この掘進機の進行方向の後方には、複数の撮像手段が連なって配置されており、これらの撮像手段が掘進機の進行方向の直前に位置するターゲット部材を撮像する。また、いずれかの撮像手段に固定されたターゲット部材を撮像するように基準撮像手段が配置されている。この位置計測システムでは、複数の撮像手段および基準撮像手段が同時に撮像を行うことで、撮像時における各ターゲット部材の画像データを得る。そして、これらの画像データに対して演算処理を行うことにより、掘進機の位置および向きを算出することができる。したがって、この位置計測システムでは、1度の撮像作業および演算処理により、掘進器の向きを迅速に計測することができる。
【0009】
さらに、本発明に係る位置計測システムでは、撮像手段がターゲット部材を撮像して演算処理を行うことで、この撮像手段とターゲット部材との相対位置および相対角度が算出される。ここで、ターゲット部材とこのターゲット部材が固定される撮像手段または掘進機との相対位置および相対角度が既知である。したがって、ターゲット部材を介して隣り合う撮像手段同士の相対位置および相対角度が算出される。そして、各撮像手段の相対位置および相対角度を合成して、掘進器の位置および向きが算出される。したがって、この位置計測システムでは、各撮像手段がターゲット部材を撮像できれば、各撮像手段自身の位置や向きに関わらず計測作業を行うことができる。その結果、位置計測システムでは、トータルステーションと異なり、撮像手段を水平状態に安定させる必要がないので、計測作業を迅速に進行させることができる。
【0010】
また、撮像手段は、前方に光を照射する照射手段を有し、撮像ターゲットは、光を反射する反射手段を有する態様とすることができる。この位置計測システムによれば、撮像手段は、照射手段により前方の撮像ターゲットに向けて光を照射して、反射手段を有する撮像ターゲットからの光の反射を撮像することができる。このようにして、位置計測システムは、撮像ターゲットをより確実に撮像して、掘進機の位置および向きを精度良く計測することができる。
【0011】
また、撮像ターゲットは、自ら発光する自発光手段を有する態様とすることができる。この位置計測システムによれば、撮像ターゲットから周囲に照射される光が撮像手段および基準撮像手段に入射することとなる。したがって、この位置計測システムでは、撮像手段および基準撮像手段がより確実に撮像ターゲットを撮像できるので、掘進機の位置および向きを精度良く計測することができる。
【0012】
また、掘進機に後続する複数の推進管と、複数の推進管内に連続して配置されたレール部材と、撮像手段に設けられ、レール部材に沿って撮像手段を移動させるレール移動手段と、をさらに備える態様とすることができる。この位置計測システムによれば、急な曲線形状の管路などにおいて、撮像ターゲットが撮像手段の撮像可能範囲から外れてしまった場合でも、撮像ターゲットを撮像可能な位置まで撮像手段を容易に移動させることができる。したがって、この位置計測システムでは、状況に応じて、各撮像装置を容易に再配置することができる。また、この位置計測システムによれば、撮像手段を回収する際に、レール部材に沿って坑口まで撮像手段を移動させることで、撮像手段を容易に回収することができる。
【0013】
他方、上記課題を解決した本発明に係る位置計測方法は、地中を掘進して掘進路に管状の構造物を形成する掘進機の位置および向きの計測に利用される位置計測方法であって、掘進機が地中を掘進して構造物が形成され、掘進機の進行方向の後方に連なるように掘進路に沿って複数の撮像手段が配置され、位置および向きが既知の基準撮像手段が配置されて、掘進機の位置および向きを計測するにあたり、撮像手段が、掘進機の進行方向の直前に位置する撮像手段の後部および掘進機の後部に固定され、立体的な位置関係を有する4つ以上の撮像ターゲットを有するターゲット部材を撮像し、基準撮像手段が、撮像手段の後部に固定されたターゲット部材を撮像して、位置算出手段が、撮像手段および基準撮像手段が撮像したターゲット部材の画像データと基準撮像手段の位置および向きとに基づいて、掘進機の位置および向きを算出することを特徴とする。
【発明の効果】
【0014】
