説明

偏光板一体型光学補償フィルム及び液晶表示装置

【課題】簡易な構成で、表示品位のみならず、視野角特性が改善された液晶表示装置を提供する。また、特にIPS型液晶表示装置の視野角特性の改善に寄与する偏光板一体型光学補償フィルムを提供する。
【解決手段】長手方向に平行な吸収軸を有する長尺状の偏光膜、式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、厚み方向のレターデーションRthが−300nm〜−40nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜、及び前記偏光膜と前記第2位相差膜との間に、長手方向に実質的に直交する遅相軸を有する長尺状の第1位相差膜を有する長尺状の偏光板一体型光学補償フィルムと、これを用いた液晶表示装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示装置に関し、特に水平方向に配向した液晶分子に略横方向の電界を印加することにより表示を行う、いわゆるインプレーンスイッチング(IPS)モードやフリンジフィールド(FFS)モードの液晶表示装置に関する。また、本発明は、液晶表示装置、特にインプレーンスイッチング(IPS)モードやフリンジフィールド(FFS)モードの液晶表示装置の光学補償に寄与する偏光板一体型光学補償フィルムに関する。
【背景技術】
【0002】
液晶表示装置としては、二枚の直交した偏光板の間に、ネマチック液晶をツイスト配列させた液晶層を挟み、電界を基板に対して垂直な方向にかける方式、いわゆるTNモードが広く用いられている。この方式では、黒表示時に液晶が基板に対して立ち上がるために、斜めから見ると液晶分子による複屈折が発生し、光漏れが起こる。この問題に対して、液晶性分子がハイブリッド配向したフィルムを用いることで、液晶セルを光学的に補償し、この光漏れを防止する方式が実用化されている。しかし、液晶性分子を用いても液晶セルを問題なく完全に光学的に補償することは非常に難しく、画面下方向での諧調反転が抑えきれないという問題を生じていた。
【0003】
かかる問題を解決するため、横電界を液晶に対して印加する、いわゆるインプレーンスイッチングモードやフリンジフィールドモードによる液晶表示装置や、誘電率異方性が負の液晶を垂直配向してパネル内に形成した突起やスリット電極によって配向分割した垂直配向(VA)モードが提案され、実用化されている。近年、これらのパネルはモニター用途に留まらず、TV用途として開発が進められており、それに伴って画面の輝度が大きく向上してきている。このため、これらの動作モードで従来問題とされていなっかった、黒表示時の対角位斜め入射方向での僅かな光漏れが表示品質の低下の原因として顕在化してきた。
【0004】
この色調や黒表示の視野角を改善する手段の一つとして、液晶層と偏光板の間に複屈折特性を有する光学補償材料を配置することがIPSモードにおいても検討されている。例えば、傾斜時の液晶層のレターデーションの増減を補償する作用を有する光軸を互いに直交した複屈折媒体を基板と偏光板との間に配置することで、白表示又は中間調表示を斜め方向から直視した場合の色付きが改善できることが開示されている(特許文献1参照)。また、負の固有複屈折を有するスチレン系ポリマーやディスコチック液晶性化合物からなる光学補償フィルムを使用した方法(特許文献2、3、4参照)や、光学補償フィルムとして複屈折が正で光学軸がフィルムの面内にある膜と複屈折が正で光学軸がフィルムの法線方向にある膜とを組み合わせる方法(特許文献5参照)、レターデーションが二分の一波長の二軸性の光学補償シートを使用する方法(特許文献6参照)、偏光板の保護膜として負のレターデーションを有する膜を使い、この表面に正のレターデーションを有する光学補償層を設ける方式(特許文献7参照)が提案されている。
【0005】
【特許文献1】特開平9−80424号公報
【特許文献2】特開平10−54982号公報
【特許文献3】特開平11−202323号公報
【特許文献4】特開平9−292522号公報
【特許文献5】特開平11−133408号公報
【特許文献6】特開平11−305217号公報
【特許文献7】特開平10−307291号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、提案された方式の多くは、液晶セル中の液晶の複屈折の異方性を打ち消して視野角を改善する方式であるために、直交偏光板を斜めから見た場合の偏光軸交差角度の直交からのズレに基づく光漏れを十分に解決できないという問題がある。また、この光漏れを補償できるとされる方式でも、液晶セルを問題なく完全に光学的に補償することは非常に難しい。さらに、延伸複屈折ポリマーフィルムで光学補償を行うIPSモード液晶セル用光学補償シートでは、複数のフィルムを用いる必要があり、その結果、光学補償シートの厚さが増し、表示装置の薄形化に不利である。また、延伸フィルムの積層には粘着層を用いるため、温湿度変化により粘着層が収縮してフィルム間の剥離や反りといった不良が発生することがあった。
【0007】
本発明は前記諸問題に鑑みなされたものであって、簡易な構成で、表示品位のみならず、視野角特性が改善された液晶表示装置を提供することを課題とする。また、本発明は、液晶表示装置、特にIPS型液晶表示装置の視野角特性の改善に寄与する偏光板一体型光学補償フィルムを提供することを課題とする。
【課題を解決するための手段】
【0008】
上記課題を解決するための手段は以下のとおりである。
(1)
少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜、(B)下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、厚み方向のレターデーションRthが−300nm〜−40nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜、及び前記偏光膜と前記第2位相差膜との間に、(C)長手方向に実質的に直交する遅相軸を有する長尺状の第1位相差膜を有する長尺状の偏光板一体型光学補償フィルム。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
(2)
少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜、(B)下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、厚み方向のレターデーションRthが−300nm〜−40nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜、及び(C)長手方向に実質的に平行な遅相軸を有する長尺状の第1位相差膜を、前記偏光膜、前記第2位相差膜及び第1位相差膜の順で配置した長尺状の偏光板一体型光学補償フィルム。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
(3)
前記第1位相差膜のReが60nm〜200nmであり、第1位相差膜のNz=Rth/Re+0.5で定義されるNz値が0.8を超え1.5以下である(1)又は(2)に記載の偏光板一体型光学補償フィルム。
(4)
少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層及び該液晶層を挟持する一対の基板を含む液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、第2位相差領域の厚み方向のレターデーションRthが−300nm〜−40nmである液晶表示装置。
(5)
少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層及び該液晶層を挟持する一対の基板を含む液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、前記第1位相差領域は、面内のレターデーションReが60nm〜200nmで、Nz=Rth/Re+0.5で定義される第1位相差領域のNz値が0.8を超え1.5以下で、且つ面内のレターデーションReが50nm以下であって、前記第2位相差領域は、下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、且つ前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行である(4)に記載の液晶表示装置。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
(6)
前記第1偏光膜、第1位相差領域、第2位相差領域及び液晶セルが、この順序で配置され、且つ前記第1位相差領域の遅相軸が、第1偏光膜の透過軸に平行である(4)または(5)に記載の液晶表示装置。
(7)
前記第1偏光膜、第2位相差領域、第1位相差領域及び液晶セルが、この順序で配置され、且つ第1位相差領域の遅相軸が、第1偏光膜の透過軸に直交である(4)または(5)に記載の液晶表示装置。
(8)
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向のレターデーションRthが−40nm〜40nmである(4)〜(7)のいずれかに記載の液晶表示装置。
(9)
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向のレターデーションRthが−20nm〜20nmである(4)〜(8)のいずれかに記載の液晶表示装置。
(10)
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚みが60μm以下である(4)〜(9)のいずれかに記載の液晶表示装置。
(11)
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち液晶層に近い側の保護膜がセルロースアシレートフィルム又はノルボルネン系フィルムである(4)〜(10)のいずれかに記載の液晶表示装置。
(12)
前記第1位相差領域又は前記第2位相差領域が前記第1偏光膜に隣接してなる(4)〜(11)のいずれかに記載の液晶表示装置。
(13)
前記液晶セルの一対の基板のうち視認側と反対側の基板により近い位置に、他の膜を介することなく前記第1位相差領域及び前記第2位相差領域が配置されている(4)〜(12)のいずれかに記載の液晶表示装置。
(14)
前記セルロースアシレートフィルムが延伸処理されていることを特徴とする(1)〜(3)のいずれかに記載の偏光板一体型光学補償フィルム。
(15)
前記セルロースアシレートフィルムの分極率異方性Δαが2.5×10−24cm−3以上である置換基が芳香族アシル基であることを特徴とする(1),(2),(3)または(14)に記載の偏光板一体型光学補償フィルム。
(16)
前記セルロースアシレートフィルムのアシル基の総置換度PAが2.4以上3.0以下であり、芳香族アシル基の置換度が0.1以上1.0以下であることを特徴とする(15)に記載の偏光板一体型光学補償フィルム。
(17)
Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする(15)または(16)に記載の偏光板一体型光学補償フィルム。
(18)
前記第2位相差領域は、前記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、前記セルロースアシレートフィルムが延伸処理されていることを特徴とする(5)〜(13)のいずれかに記載の液晶表示装置。
(19)
前記セルロースアシレートフィルムの分極率異方性Δαが2.5×10−24cm−3以上である置換基が芳香族アシル基であることを特徴とする(4)〜(13)または(18)のいずれかに記載の液晶表示装置。
(20)
前記セルロースアシレートフィルムのアシル基の総置換度PAが2.4以上3.0以下であり、芳香族アシル基の置換度が0.1以上1.0以下であることを特徴とする(19)に記載の液晶表示装置。
(21)
Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする(19)または(20)に記載の液晶表示装置。
【発明の効果】
【0009】
本発明の液晶表示装置によれば、正面方向の特性を何ら変更させることなく、斜めの方位角方向から見た場合に2枚の偏光板の吸収軸が90度からずれることから生ずるコントラストの低下を改善することができる。
とくに、少なくとも、第1偏光膜と、第1位相領域と、第2位相領域と、液晶層を一対の基板で挟んだ液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置において、面内のレターデーションReが60nm〜200nmで、Nz値が0.8を超え1.5以下の第1位相差領域と、面内のレターデーションReが50nm以下であって、厚み方向のレターデーションRthが−200nm〜−50nmであり、分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含む第2位相差領域を用い、且つ第1偏光膜の透過軸が黒表示時の液晶分子の遅相軸方向と平行にすることによって、上記効果を一層高めることができる。さらに偏光膜の保護膜のRthを40nm以下とすることによって更なるコントラスト向上を実現することができる。また本発明の偏光板一体型光学補償フィルムでは、分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを第2位相差膜に用いる。当該フィルムは、セルロースアシレートの置換基の種類や水酸基へのアシル置換度の調整や、作製条件の調整により、第2位相差領域に要求される光学特性を一層のみで満たすことができる。従って、当該フィルムを用いることにより、簡易な構成で視野角特性の改善された液晶表示装置を作製することができる。また、当該フィルムは、偏光膜の保護膜として要求される性能を有するので、偏光膜の表面に形成することで、保護膜として機能させることができ、より簡易な構成で、視野角特性の改善された液晶表示装置を作製することができる。
【発明を実施するための最良の形態】
【0010】
以下において、本発明の液晶表示装置の一実施形態及びその構成部材について順次説明する。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
【0011】
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフイルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフイルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレタデーションの値がゼロとなる方向をもつフイルムの場合には、その傾斜角度より大きい傾斜角度でのレタデーション値はその符号を負に変更した後、KOBRA 21ADHまたはWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフイルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレタデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の数式(10)及び数式(20)よりRthを算出することもできる。
数式(10)
【0012】
【数1】

【0013】
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレタデーション値をあらわす。
数式(10)におけるnxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。
数式(20)
Rth=((nx+ny)/2−nz)xd
測定されるフイルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフイルムの場合には、以下の方法によりRth(λ)は算出される。Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHまたはWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHまたはWRが算出する。
上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHまたはWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
【0014】
ここで平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
【0015】
また、Rthの符号は面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して+20°傾斜した方向から波長590nmの光を入射させて測定したレターデーションがReを超える場合を正とし、Reを下回る場合を負とする。但し、|Rth/Re|が9以上の試料では、回転自由台座付きの偏光顕微鏡を用いて、面内の進相軸を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した状態で、偏光板の検板を用いて決定できる試料の遅相軸がフィルム平面に平行にある場合を正とし、また遅相軸がフィルムの厚み方向にある場合を負とする。
【0016】
本明細書において、「平行」、「直交」とは、厳密な角度±10゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±5゜未満であることが好ましく、±2゜未満であることがより好ましい。また、「実質的に垂直」とは、厳密な垂直の角度よりも±20゜未満の範囲内であることを意味する。この範囲は厳密な角度との誤差は、±15゜未満であることが好ましく、±10゜未満であることがより好ましい。また、「遅相軸」は、屈折率が最大となる方向を意味する。さらに屈折率の測定波長は特別な記述がない限り、可視光域のλ=590nmでの値である。
【0017】
本明細書において「偏光板」とは、特に断らない限り、長尺の偏光板及び液晶装置に組み込まれる大きさに裁断された(本明細書において、「裁断」には「打ち抜き」及び「切り出し」等も含むものとする)偏光板の両者を含む意味で用いられる。また、本明細書では、「偏光膜」及び「偏光板」を区別して用いるが、「偏光板」は「偏光膜」の少なくとも片面に該偏光膜を保護する透明保護膜を有する積層体を意味するものとする。
【0018】
偏光板の吸収軸方向および透過軸方向は、例えば偏光光源を利用できる分光光度計を用いて透過率を測定することができる。即ち、偏光板を方位角方向を変えて透過率を測定し、最も透過率が低い場合に光源の偏光に対して直交の配置となっている。一般的な偏光板の場合、偏光子の延伸方向が吸収軸であり、長尺状の偏光板の長手方向が吸収軸である。
【0019】
以下、図面を用いて本発明の実施の形態を詳細に説明する。図1は、本発明の液晶表示装置の画素領域例を示す模式図である。図2及び図3は、本発明の液晶表示装置の一実施形態の模式図である。
[液晶表示装置]
図2に示す液晶表示装置は、偏光膜8、20と、第1位相差領域10と、第2位相差領域12と、一対の基板13、17及びこれに挟持される液晶層15からなる液晶セルとを有する。偏光膜8及20は、それぞれ保護膜7aと7b及び19aと19bによって挟持されている。
【0020】
図2の液晶表示装置では、液晶セルは、基板13及び17と、これらに挟持される液晶層15からなる。液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは透過モードにおいて、ねじれ構造を持たないIPS型では0.2〜0.4μmの範囲が最適値となる。この範囲では白表示輝度が高く、黒表示輝度が小さいことから、明るくコントラストの高い表示装置が得られる。基板13及び17の液晶層15に接触する表面には、配向膜(不図示)が形成されていて、液晶分子を基板の表面に対して略平行に配向させるとともに配向膜上に施されたラビング処理方向14及び18等により、電圧無印加状態もしくは低印加状態における液晶分子配向方向が制御され、遅相軸16の方向が決定されている。また、基板13もしくは17の内面には、液晶分子に電圧印加可能な電極(図2中不図示)が形成されている。
【0021】
図1に、液晶層15の1画素領域中の液晶分子の配向を模式的に示す。図1は、液晶層15の1画素に相当する程度の極めて小さい面積の領域中の液晶分子の配向を、基板13及び17の内面に形成された配向膜のラビング方向4、及び基板13及び17の内面に形成された液晶分子に電圧印加可能な電極2及び3とともに示した模式図である。電界効果型液晶として正の誘電異方性を有するネマティック液晶を用いてアクティブ駆動を行った場合の、電圧無印加状態若しくは低印加状態での液晶分子配向方向は5a及び5bであり、この時に黒表示が得られる。画素電極2及び表示電極3間に印加されると、電圧に応じて液晶分子は6a及び6b方向へとその配向方向を変える。通常、この状態で明表示を行なう。
また、本発明に用いられる液晶セルはIPSモードやFFSモードに限定されることなく、黒表示時に液晶分子が前記一対の基板の表面に対して実質的に平行に配向する液晶表示装置であれば、いずれも好適に用いることができる。この例としては強誘電性液晶表示装置、反強誘電性液晶表示装置、ECB型液晶表示装置がある。
【0022】
再び図2において、第1偏光膜である偏光膜8の透過軸9と、第2偏光膜である偏光膜20の透過軸21は直交して配置されている。また、第1位相差領域(第1位相差膜)10は、その遅相軸11が偏光膜8の透過軸9と平行(即ち第1偏光膜8の吸収軸(不図示)に直交)に配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層15中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層15の遅相軸16とは平行である。
図2に示す液晶表示装置では、偏光膜8が二枚の保護膜7a及び7bに挟持された構成を示しているが、保護膜7bはなくてもよい。但し、保護膜7bを配置しない場合は、第1位相差領域10は後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。保護膜7bを配置する場合は、該保護膜の厚み方向のレターデーションRthは、−40nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、偏光膜20も二枚の保護膜19a及び19bに挟持されているが、液晶層15に近い側の保護膜19aはなくてもよい。保護膜19aを配置する場合は、該保護膜の厚み方向のレターデーションRthは、−40nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、保護膜7b及び保護膜19aは、その厚みが薄いのが好ましく、具体的には60μm以下であるのが好ましい。
【0023】
図2の態様では、第1位相差領域10及び第2位相差領域(第2位相差膜)12は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜との間に配置されていてもよいし、液晶セルと背面側の偏光膜との間に配置されていてもよいが、液晶セルと背面側の偏光膜との間に配置される方が歩留まりの点で好ましい。また、第1位相差領域10及び第2位相差領域(第2位相差膜)12は、他の膜を介することなく、液晶セルの基板のより近い位置に配置されるのが好ましい。いずれの態様においても、図2の構成では第2位相差領域が液晶セルにより近くなるように配置する。なお、図2の左右方向が長手方向である。
【0024】
本発明の他の実施形態を図3に示す。図3中、図2と同一の部材については同一の符号を付し、詳細な説明は省略する。図3に示す液晶表示装置では、第1位相差領域10と第2位相差領域12との位置が入れ替わり、第1位相差領域10が、第2位相差領域12と比較して偏光膜8からより遠い位置、即ち、より液晶セルに近い位置に配置される。また、図3に示す態様では、第1位相差領域10は、その遅相軸11が、偏光膜8の透過軸9と直交(即ち第1偏光膜8の吸収軸(不図示)に平行)に配置される。さらに、偏光膜8の透過軸9と、黒表示時の液晶層15中の液晶分子の遅相軸16とは平行であり、即ち、第1位相差領域10の遅相軸11と液晶黒表示時の液晶層15の遅相軸16とは直交である。