本発明によれば、掘進機の位置および向きを迅速に計測できる位置計測システムおよび位置計測方法を提供することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の位置計測システムに係る第1の実施形態について、図面を参照しながら説明する。なお、図面の説明においては、同一または相当要素には同一の符号を付し、重複する説明を省略する。
【0016】
本実施形態の位置計測システムは、地中を掘進する掘進機の位置および向きの計測を行うものである。本実施形態においては、掘進機に後続して地中に圧入される推進管により掘進機を掘進させる推進工法を行う工事に対して、位置計測システムを適用した場合について説明する。また、本実施形態における推進工法は、掘削機が掘削した土砂を泥水と攪拌することで流動化させ、配管を通して地上へ排出する泥水式の推進工法である。なお、以下の説明において、掘進機の進行方向を前方、進行方向の反対方向を後方と呼ぶ。
【0017】
図1は、第1の実施形態に係る位置計測システムを示す概略図である。図1に示すように、掘進機1の後方には、掘進機1の直径とほぼ同じ直径を有する推進管3が連結されている。この推進管3の後方には、推進管3と同じ直径を有する推進管4および推進管5が連結されている。これらの推進管3,4,5が、地中に順次圧入されることで、先頭に位置する掘進機1が地中を掘進する。推進管3,4,5は、掘進機1が掘進した掘進路に沿って管路を形成する。
【0018】
推進管3内には、撮像手段として機能する撮像機10が前方の掘進機1を撮像可能なように配置されている。同様に、推進管4,5内には、撮像機20,30が直前の撮像機10,20をそれぞれ撮像可能なように配置されている。また、撮像機30の後方には、管路入口を介して撮像機30を撮像する基準撮像機40が配置されている。この基準撮像機40は、位置および向きが固定された状態で管路の外に設置されている。
【0019】
また、掘進機1の後部には、棒状のターゲット部材2が固定されている。撮像機10の後部には、ターゲット部材2と同じ構造のターゲット部材11が固定されている。同様に、撮像機20,30の後部には、ターゲット部材21,31がそれぞれ固定されている。また、基準撮像機40の後部には、ターゲット部材41が固定されている。
【0020】
基準撮像機40に固定されたターゲット部材41は、管路の外に設置された光波測量機(トータルステーション)6などの測量手段によって計測され、基準撮像機40の位置および向きが予め算出されている。この基準撮像機40の位置および向きは、掘進機1の位置および向きの計測を行う際の基準となる。
【0021】
図2は、推進管内に設置された撮像機を示す斜視図である。図2に示すように、推進管3内には、推進管3の延在方向に沿って排泥管13および送泥管14が設けられている。排泥管13および送泥管14は、掘進機1に接続され、掘進機1から地上まで配管されている。排泥管13は、掘進機1が撹拌した土砂及び泥水を地上に排出するための配管である。また、送泥管14は、土砂と撹拌するための泥水を掘進機1に供給するための配管である。
【0022】
排泥管13、送泥管14、および推進管3は、それぞれ掘進機1に連結している。したがって、排泥管13、送泥管14、および推進管3は、掘進機1の掘進と共に地中を前進することとなる。同様に、推進管3に連結する推進管4、推進管4に連結する推進管5も、掘進機1の掘進と共に地中を前進する。
【0023】
推進管3の中央には、排泥管13および送泥管14に跨設された台状のブラケット15が配置されている。このブラケット15の上には、撮像機10が前方を撮像可能なように固定されている。この撮像機10は、排泥管13、送泥管14および推進管3と共に前進することとなる。したがって、撮像機10は、管路の向きや曲がり具合に関わらず推進管3のほぼ中央に位置することとなる。同様に、撮像機20,30は、推進管4,5の中央にそれぞれ設置されている。
【0024】
撮像機10は、レンズ10aを有している。このレンズ10aの周りには、環状のリングストロボ10bが設けられている。このリングストロボ10bは、撮像機10の前方に光を照射する照射手段として機能する。このように、撮像機10は、照射手段としてリングストロボ10bを用いているので、光を照射した際に、画像に影が映りにくくなり、より鮮明な画像を得ることができる。
【0025】