図3の液晶表示装置においても、上記と同様、保護膜7bまたは保護膜19aはなくてもよい。但し、保護膜7bがない場合は、第2位相差領域12が、後述する特定の光学特性を有するとともに、偏光膜8を保護する機能も兼ね備えている必要がある。保護膜7bを配置する場合は、該保護膜の厚み方向のレターデーションRthは、−40nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、偏光膜20も二枚の保護膜19a及び19bに挟持されているが、液晶層15に近い側の保護膜19aはなくてもよい。保護膜19aを配置する場合は、該保護膜の厚み方向のレターデーションRthは、−40nm〜40nmであることが好ましく−20nm〜20nmであることがさらに好ましい。また、保護膜7b及び保護膜19aは、その厚みが薄いのが好ましく、具体的には60μm以下であるのが好ましい。
【0025】
なお、図3の態様では、第1位相差領域及び第2位相差領域は、液晶セルの位置を基準にして、液晶セルと視認側の偏光膜との間に配置されていてもよいし、液晶セルと背面側の偏光膜との間に配置されていてもよいが、液晶セルと背面側の偏光膜との間に配置される方が歩留まりの点で好ましい。また、第1位相差領域10及び第2位相差領域(第2位相差膜)12は、他の膜を介することなく、液晶セルの基板のより近い位置に配置されるのが好ましい。いずれの態様においても、図3の構成では第1位相差領域が液晶セルにより近くなるように配置する。なお、図3の左右方向が長手方向である。
【0026】
図2及び図3の態様において、第1位相差領域10は、面内レターデーションReが60nm〜200nmで、Nz値が0.8を超え1.5以下である。一方、第2位相差領域12は、面内のレターデーションReが50nm以下であって、厚み方向のレターデーションRthが−300nm〜−40nmであり、且つ分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムは、セルロースアシレートの置換基の種類や水酸基へのアシル置換度の調整や、作製条件の調整により、第2位相差領域に要求される光学特性を一層のみで満たすことができる。また、かかるフィルムは、偏光膜の保護膜として要求される性能を満足し得るので、図2の態様では、保護膜7bがなくても、偏光膜8と、第1位相差領域10と、第2位相差領域12とを一体的に作製することで、高温湿度下等、過酷な環境下に置かれた場合にも、偏光膜8が劣化して、表示特性が低下するのを軽減することができる。また、図3の態様では、偏光膜8と第2位相差領域12とを一体的に作製することで、保護膜7bがなくても、高温湿度下等、過酷な環境下に置かれた場合にも、偏光膜8が劣化して、表示特性が低下するのを軽減することができる。
【0027】
本発明の液晶表示装置は、図1〜図3に示す構成に限定されず、他の部材を含んでいてもよい。例えば、液晶層と偏光膜との間にカラーフィルターを配置してもよい。また、偏光膜の保護膜の表面に反射防止処理やハードコートを施しても良い。また、構成部材に導電性を付与したものを使用してもよい。また、透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置することができる。この場合、バックライトの配置は図2及び図3の上側であっても下側であっても良いが、不良品率がやや高い反射防止や帯電防止処理をした偏光板と組み合わせる必要性が低いため、図でバックライトを下にしたほうがより好ましい。また、液晶層とバックライトとの間に、反射型偏光板や拡散板、プリズムシートや導光板を配置することもできる。また、上記した様に、本発明の液晶表示装置は、反射型であってもよく、かかる場合は、偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を配置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
【0028】
本発明の液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。本発明は、TFTやMIMのような3端子又は2端子半導体素子を用いたアクティブマトリックス液晶表示装置に適用した態様が特に有効である。勿論、時分割駆動と呼ばれるパッシブマトリックス液晶表示装置に適用した態様も有効である。
【0029】
以下、本発明の液晶表示装置に使用可能な種々の部材の好ましい光学特性や部材に用いられる材料、その製造方法等について、詳細に説明する。
【0030】
[第1位相差領域]
本発明では、第1位相差領域は、面内のレターデーションReが60nm〜200nmであるのが好ましい。斜め方向の光漏れを効果的に低減するためには、第1位相差領域のReは、70nm〜180nmであるのがより好ましく、90nm〜160nmであるのがさらに好ましい。また、偏光板との貼合角度許容範囲、歩留まり、コントラストの観点から、Nz=Rth/Re+0.5で定義されるNzが0.8を超え1.5以下が斜め方向の光漏れを効果的に低減するために好ましい。第1位相差領域のNzは、0.9〜1.3であるのが好ましく、0.95〜1.2であるのがより好ましい。このような光学性能は以下に記載したフィルムの延伸処理、または液晶層塗布など一般的に公知の手法で達成することができる。
【0031】
前記第1位相差領域は、その材料及び形態については、基本的に特に制限されない。例えば、複屈折ポリマーフィルムからなる位相差膜、透明支持体上に高分子化合物を塗布後に加熱した膜、及び透明支持体上に低分子あるいは高分子液晶性化合物を塗布もしくは転写することによって形成された光学異方性層を有する位相差膜など、いずれも使用することができる。また、それぞれを積層して使用することもできる。
【0032】
複屈折ポリマーフィルムとしては、複屈折特性の制御性や透明性、耐熱性に優れるもの、光弾性が小さいものが好ましい。この場合、用いる高分子材料としては均一な一軸配向もしくは二軸配向が達成できる高分子であれば特に制限はないが、従来公知のもので溶液流延法や押出し成形方式で製膜できるもの好ましく、ポリカーボネート系高分子、ポリアリレート系高分子、ポリエステル系高分子、ポリサルフォン等の芳香族系高分子、ポリプロピレン等のポリオレフィン、セルロースアシレート、または、それらポリマーの2種又は3種以上を混合したポリマーなどがあげられる。
なお、本発明の液晶表示装置には、第1位相差領域が、脂環式構造含有重合体樹脂フィルムを延伸して得られた位相差層を含まない態様が含まれる。
【0033】
フィルムの二軸配向は、押出し成形方式や流延製膜方式等の適宜な方式で製造した当該フィルムを、例えばロールによる縦延伸方式、テンターによる横延伸方式や二軸延伸方式などにより、延伸処理することにより行うことができる。また、面方向に一軸または二軸に延伸し、厚さ方向にも延伸する方法等により厚さ方向の屈折率を制御することにより得られる。また高分子ポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理して配向させる方法等により得られる(例 特開平5−157911号公報、特開平11−125716号公報、特開2001−13324号公報)。前記のロールによる縦延伸方式では加熱ロールを用いる方法や雰囲気を加熱する方法、それらを併用する方法等の適宜な加熱方法を採ることができる。またテンターによる二軸延伸方式では全テンター方式による同時二軸延伸方法や、ロール・テンター法による逐次二軸延伸方法などの適宜な方法を採ることができる。
また、配向ムラや位相差ムラの少ないものが好ましい。その厚さは、位相差等により適宜に決定しうるが、一般には薄型化の点より1〜300μmであるのが好ましく、10〜200μmであるのがより好ましく、20〜150μmであるのがさらに好ましい。
【0034】
前記第1位相差領域は、実質的に水平(ホモジニアス)配向した液晶性分子を固定化させてなる層(以下、「光学異方性層」という場合がある)であってもよい。液晶性分子の実質的な水平(ホモジニアス)配向とは、液晶性分子のダイレクター方向と層平面との平均角度が0〜20°の範囲内であることを意味する。液晶性分子は配向状態で固定化されているのが好ましく、重合により固定化されているのがより好ましい。上記光学的特性を満たす限り、液晶性化合物の種類については特に制限されない。例えば、低分子液晶性化合物を液晶状態においてネマティック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層や、高分子液晶性化合物を液晶状態においてネマティック配向に形成後、冷却することによって当該配向を固定化して得られる光学異方性層を用いることができる。なお本発明では、光学異方性層に液晶性化合物が用いられる場合であっても、光学異方性層は、該化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。
【0035】
前記第1位相差領域は、液晶性化合物を含有する組成物から形成された光学異方性層であってもよい。前記液晶性化合物としては、棒状液晶性化合物を用いるのが好ましい。液晶性化合物はネマティック配向している状態で固定されていることが好ましく、重合反応により固定されていることがさらに好ましい。棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。棒状液晶性化合物を重合によって配向を固定することがより好ましい。液晶分子には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有するものが好適に用いられる。その部分構造の個数は1〜6個、好ましくは1〜3個である。重合性棒状液晶性化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1−272551号公報、同6−16616号公報、同7−110469号公報、同11−80081号公報、および特開2001−328973号公報などに記載の化合物を用いることができる。
【0036】
前記光学異方性層は、液晶性化合物および必要に応じて重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。塗布液の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。光学異方性層の厚さは、0.5〜100μmであることが好ましく、0.5〜30μmであることがさらに好ましい。
【0037】
配向させた液晶性分子の配向状態の固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれるが、光重合反応が好ましい。光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20〜5000mJ/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。保護層を、光学異方性層の上に設けてもよい。
【0038】
また、上記の液晶性化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶性化合物の配向性等を向上させることが出来る。これらの素材は液晶性化合物と相溶性を有し、配向を阻害しないことが好ましい。
【0039】
重合性モノマーとしては、ラジカル重合性もしくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報明細書中の段落番号[0018]〜[0020]記載のものが挙げられる。上記化合物の添加量は、液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
【0040】
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物、特開2005−62673号明細書中の段落番号[0069]〜[0126]記載の化合物が挙げられる。
【0041】
液晶性化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
【0042】
[配向膜]
前記光学異方性層を形成する際には、液晶性分子の配向方向を規定するために、配向膜を用いることが好ましい。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。配向膜は、ポリマーのラビング処理により形成することが好ましい。ラビング処理は、配向膜の表面を、紙や布で一定方向に、数回こすることにより実施する。長さおよび太さが均一な繊維を均一に植毛した布を用いることが好ましい。なお、光学異方性層の液晶性分子が配向膜上で配向固定化された後は、配向膜を除去しても液晶性分子の配向状態を保つことができる。すなわち、配向膜は、液晶性分子を配向させるため位相差板の製造においては必須であるが、製造された位相差板においては必須ではない。配向膜を透明支持体と光学異方性層との間に設ける場合は、さらに下塗り層(接着層)を透明支持体と配向膜との間に設けてもよい。
【0043】
[支持体]
前記第1位相差領域を支持体上に形成してもよい。支持体は透明であるのが好ましく、具体的には、光透過率が80%以上であるのが好ましい。支持体は、波長分散が小さいのが好ましく、具体的には、Re400/Re700の比が1.2未満であることが好ましい。中でも、ポリマーフィルムが好ましい。例えば、後述する第2位相差領域である分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムを支持体として用い、その上に、第1位相差領域である光学異方性層を形成してもよい。支持体の光学異方性は小さいのが好ましく、面内レターデーション(Re)が20nm以下であることが好ましく、10nm以下であることがさらに好ましく、5nm以下であることが最も好ましい。
【0044】
支持体となるポリマーフィルムの例には、セルロースエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート及びポリメタクリレートのフィルムが含まれる。セルロースエステルフィルムが好ましく、アセチルセルロースフィルムがさらに好ましく、トリアセチルセルロースフィルムが最も好ましい。ポリマーフィルムは、ソルベントキャスト法により形成することが好ましい。透明支持体の厚さは、20〜500μmであることが好ましく、40〜200μmであることがさらに好ましい。透明支持体とその上に設けられる層(接着層、配向膜あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10〜100nm程度の無機粒子を固形分重量比で5%〜40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。
【0045】
また、光学異方性層を仮支持体上に形成して、該光学異方性層を、第2位相差領域である分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルム上に転写してもよい。さらに、1層の光学異方性層のみならず複数の光学異方性層を積層して、上記光学特性を示す第1位相差領域を構成することもできる。また、支持体と光学異方性層との積層体全体で第1位相差領域を構成してもよい。
【0046】
[第2位相差領域]
本発明において、第2位相差領域は、厚み方向のレターデーションRthが−200nm〜−50nmであり、−180〜−60nmであるのが好ましく、−150〜−70nmであるのがより好ましい。また、前記第2位相差領域の面内のレターデーションReは、50nm以下であり、0〜30nmであるのが好ましく、0〜10nmであるのがより好ましい。
【0047】
本発明において第2位相差領域は上記光学性能を達成し光学軸がフィルム面内に含まれないようにするために、セルロースアシレートの構成単位であるβ−グルコース環上の3つの水酸基に連結する置換基として、分極率異方性が大きい置換基を有することが好ましい。セルロースアシレートに分極率異方性が大きい置換基を導入し、かつ他の置換基及び置換度を調整することで、膜厚方向に屈折率が最大となる光学補償フィルムが得られる。
【0048】
(置換基の末端間距離及び分極率異方性)
本発明に用いるセルロース誘導体の置換基の末端間距離及び分極率異方性はGaussian03(Revision B.03、米ガウシアン社ソフトウェア)を用いて計算した。末端間距離はB3LYP/6−31G*レベルの計算で構造最適化した後、最も離れた原子間の距離として算出した。分極率異方性はB3LYP/6−31G*レベルで最適化された構造を用いて、3LYP/6−311+G**レベルで分極率を計算し、得られた分極率テンソルを対角化した後、対角成分より算出した。本発明における置換基の末端間距離および分極率異方性の計算においては、セルロース誘導体の構成単位であるβ−グルコース環上の水酸基に連結する置換基を、水酸基の酸素原子を含む部分構造にて計算して求めた。
【0049】
本発明に用いるセルロース誘導体の分極率異方性は下記数式(1)により定義される。
数式(1):Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzである。)
【0050】
該分極率異方性は、フィルム延伸時の延伸直交方向への屈折率発現性と関係がある。すなわち、該分極率異方性が小さい場合には延伸方向に遅相軸が発現し、大きい場合には延伸直交方向に遅相軸が発現する。本発明の膜厚方向のレターデーションが負の値を有する光学補償フィルムを得る目的においては、該分極率異方性が大きいほど好ましく、好ましくは2.5×10−24cm−3以上であり、より好ましくは3.5×10−24cm−3以上であり、特に好ましくは4.5×10−24cm−3以上である。
【0051】
本発明の好ましいセルロース誘導体は、脂肪酸アシル基と置換もしくは無置換の芳香族アシル基とを有する混合酸エステルであることが好ましい。ここで置換もしくは無置換の芳香族アシル基としては下記一般式(A)で表される基があげられる。
【0052】
【化1】