また、撮像機10に固定されたターゲット部材11の右側方には、撮像ターゲットとして機能する円形の反射板11aが配置されている。同様に、ターゲット部材11の上方には、反射板11bが配置され、ターゲット部材11の左側方には、反射板11cが配置されている。ターゲット部材11の後方には、反射板11dが配置されている。この反射板11dは、他の反射板11a〜11cと比べて表面積が大きくされている。これらの反射板11a〜11dとしては、球形ガラスビーズやプリズムが平面的に配置された回帰反射素材を用いることが好ましい。これらの反射板11a〜11dは、任意の3つの撮像ターゲットが規定する面以外の場所に残り1つの撮像ターゲットが位置するように正確に位置関係を定められている。
【0026】
また、ターゲット部材11は、反射板11a〜11dの位置関係を維持するために、炭素繊維強化プラスチックやインバー鋼などの剛性が高く、温度変化による変形が微小である素材により形成されている。また、掘進機1、撮像機20,30、および基準撮像機40に固定されたターゲット部材2,21,31,41は、ターゲット部材11と同じ構成を有している。
【0027】
図3は、撮像機による掘進機の撮像状況を示す斜視図である。図2および図3に示すように、撮像機10は、前面のレンズ10aを通して、所定の撮像範囲Sの撮像を行うことができる。この撮像機10は、掘進機1に固定されたターゲット部材2が撮像範囲Sに含まれるように配置されている。
【0028】
撮像機10は、撮像を行う際に、レンズ10aの周りに位置するリングストロボ10bにより撮像範囲Sに光を照射する。このとき、ターゲット部材2が有する反射板2a〜2dは、リングストロボ10bが照射する光を反射するので、撮像機10は、反射板2a〜2dを鮮明に撮像することができる。また、撮像機20,30および基準撮像機40は、撮像機10と同じ構成および機能を有している。
【0029】
図4は、撮像機および基準撮像機と接続された演算装置を示す説明図である。図4に示すように、演算装置7は、ケーブル8を介して撮像機10に接続されている。演算装置7は、ケーブル8を通じて、撮像機10が撮像した掘進機1のターゲット部材2を含む画像データを取得する。また、演算装置7は、ケーブル8を介して撮像機20,30および基準撮像機40に接続されている。演算装置7は、ケーブル8を通じて、撮像機20,30および基準撮像機40がそれぞれ撮像した撮像機10,20,30のターゲット部材11,21,31を含む画像データを取得する。
【0030】
また、演算装置7は、ケーブル8を介して光波測量機6に接続されている。演算装置7は、ケーブル8を通じて、光波測量機6による基準撮像機40のターゲット部材41の計測結果を取得する。演算装置7は、光波測量機6の計測結果に基づいて、基準撮像機40の位置および向きを算出している。
【0031】
演算装置7は、取得したターゲット部材2,11,21,31の画像データと基準撮像機40の位置および向きとに基づいて、掘進機1の位置および向きを算出する位置算出手段として機能する。また、このケーブル8には撮像機の操作を行うためのコントローラが接続されている。このコントローラは、撮像機10,20,30および基準撮像機40を操作して同時に撮像を行わせることができるものである。
【0032】
次に、以上の構成を有する位置計測システムによる掘進機1の位置および向きの算出方法について図面を参照して説明する。図5は、掘進機のターゲット部材と撮像機との位置関係を示す説明図である。
【0033】
図5に示すように、撮像機10が掘進機1のターゲット部材2を撮像した画像データPには、リングストロボ10bの光を反射する反射板2a〜2dが鮮明に映ることとなる。この画像データPにおける反射板2aの位置座標を(x,y)として表す。同様に、反射板2b〜2dの位置座標をそれぞれ(x,y)、(x,y)、(x,y)として表す。なお、画像データPは、正確に反射板2a〜2dの位置を取得するために1画素未満の精度で撮像されている。
【0034】
また、掘進機1に固定されたターゲット部材2は、ターゲット部材2の中心を座標原点とする座標系K1を形成している。この座標系K1における反射板2aの位置座標を(X,Y,Z)として表す。同様に、座標系K1における反射板2b,2c,2dの位置座標をそれぞれ(X,Y,Z)、(X,Y,Z)、(X,Y,Z)として表す。
【0035】
また、ターゲット部材2を撮像する撮像機10は、レンズ10aの中心を座標原点とする座標系K2を形成している。座標系K2の原点の撮像機10の座標系K1における位置座標を(X,Y,Z)として表す。また、撮像機10におけるレンズ10aの焦点距離をcとして示し、画像データPにおけるレンズ10aの歪みなどの光学的誤差をΔx,Δyとして示す。
【0036】
この場合、画像データPにおける反射板2a〜2dの位置座標、座標系K1における反射板2a〜2dの位置座標、および座標系K1における撮像機10の位置座標の関係は、写真測量における共線条件に基づいて下記の式(1)で表される。なお、式(1)に示されるm11〜m33は、座標系K1におけるX軸,Y軸,Z軸の向きをそれぞれ座標系K2におけるX軸,Y軸,Z軸の向きと合わせる回転行列Mの各要素であり、後述する式(2)〜式(4)によって示される。
【数1】

【0037】
図6は、座標系K1の向きと座標系K2の向きとの関係を示す説明図である。以下、図6を参照して、座標系K1におけるX軸,Y軸,Z軸の向きと座標系K2におけるX軸,Y軸,Z軸の向きとの関係について説明する。まず、座標系K1におけるX軸,Y軸,Z軸の向きを基準として、向かって右側に水平方向(Z軸をX軸に重ねる方向)に角度ωだけ回す。次に、上方向(Z軸をY軸に重ねる方向)に角度φだけ回す。さらに、反時計方向(X軸をY軸に重ねる方向)に角度κだけ回す。このようにして、座標系K1におけるX軸,Y軸,Z軸の向きと座標系K2におけるX軸,Y軸,Z軸の向きとが一致するものとする。このとき、角度ωを水平角、角度φを鉛直角、角度κをカメラ回転角と呼ぶ。この場合、座標系K1におけるX軸,Y軸,Z軸の向きと座標系K2におけるX軸,Y軸,Z軸の向きとの関係は、水平角ω,鉛直角φ,カメラ回転角κを用いて下記の式(2)で表される。
【数2】

【0038】
回転行列Mは、回転行列Mκ,Mφ,Mωの3つの行列の積として求められ、回転行列Mの要素m11〜m33は、下記の式(3)によって表される。
【数3】

【0039】
ここで、下記の式(4)に示すように、回転行列Mの各要素m11〜m33をM,M,Mの3つの行列で表す。この場合、下記の式(5)に示すように、6つの拘束条件が与えられることとなる。
【数4】

【0040】
以上の式(2)〜式(5)から示された回転行列Mの各要素m11〜m33を式(1)に代入して連立方程式を解くことにより、座標系K1を基準として、撮像機10の位置座標(X,Y,Z)および回転角成分(ω,φ,κ)を示すことができる。このようにして、座標系K1と座標系K2との関係を求めることができる。
【0041】
また、上述した算出方法を適用することで、演算装置7は、撮像機10のターゲット部材11が形成する座標系を基準にして、撮像機20の位置座標および回転角成分を示すことができる。同様に、演算装置7は、撮像機30の位置座標および回転角成分を撮像機20のターゲット部材の座標系を基準にして示すことができる。そして、演算装置7は、撮像機30のターゲット部材31が形成する座標系を基準にして、位置および向きが既知である基準撮像機40の位置座標および回転角成分を示すことができる。その結果、演算装置7は、各座標系間における位置座標および回転角成分の関係を求めることができる。したがって、演算装置7は、基準撮像機40の位置座標および回転角成分を基準とした現場の座標系における掘進機1の位置および向きを算出することができる。
【0042】
以上のような構成の位置計測システムによれば、撮像機10,20,30および基準撮像機40が1回の作業で撮像した画像データに基づいて、演算装置7が掘進機1の位置および向きを算出する。したがって、この位置計測システムでは、掘進機1の位置の計測および掘進機1の向きの計測を迅速に行うことができる。さらに、この位置計測システムでは、撮像機10,20,30および基準撮像機40が継続的に撮像を行うことで、掘進機1の位置および向きの計測をほぼリアルタイムで行うことができる。
【0043】