【0053】
まず、一般式(A)について説明する。Xは置換基で、置換基の例には、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基、ウレイド基、アラルキル基、ニトロ、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、カルバモイル基、スルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基およびアリールオキシスルホニル基、−S−R、−NH−CO−OR、−PH−R、−P(−R)、−PH−O−R、−P(−R)(−O−R)、−P(−O−R)、−PH(=O)−R−P(=O)(−R)、−PH(=O)−O−R、−P(=O)(−R)(−O−R)、−P(=O)(−O−R)、−O−PH(=O)−R、−O−P(=O)(−R)−O−PH(=O)−O−R、−O−P(=O)(−R)(−O−R)、−O−P(=O)(−O−R)、−NH−PH(=O)−R、−NH−P(=O)(−R)(−O−R)、−NH−P(=O)(−O−R)、−SiH−R、−SiH(−R)、−Si(−R)、−O−SiH−R、−O−SiH(−R)および−O−Si(−R)が含まれる。上記Rは脂肪族基、芳香族基またはヘテロ環基である。置換基の数は、一個乃至五個であることが好ましく、一個乃至四個であることがより好ましく、一個乃至三個であることがさらに好ましく、一個または二個であることが最も好ましい。置換基としては、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基およびウレイド基が好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基、アリールオキシ基、アシル基およびカルボンアミド基がより好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基およびアリールオキシ基がさらに好ましく、ハロゲン原子、アルキル基およびアルコキシ基が最も好ましい。
【0054】
上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子およびヨウ素原子が含まれる。上記アルキル基が最も好ましい。アルキル基の例には、メチル、エチル、プロピル、イソプロピル、ブチル、t−ブチル、ヘキシル、シクロヘキシル、オクチルおよび2−エチルヘキシルが含まれる。上記アルコキシ基は、環状構造あるいは分岐を有していてもよい。アルコキシ基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがより好ましく、1乃至6であることがさらに好ましく、1乃至4であることが最も好ましい。アルコキシ基は、さらに別のアルコキシ基で置換されていてもよい。アルコキシ基の例には、メトキシ、エトキシ、2−メトキシエトキシ、2−メトキシ−2−エトキシエトキシ、ブチルオキシ、ヘキシルオキシおよびオクチルオキシが含まれる。
【0055】
上記アリール基の炭素原子数は、6乃至20であることが好ましく、6乃至12であることがさらに好ましい。アリール基の例には、フェニルおよびナフチルが含まれる。上記アリールオキシ基の炭素原子数は、6乃至20であることが好ましく、6乃至12であることがさらに好ましい。アリールオキシ基の例には、フェノキシおよびナフトキシが含まれる。上記アシル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。アシル基の例には、ホルミル、アセチルおよびベンゾイルが含まれる。上記カルボンアミド基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。カルボンアミド基の例には、アセトアミドおよびベンズアミドが含まれる。上記スルホンアミド基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。スルホンアミド基の例には、メタンスルホンアミド、ベンゼンスルホンアミドおよびp−トルエンスルホンアミドが含まれる。上記ウレイド基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。ウレイド基の例には、(無置換)ウレイドが含まれる。
【0056】
またアルキル基は、環状構造あるいは分岐を有していてもよい。アルキル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがより好ましく、1乃至6であることがさらに好ましく、1乃至4である。
上記アラルキル基の炭素原子数は、7乃至20であることが好ましく、7乃至12であることがさらに好ましい。アラルキル基の例には、ベンジル、フェネチルおよびナフチルメチルが含まれる。上記アルコキシカルボニル基の炭素原子数は、1乃至20であることが好ましく、2乃至12であることがさらに好ましい。アルコキシカルボニル基の例には、メトキシカルボニルが含まれる。上記アリールオキシカルボニル基の炭素原子数は、7乃至20であることが好ましく、7乃至12であることがさらに好ましい。アリールオキシカルボニル基の例には、フェノキシカルボニルが含まれる。上記アラルキルオキシカルボニル基の炭素原子数は、8乃至20であることが好ましく、8乃至12であることがさらに好ましい。アラルキルオキシカルボニル基の例には、ベンジルオキシカルボニルが含まれる。上記カルバモイル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。カルバモイル基の例には、(無置換)カルバモイルおよびN−メチルカルバモイルが含まれる。上記スルファモイル基の炭素原子数は、20以下であることが好ましく、12以下であることがさらに好ましい。スルファモイル基の例には、(無置換)スルファモイルおよびN−メチルスルファモイルが含まれる。上記アシルオキシ基の炭素原子数は、1乃至20であることが好ましく、2乃至12であることがさらに好ましい。アシルオキシ基の例には、アセトキシおよびベンゾイルオキシが含まれる。
【0057】
上記アルケニル基の炭素原子数は、2乃至20であることが好ましく、2乃至12であることがさらに好ましい。アルケニル基の例には、ビニル、アリルおよびイソプロペニルが含まれる。上記アルキニル基の炭素原子数は、2乃至20であることが好ましく、2乃至12であることがさらに好ましい。アルキニル基の例には、チエニルが含まれる。上記アルキルスルホニル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。上記アリールスルホニル基の炭素原子数は、6乃至20であることが好ましく、6乃至12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6乃至20であることが好ましく、6乃至12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1乃至20であることが好ましく、1乃至12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6乃至20であることが好ましく、6乃至12であることがさらに好ましい。
【0058】
次に、本発明のセルロース混合酸エステル中脂肪酸エステル残基において、脂肪族アシル基は炭素原子数が2〜20で具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等があげられる。好ましくはアセチル、プロピオニル及びブチリルであり、特に好ましいのはアセチルである。本発明において前記脂肪族アシル基とはさらに置換基を有するものも包含する意味であり、置換基としては例えば前記の一般式(A)のXとして例示したものがあげられる。
【0059】
また、一般式(A)において芳香族環に置換する置換基Xの数(n)は0または1〜5個であり、好ましくは1〜3個で、特に好ましいのは1又は2個である。
【0060】
更に、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。一般式(A)で表される芳香族アシル基の具体例は下記に示す通りであるが、好ましいのは、No.1、3、5、6、8、13、18、28、より好ましいのはNo.1、3、6、13である。
【0061】
次に、セルロースの水酸基への芳香族アシル基の置換は、一般的には芳香族カルボン酸クラロイドあるいは芳香族カルボン酸から誘導される対称酸無水物及び混合酸無水物を用いる方法等が挙げられる。特に好ましいのは芳香族カルボン酸から誘導した酸無水物を用いる方法(Journal of AppliedPolymer Science、Vol.29、3981−3990(1984)記載)が挙げられる。上記の方法として本発明のセルロース混合酸エステル化合物の製造方法としては、(1)セルロース脂肪酸モノエステル又はジエステルを一旦製造したのち、残りの水酸基に前記一般式(A)で表される芳香族アシル基を導入する方法、(2)セルロースに直接に、脂肪族カルボン酸と芳香族カルボン酸の混合酸無水物を反応させる方法、などがあげられる。前者においては、セルロース脂肪酸エステル又はジエステルの製造方法自体は周知の方法であるが、これにさらに芳香族アシル基を導入する後段の反応は、該芳香族アシル基の種類によって異なるが好ましくは反応温度0〜100℃、より好ましくは20〜50℃で、反応時間は、好ましくは30分以上、より好ましくは30〜300分で行われる。また後者の混合酸無水物を用いる方法も、反応条件は混合酸無水物の種類によって変わるが、好ましくは反応温度0〜100℃、より好ましくは20〜50℃、反応時間は好ましくは30〜300分、より好ましくは60〜200分である。上記のいずれの反応も、反応を無溶媒又は溶媒中のいずれで行っても良いが、好ましくは溶媒を用いて行われる。溶媒としてはジクロロメタン、クロロホルム、ジオキサンなどを用いることができる。
【0062】
本発明における置換度は、セルロースの水酸基が100%置換されたときを3.0とする。なお、置換度はC13−NMRにおけるアシル基中のカルボニル炭素のピーク強度から求めることができる。
本発明において、芳香族アシル基の置換度はセルロース脂肪酸モノエステルの場合、残存する水酸基に対して2.0以下、好ましくは0.1〜2.0、さらに好ましくは0.1〜1.0である。また、セルロース脂肪酸ジエステル(二酢酸セルロース)の場合、残存する水酸基に対して1.0以下、好ましくは0.1〜1.0である。また、セルロースアシレートの総置換度PAは2.4〜3であるのが好ましい。
【0063】
また、負のRthを発現させるためにはβ−グルコース環の2位、3位に分極率異方性が大きい置換基を導入することが好ましい。2位、3位は、βーグルコース環から炭素原子を介して置換基が導入される6位よりも自由度が低く導入された置換基が膜厚方向に配向しやすく、延伸処理により膜厚方向に配向しやすいためと推測している。
【0064】
以下に一般式(A)で表される芳香族アシル基の具体例を示すが、本発明はこれに限定するものではない。
【0065】
【化2】

【0066】
【化3】

【0067】
【化4】

【0068】
【化5】

【0069】
本発明で用いられるセルロースアシレートは、350〜800の質量平均重合度を有することが好ましく、370〜600の質量平均重合度を有することがさらに好ましい。また本発明で用いられるセルロースアシレートは、70000〜230000の数平均分子量を有することが好ましく、75000〜230000の数平均分子量を有することがさらに好ましく、78000〜120000の数平均分子量を有することが最も好ましい。
【0070】
本発明で用いられるセルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。
【0071】
この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖β1→4−グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。
【0072】
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度が35℃以上であれば、エステル化反応が円滑に進行するので好ましい。反応温度が50℃以下であれば、セルロースエステルの重合度が低下するなどの不都合が生じないので好ましい。
【0073】
エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例えば、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きすぎることがなければ、反応装置の冷却能力を超えて急激に発熱して、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下するなどの問題が生じることはない。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。このとき反応停止剤の添加速度が大きすぎなければ、触媒が解離するために充分な反応時間が確保され、触媒の一部がセルロースに結合した状態で残るなどの問題は生じにくい。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間が30分以下であれば、工業的な生産性の低下などの問題が生じないので好ましい。
【0074】
反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、質量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
【0075】
本発明に使用するセルロースアシレートフィルムは所望の厚み方向のレターデーションRthを実現するために、Rthを低下させる化合物(Rth低減剤ともいう)を用いても良い。該Rthを低下させる化合物は、前記セルロースアシレート固形分に対して0.01〜30質量%含むことが好ましく、より好ましくは0.1〜25質量%であり、さらに好ましくは0.1〜20質量%である。
【0076】
Rthを低下させる化合物はセルロースアシレートに十分に相溶し、化合物自身が棒状の構造や平面性の構造を持たないことが有利である。具体的には芳香族基のような平面性の官能基を複数持っている場合、それらの官能基を同一平面ではなく、非平面に持つような構造が有利である。
本発明に用いるセルロースアシレートフィルムを作製するにあたっては、上述のようにフィルム中のセルロースアシレートが面内および膜厚方向に配向するのを抑制して光学異方性を低下させる化合物のうち、オクタノール−水分配係数(logP値)が0ないし7である化合物が好ましい。logP値が7以下である化合物は、セルロースアシレートとの相溶性に優れ、フィルムの白濁や粉吹きを生じにくい。また、logP値が0以上である化合物は親水性が適切であり、セルロースアセテートフィルムの耐水性を向上させる。logP値としてさらに好ましい範囲は1ないし6であり、特に好ましい範囲は1.5ないし5である。
オクタノール−水分配係数(logP値)の測定は、JIS日本工業規格Z7260−107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール−水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989).)、Broto’s fragmentation法(Eur.J.Med.Chem.−Chim.Theor.,19,71(1984).)などが好ましく用いられるが、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987).)がより好ましい。ある化合物のlogPの値が測定方法あるいは計算方法により異なる場合に、該化合物が本発明の範囲内であるかどうかは、Crippen’s fragmentation法により判断することが好ましい。
【0077】
Rthを低下させる化合物は、芳香族基を含有しても良いし、含有しなくても良い。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でも良い。
Rthを低下させる化合物は、好ましくは、25℃で液体であるか、融点が25〜250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25〜200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレートフィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
Rthを低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。
光学異方性を低下させる化合物を添加する時期はドープ作製工程中の何れであってもよく、ドープ調製工程の最後に行ってもよい。
【0078】
Rthを低下させる化合物は、少なくとも一方の側の表面から全膜厚の10%までの部分における該化合物の平均含有率が、該セルロースアシレートフィルムの中央部における該化合物の平均含有率の80−99%である。本発明の化合物の存在量は、例えば、特開平8−57879号公報に記載の赤外吸収スペクトルを用いる方法などにより表面および中心部の化合物量を測定して求めることができる。
【0079】
以下に本発明で好ましく用いられる、セルロースアシレートフィルムの光学異方性を低下させる化合物の具体例を示すが、本発明はこれら化合物に限定されない。
【0080】
一般式(B):
【0081】
【化6】

【0082】
上記一般式(B)において、R11はアルキル基又はアリール基を表し、R12及びR13はそれぞれ独立に、水素原子、アルキル基又はアリール基を表す。また、R11、R12及びR13の炭素原子数の総和が10以上であることが特に好ましい。
【0083】
上記のアルキル基及びアリール基は置換基を有していてもよく、置換基としてはフッ素原子、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が好ましく、アルキル基、アリール基、アルコキシ基、スルホン基及びスルホンアミド基が特に好ましい。
【0084】
アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜25のものが好ましく、6〜25のものがより好ましく、6〜20のもの(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル、アミル、イソアミル、t−アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ビシクロオクチル、ノニル、アダマンチル、デシル、t−オクチル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、ジデシルなど)が特に好ましい。
【0085】
アリール基としては、炭素原子数が6〜30のものが好ましく、6〜24のもの(例えば、フェニル、ビフェニル、テルフェニル、ナフチル、ビナフチル、トリフェニルフェニルなど)が特に好ましい。一般式(B)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
【0086】
【化7】

【0087】
【化8】

【0088】
【化9】

【0089】
【化10】

【0090】
一般式(C):
【0091】
【化11】

【0092】
上記一般式(C)において、R31はアルキル基又はアリール基を表し、R32及びR33はそれぞれ独立に水素原子、アルキル基又はアリール基を表す。ここで、アルキル基は直鎖であっても、分岐であっても、環状であってもよく、炭素原子数が1〜20のものが好ましく、1〜15のものがさらに好ましく、1〜12のものが最も好ましい。環状のアルキル基としては、シクロヘキシル基が特に好ましい。アリール基は炭素原子数が6〜36のものが好ましく、6〜24のものがより好ましい。
【0093】
上記のアルキル基及びアリール基は置換基を有していてもよく、置換基としてはハロゲン原子(例えば、塩素、臭素、フッ素及びヨウ素など)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、スルホニルアミノ基、ヒドロキシ基、シアノ基、アミノ基及びアシルアミノ基が好ましく、より好ましくはハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホニルアミノ基及びアシルアミノ基であり、特に好ましくはアルキル基、アリール基、スルホニルアミノ基及びアシルアミノ基である。
【0094】
以下に、一般式(C)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
【0095】
【化12】

【0096】
【化13】

【0097】
【化14】

【0098】
【化15】

【0099】
【化16】

【0100】
【化17】

【0101】
本発明では所望の波長分散にするために波長分散調整剤を用いてもよい。
本発明に好ましく用いられる波長分散調整剤の具体例としては、例えばベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノ基を含む化合物、オキシベンゾフェノン系化合物、サリチル酸エステル系化合物、ニッケル錯塩系化合物などが挙げられるが、本発明はこれら化合物だけに限定されるものではない。
【0102】
ベンゾトリアゾール系化合物としては一般式(101)で示されるものが本発明の波長分散調整剤として好ましく用いられる。
【0103】
一般式(101) Q1−Q2−OH
【0104】
(式中、Q1は含窒素芳香族ヘテロ環、Q2は芳香族環を表す。)
【0105】
1は含窒素芳香族へテロ環をあらわし、好ましくは5乃至7員の含窒素芳香族ヘテロ環
であり、より好ましくは5ないし6員の含窒素芳香族ヘテロ環であり、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、セレナゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、ベンゾセレナゾール、チアジアゾール、オキサジアゾール、ナフトチアゾール、ナフトオキサゾール、アザベンズイミダゾール、プリン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、トリアザインデン、テトラザインデン等があげられ、更に好ましくは、5員の含窒素芳香族ヘテロ環であり、具体的にはイミダゾール、ピラゾール、トリアゾール、テトラゾール、チアゾール、オキサゾール、ベンゾトリアゾール、ベンゾチアゾール、ベンズオキサゾール、チアジアゾール、オキサジアゾールが好ましく、特に好ましくは、ベンゾトリアゾールである。
1で表される含窒素芳香族ヘテロ環は更に置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が複数ある場合にはそれぞれが縮環して更に環を形成してもよい。
【0106】
2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはナフタレン環、ベンゼン環であり、特に好ましくはベンゼン環である。Q2は更に置換基を有してもよく、後述の置換基Tが好ましい。
【0107】
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0108】
一般式(101)として好ましくは下記一般式(101−A)で表される化合物である。
一般式(101−A)
【0109】
【化18】

【0110】
(式中、R1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表す。)
【0111】
1、R2、R3、R4、R5、R6、R7、およびR8はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
1およびR3として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは炭素数1〜12のアルキル基(好ましくは炭素数4〜12)である。
【0112】
2、およびR4として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
【0113】
5およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
【0114】
6およびR7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、ハロゲン原子であり、特に好ましくは水素原子、塩素原子である。
【0115】
一般式(101)としてより好ましくは下記一般式(101−B)で表される化合物である。
一般式(101−B)
【0116】
【化19】