また、この位置計測システムによれば、撮像機10,20,30は、掘進機1の進行方向における直前のターゲット部材2,11,21,31をそれぞれ撮像可能であれば、位置や向きに関わらず掘進機1の位置および向きの計測を行うことができる。したがって、この位置計測システムでは、撮像機10,20,30の位置および向きを安定させる必要がなく、トータルステーションなどを用いる場合と比べて、計測作業を迅速に進行させることができる。
【0044】
また、この位置計測システムによれば、トータルステーションなどの精密機器を用いることなく、簡素な構成で掘進機1の位置および向きを計測することができ、耐環境性の高い構成とすることができる。さらに、この位置計測システムによれば、管路内に作業員が入れない小口径の配管工事などにおいても、掘進機1の位置および向きを好適に計測することができる。
【0045】
次に、本発明の位置計測システムにおける第二の実施形態について図面を参照して説明する。第二の実施形態における位置計測システムは、推進管内に撮像機が固定されている代わりに、推進管内に撮像機が移動可能に取り付けられている点で第1の実施形態と異なる。図6は、推進管内に移動可能に取り付けられた撮像機を示す斜視図である。
【0046】
図7に示すように、推進管50内には、推進管50の延在方向に沿って排泥管51および送泥管52が設けられている。また、推進管50の内面には、推進管50に沿って延在するレール53,54が設けられている。これらのレール53,54には、レール移動手段として機能する走行装置55,56が取り付けられている。走行装置55,56は、内部に複数のローラを有し、これらのローラを介してレール53,54に吊り下げられている。
【0047】
また、走行装置55,56の下方には、撮像機60を載置するブラケット57が固定されている。この撮像機60は、ケーブルを介して外部の演算装置およびコントローラと接続されている。このコントローラには、走行装置55,56が配線を介して接続されている。走行装置55,56は、コントローラの出力に応じて、レール53,54に沿って前後に移動する。このような構成により、第二の実施形態における位置計測システムでは、推進管50内に撮像機60をレール53,54に沿って移動可能に取り付けることができる。
【0048】
この位置計測システムによれば、直前の撮像機または掘進機が撮像機60の撮像範囲から外れてしまった場合でも、直前の撮像機または掘進機を撮像可能な位置まで撮像機60を推進管50に沿って容易に移動させることができる。また、この位置計測システムによれば、撮像機60を回収する際に、レール53,54に沿って管路の入口まで撮像機60を移動させることで撮像機60を容易に回収することができる。
【0049】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。たとえば、上記実施形態では、位置計測システムを推進工法に対して適用したが、推進工法以外のシールド工法などに対しても好適に適用することができる。
【0050】
また、ターゲット部材は、棒状のものとしたが、四面体や球などの立体形状であっても良く、板状部材と棒状部材とを組み合わせたものであっても良い、ターゲット部材は状況に応じて適切な形状および大きさのものが用いられる。
【0051】
また、掘進機に固定されるターゲット部材の形状と撮像機に固定されるターゲット部材の形状とは同じ構造としたが、形状が既知であれば、掘進機に適した形状や撮像機に適した形状を別々に採用しても良い。
【0052】
また、撮像機に前方に光を照射するリングストロボを設けると共に、撮像ターゲットとして円形の反射板を用いているが、撮像ターゲットとしてLED(Light Emitting Diode)などの自ら発光する自発光手段を用いても良い。
【0053】
また、撮像ターゲットの表面積に余裕がある場合には、撮像ターゲットとして機能する反射手段または自発光手段の縁を黒くすることにより、撮像ターゲットをより鮮明に撮像できるようにしても良い。
【0054】
また、光波測量機がケーブルを介して演算装置に接続されているが、光波測量機が演算装置に接続されていなくても良い。この場合、光波測量機の計測結果を演算装置に手動で入力するなどにより、基準撮像機の位置および向きを予め算出することができる。
【0055】
また、撮像機を管路に沿って移動させるために推進管内にレールを設けたが、推進管に沿って延在する送泥管および排泥管をレールとして利用しても良い。
【0056】