【0117】
(式中、R1、R3、R6およびR7は一般式(101−A)におけるそれらと同義であり、また好ましい範囲も同様である。)
【0118】
以下に一般式(101)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
【0119】
【化20】

【0120】
【化21】

【0121】
以上例にあげたベンゾトリアゾール系化合物の中でも、分子量が320以下のものを含まずに本発明のセルロースアシレートフィルムを作製した場合、保留性の点で有利であることが確認された。
【0122】
また本発明に用いられる波長分散調整剤のひとつであるベンゾフェノン系化合物としては一般式(102)で示されるものが好ましく用いられる。
一般式(102)
【0123】
【化22】

【0124】
(一般式(102)中、Q1およびQ2はそれぞれ独立に芳香族環を表す。XはNR(Rは水素原子または置換基を表す。)、酸素原子または硫黄原子を表す。)
【0125】
一般式(102)中、Q1およびQ2で表される芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
1およびQ2で表される芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
1およびQ2で表される芳香族ヘテロ環として好ましくは酸素原子、窒素原子あるいは硫黄原子のどれかひとつを少なくとも1つ含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくは炭素数6〜10の芳香族炭化水素環であり、更に好ましくは置換または無置換のベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましいが、置換基にカルボン酸やスルホン酸、4級アンモニウム塩を含むことはない。また、可能な場合には置換基同士が連結して環構造を形成してもよい。
【0126】
XはNR(Rは水素原子または置換基を表す。置換基としては後述の置換基Tが適用できる。)、酸素原子または硫黄原子を表し、Xとして好ましくは、NR(Rとして好ましくはアシル基、スルホニル基であり、これらの置換基は更に置換してもよい。)、またはOであり、特に好ましくはOである。
【0127】
一般式(102)中、置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0128】
一般式(102)として好ましくは下記一般式(102−A)で表される化合物である。
一般式(102−A)
【0129】
【化23】

【0130】
(一般式(102−A)中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表す。)
【0131】
一般式(102−A)中、R1、R2、R3、R4、R5、R6、R7、R8、およびR9はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
【0132】
1、R3、R4、R5、R6、R8およびR9として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
【0133】
2として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは炭素数1〜20のアルコキシ基であり、特に好ましくは炭素数1〜12のアルコキシ基である。
【0134】
7として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜20のアルキル基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくはメチル基)であり、特に好ましくはメチル基、水素原子である。
【0135】
一般式(102)としてより好ましくは下記一般式(102−B)で表される化合物である。
一般式(102−B)
【0136】
【化24】

【0137】
(一般式(102−B)中、R10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表す。)
【0138】
10は水素原子、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアリール基を表し、置換基としては前述の置換基Tが適用できる。
10として好ましくは置換または無置換のアルキル基であり、より好ましくは炭素数5〜20の置換または無置換のアルキル基であり、更に好ましくは炭素数5〜12の置換または無置換のアルキル基(n−ヘキシル基、2−エチルヘキシル基、n−オクチル基、n−デシル基、n-ドデシル基、ベンジル基、などが挙げられる。)であり、特に好ましくは、炭素数6〜12の置換または無置換のアルキル基(2−エチルヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、ベンジル基)である。
【0139】
一般式(102)であらわされる化合物は特開平11−12219号公報記載の公知の方法により合成できる。
以下に一般式(102)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
【0140】
【化25】

【0141】
【化26】

【0142】
【化27】

【0143】
また本発明に用いられる波長分散調整剤のひとつであるシアノ基を含む化合物としては一般式(103)で示されるものが好ましく用いられる。
一般式(103)
【0144】
【化28】

【0145】
(一般式(103)中、Q1およびQ2はそれぞれ独立に芳香族環を表す。X1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基であり、他方は好ましくはカルボニル基、スルホニル基、芳香族ヘテロ環を表す。)Q1およびQ2であらわされる芳香族環は芳香族炭化水素環でも芳香族ヘテロ環でもよい。また、これらは単環であってもよいし、更に他の環と縮合環を形成してもよい。
【0146】
芳香族炭化水素環として好ましくは(好ましくは炭素数6〜30の単環または二環の芳香族炭化水素環(例えばベンゼン環、ナフタレン環などが挙げられる。)であり、より好ましくは炭素数6〜20の芳香族炭化水素環、更に好ましくは炭素数6〜12の芳香族炭化水素環である。)更に好ましくはベンゼン環である。
【0147】
芳香族ヘテロ環として好ましくは窒素原子あるいは硫黄原子を含む芳香族ヘテロ環である。ヘテロ環の具体例としては、例えば、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデンなどが挙げられる。芳香族ヘテロ環として好ましくは、ピリジン、トリアジン、キノリンである。
【0148】
1およびQ2であらわされる芳香族環として好ましくは芳香族炭化水素環であり、より好ましくはベンゼン環である。
1およびQ2は更に置換基を有してもよく、後述の置換基Tが好ましい。置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
【0149】
1およびX2は水素原子または置換基を表し、少なくともどちらか1つはシアノ基であり、他方は好ましくは、カルボニル基、スルホニル基、芳香族ヘテロ環を表す。X1およびX2で表される置換基は前述の置換基Tを適用することができる。また、X1およびX2で表される置換基は更に他の置換基によって置換されてもよく、X1およびX2はそれぞれが縮環して環構造を形成してもよい。
【0150】
1およびX2として好ましくは、水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
【0151】
一般式(103)として好ましくは下記一般式(103-A)で表される化合物である。
一般式(103-A)
【0152】
【化29】

【0153】
(一般式(103−A)中、R1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表す。X1およびX2は一般式(103)におけるそれらと同義であり、また好ましい範囲も同様である。)
【0154】
1、R2、R3、R4、R5、R6、R7、R8、R9およびR10はそれぞれ独立に水素原子または置換基を表し、置換基ととしては前述の置換基Tが適用できる。またこれらの置換基は更に別の置換基によって置換されてもよく、置換基同士が縮環して環構造を形成してもよい。
【0155】
1、R2、R4、R5、R6、R7、R9、およびR10として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子であり、より好ましくは水素原子、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基、ハロゲン原子であり、更に好ましくは水素原子、炭素1〜12アルキル基であり、特に好ましくは水素原子、メチル基であり、最も好ましくは水素原子である。
【0156】
3、およびR8として好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、置換または無置換のアミノ基、アルコキシ基、アリールオキシ基、ヒドロキシ基、ハロゲン原子、より好ましくは水素原子、炭素数1〜20のアルキル基、炭素数0〜20のアミノ基、炭素数1〜12のアルコキシ基、炭素数6〜12アリールオキシ基、ヒドロキシ基であり、更に好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12アルコキシ基であり、特に好ましくは水素原子である。
【0157】
一般式(103)としてより好ましくは下記一般式(103-B)で表される化合物である。
一般式(103-B)
【0158】
【化30】

【0159】
(一般式(103−B)中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。X3は水素原子、または置換基を表す。)
【0160】
3は水素原子、または置換基を表し、置換基としては前述の置換基Tが適用でき、また、可能な場合は更に他の置換基で置換されてもよい。X3として好ましくは水素原子、アルキル基、アリール基、シアノ基、ニトロ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、より好ましくは、シアノ基、カルボニル基、スルホニル基、芳香族ヘテロ環であり、更に好ましくはシアノ基、カルボニル基であり、特に好ましくはシアノ基、アルコキシカルボニル基(-C(=O)OR(Rは:炭素数1〜20アルキル基、炭素数6〜12のアリール基およびこれらを組み合せたもの)である。
【0161】
一般式(103)として更に好ましくは一般式(103-C)で表される化合物である。
一般式(103-C)
【0162】
【化31】

【0163】
(一般式(103−C)中、R3およびR8は一般式(103-A)におけるそれらと同義であり、また、好ましい範囲も同様である。R21は炭素数1〜20のアルキル基を表す。)
【0164】
21として好ましくはR3およびR8が両方水素の場合には、炭素数2〜12のアルキル基であり、より好ましくは炭素数4〜12のアルキル基であり、更に好ましくは、炭素数6〜12のアルキル基であり、特に好ましくは、n−オクチル基、tert-オクチル基、2−エチルへキシル基、n−デシル基、n−ドデシル基であり、最も好ましくは2−エチルへキシル基である。
【0165】
21として好ましくはR3およびR8が水素以外の場合には、一般式(103-C)で表される化合物の分子量が300以上になり、かつ炭素数20以下の炭素数のアルキル基が好ましい。
【0166】
本発明一般式(103)で表される化合物はJounal of American Chemical Society 63巻 3452頁(1941)記載の方法によって合成できる。
【0167】
以下に一般式(103)で表される化合物の具体例を挙げるが、本発明は下記具体例に何ら限定されるものではない。
【0168】
【化32】