また、演算装置では、撮像機と直前のターゲット部材との距離や向きの関係を既知のものとして演算を行っても良い。この場合、演算装置は、演算処理量を軽減することができるので、掘進機の位置および向きの算出を迅速に行うことができる。
【図面の簡単な説明】
【0057】
【図1】第1の実施形態に係る位置計測システムを示す概略図である。
【図2】推進管内に設置された撮像機を示す斜視図である。
【図3】撮像機による掘進機の撮像状況を示す斜視図である。
【図4】撮像機および基準撮像機と接続された演算装置を示す説明図である。
【図5】掘進機のターゲット部材と撮像機との位置関係を示す説明図である。
【図6】座標系K1の向きと座標系K2の向きとの関係を示す説明図である。
【図7】推進管内に移動可能に取り付けられた撮像機を示す斜視図である。
【符号の説明】
【0058】
1…掘進機、2,11,21,31,41,61…ターゲット部材、3,4,5,50…推進管、6…光波測量機、7…演算装置(位置算出手段)、8…ケーブル、10、20,30,60…撮像機(撮像手段)、13,51…排泥管、14、52…送泥管、15,57…ブラケット、40…基準撮像機(基準撮像手段)、53,54…レール(レール部材)、55,56…走行装置(レール移動手段)、P…画像データ。





【特許請求の範囲】
【請求項1】
地中を掘進して掘進路に管状の構造物を形成する掘進機の位置および向きの計測に利用される位置計測システムであって、
前記掘進機が地中に形成した前記構造物に沿って前記掘進機の進行方向の後方に連なって配置される複数の撮像手段と、
前記掘進機の後部および前記撮像手段の後部に固定されたターゲット部材と、
前記撮像手段に固定された前記ターゲット部材を撮像するように配置され、位置および向きが既知の基準撮像手段と、
前記掘進機の位置および向きを算出する位置算出手段と、を備え、
前記ターゲット部材は、立体的な位置関係を有する4つ以上の撮像ターゲットを有し、
前記撮像手段は、前記掘進機の進行方向の直前に位置する前記ターゲット部材を撮像し、
前記位置算出手段は、前記撮像手段および前記基準撮像手段が撮像した前記ターゲット部材の画像データと前記基準撮像手段の位置および向きとに基づいて、前記掘進機の位置および向きを算出することを特徴とする位置計測システム。
【請求項2】
前記撮像手段は、前方に光を照射する照射手段を有し、
前記撮像ターゲットは、前記光を反射する反射手段を有する請求項1に記載の位置計測システム。
【請求項3】
前記撮像ターゲットは、自ら発光する自発光手段を有する請求項1に記載の位置計測システム。
【請求項4】
前記掘進機に後続する複数の推進管と、
前記複数の推進管内に連続して配置されたレール部材と、
前記撮像手段に設けられ、前記レール部材に沿って前記撮像手段を移動させるレール移動手段と、をさらに備える請求項1〜3のうちいずれか一項に記載の位置計測システム。
【請求項5】
地中を掘進して掘進路に管状の構造物を形成する掘進機の位置および向きの計測に利用される位置計測方法であって、
前記掘進機が地中を掘進して前記構造物が形成され、前記掘進機の進行方向の後方に連なるように前記構造物に沿って複数の撮像手段が配置され、位置および向きが既知の基準撮像手段が配置されて、前記掘進機の位置および向きを計測するにあたり、
前記撮像手段が、前記掘進機の進行方向の直前に位置する前記撮像手段の後部および前記掘進機の後部に固定され、立体的な位置関係を有する4つ以上の撮像ターゲットを有するターゲット部材を撮像し、前記基準撮像手段が、前記撮像手段の後部に固定されたターゲット部材を撮像して、位置算出手段が、前記撮像手段および前記基準撮像手段が撮像した前記ターゲット部材の画像データと前記基準撮像手段の位置および向きとに基づいて、前記掘進機の位置および向きを算出することを特徴とする位置測定方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−198329(P2009−198329A)
【公開日】平成21年9月3日(2009.9.3)
【国際特許分類】
【出願番号】特願2008−40530(P2008−40530)
【出願日】平成20年2月21日(2008.2.21)
【出願人】(000001373)鹿島建設株式会社 (1,387)
【Fターム(参考)】