【0169】
【化33】

【0170】
【化34】

【0171】
本発明に使用するセルロースアシレートフィルムは、押出し法、溶液流延法等の種々の方法を利用して長尺状に作製することができる。フィルム状に成形した後、所定の光学特性を得るために、さらに延伸処理を施すことが望ましい。溶液流延法を利用して前記フィルムを作製する場合は、ドープ中に、可塑剤(好ましい添加量はセルロースエステルに対して0.1〜20質量%、以下同様)、改質剤(0.1〜20質量%)、紫外線吸収剤(0.001〜10質量%)、平均粒径が5〜3000nmである微粒子粉体(0.001〜5質量%)、フッ素系界面活性剤(0.001〜2質量%)、剥離剤(0.0001〜2質量%)、劣化防止剤(0.0001〜2質量%)、光学異方性制御剤(0.1〜15質量%)、赤外線吸収剤(0.1〜5質量%)等の添加剤を含有させてもよい。その他、フィルムの作製方法については、公開技法2001−1745号(2001年3月15日発行、発明協会)等に詳細が記載されていて、本発明に適用することができる。
【0172】
得られたセルロースアシレートフィルムには、適宜、表面処理を行うことにより、セルロースアシレート層と他の層との接着を改善することが可能となる。表面処理には、グロー放電処理、紫外線照射処理、コロナ処理、火炎処理、ケン化処理(酸ケン化処理、アルカリケン化処理)が含まれ、特にグロー放電処理およびアルカリケン化処理が好ましい。
なお、前述した様に、分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムのみで前記第2位相差領域に要求される光学特性を満たすこともできるが、本発明には、前記第2位相差領域が、他の複屈折性フィルムや位相差膜を含む態様も含まれる。
【0173】
[偏光膜用保護膜]
偏光膜用保護膜としては、可視光領域に吸収が無く、光透過率が80%以上であり、複屈折性に基づくレターデーションが小さいものが好ましい。具体的には、面内のレターデーションReが0〜30nmが好ましく、0〜15nmがより好ましく、0〜5nmが最も好ましい。さらに、厚み方向のレターデーションRthは−40nm〜40nmであることが好ましく、−20nm〜20nmがより好ましく、−10nm〜10nmであることが最も好ましい。この特性を有するフィルムであれば好適に用いることができるが、偏光膜の耐久性の観点からはセルロースアシレートやノルボルネン系のフィルムがより好ましい。セルロースアシレートフィルムのRthを小さくする方法として、特開平11−246704号公報、特開2001−247717号公報、特願2003−379975号明細書に記載の方法などが挙げられる。また、セルロースアシレートフィルムの厚みを小さくすることによっても、Rthを小さくすることができる。第1及び第2偏光膜用保護膜としてのセルロースシレートフィルムの厚みは10〜100μmであることが好ましく、10〜60μmであるのがより好ましく、20〜45μmであることがさらに好ましい。
【0174】
[偏光板一体型光学補償フィルム]
本発明は、偏光膜と光学補償機能を有する第1及び第2位相差膜が一体化されて作製された、偏光板一体型補償フィルムに関する。本発明の偏光板一体型光学補償フィルムを用いることで、より簡易な構成で、液晶表示装置の視野角特性を改善できる。また、本発明の偏光板一体型光学補償フィルムは、ロールツーロールで長尺状に作製し、その後所望の大きさに裁断して、液晶表示装置に組み込むことができるので、簡易な工程で作製可能であり、液晶表示装置の生産性の改善にも寄与する。
【0175】
本発明の偏光板一体型光学補償フィルムの一実施形態は、少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜と、(B)分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムを含み、厚み方向のレターデーションRthが−200nm〜−50nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜と、前記偏光膜と前記第2位相差膜との間に、(C)長手方向に実質的に直交する遅相軸を有する長尺状の第1位相差膜とを有する。本実施形態の偏光板一体型光学補償フィルムは、偏光膜としての機能のみならず、前記第1位相差領域及び第2位相差領域としての光学特性を満足する位相差膜をそれぞれ有する。本実施形態の偏光板一体型光学補償フィルムは、偏光膜、第1位相差膜及び第2位相差膜の光学的軸合わせが容易であり、例えば、ロールツーロールで長尺状に作製され、所定の大きさに裁断された後、液晶表示装置(例えば図2の構成の液晶表示装置)に用いられる。
【0176】
本発明の偏光板一体型光学補償フィルムの他の実施形態は、少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜と、(B)分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムを含み、厚み方向のレターデーションRthが−200nm〜−50nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜と、(C)長手方向に実質的に平行な遅相軸を有する長尺状の第1位相差膜とを、この順序で有する。本実施形態の偏光板一体型光学補償フィルムは、偏光膜としての機能のみならず、前記第1位相差領域及び第2位相差領域としての光学特性を満足する位相差膜をそれぞれ有する。本実施形態の偏光板一体型光学補償フィルムは、偏光膜、第1位相差膜及び第2位相差膜の光学的軸合わせが容易であり、例えば、ロールツーロールで長尺状に作製され、所定の大きさに裁断された後、液晶表示装置(例えば図3の構成の液晶表示装置)に用いられる。
【0177】
第1位相差膜及び第2位相差膜は、長尺の形態で偏光膜と積層される。例えば、第1位相差膜が、液晶性化合物を含有する組成物から形成される態様では、長尺状の分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートを含むフィルムを搬送しつつ、その表面に連続的に配向膜組成物の溶液を塗布することで配向膜を形成し、その表面を連続的にラビング処理を行い、ラビング処理面に液晶化合物を含む溶液を連続的に塗布することで、長尺状の第1位相差膜と第2位相差膜との積層体を作製することができる。
【0178】
液晶性化合物を含有する組成物から形成された長尺状の第1位相差膜の遅相軸方向は、フィルム長手方向に対して実質的に平行方向、または、直交方向である。上記のように、長尺フィルム上に形成した配向膜を搬送しながら連続的にラビング処理を行うことで液晶化合物を配向させるときには、長手方向に対して平行方向もしくは直交方向のどちらに液晶分子を配向させるかによって適宜配向膜素材を選ぶことができる。第1位相差膜の遅相軸をラビング方向と平行に(すなわち、長手方向と平行に)発現させたい場合には、ポリビニルアルコール系の配向膜などを用いることができる。また、第1位相差膜の遅相軸をラビング方向と直交に(すなわち、長手方向と直交に)発現させたい場合には、特開2002−98836号公報の段落[0024]〜[0210]に記載の直交配向膜などを用いることができる。広く一般に使用されているヨウ素を用いた偏光膜は、連続縦一軸延伸プロセスによって製造されるため、ロールの長手方向と平行に吸収軸がある。したがって、一般的な縦一軸延伸された長尺の偏光膜と、長尺の第1位相差膜を、偏光膜の吸収軸と第1位相差膜の遅相軸とが直交するようにロールトゥロールにより貼り合せる場合には、上記直交配向膜を用いるのが好ましい。
【0179】
なお、本発明の偏光板一体型光学補償フィルムは、偏光膜の上記位相差膜が形成されている側と反対の表面に、偏光膜用保護膜を有していてもよい。また、偏光膜と上記位相差膜との間にも、偏光膜偏光膜用の保護膜を有していてもよいが、かかる場合は、該保護膜の複屈折性に基づくレターデーションは小さいのが好ましく、面内のレターデーションRe及び厚み方向のレターデーションRthは、いずれも0nmに近い程好ましい。
【実施例】
【0180】
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
【0181】
<IPSモード液晶セルの作製>
一枚のガラス基板上に、図1に示す様に、隣接する電極間の距離が20μmとなるように電極(図1中2及び3)を配設し、その上にポリイミド膜を配向膜として設け、ラビング処理を行った。図1中に示す方向4に、ラビング処理を行った。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を設け、ラビング処理を行って配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が反平行となるようにして重ねて貼り合わせ、次いで屈折率異方性(Δn)が0.0769及び誘電率異方性(Δε)が正の4.5であるネマティック液晶組成物を封入した。液晶層のd・Δnの値は300nmであった。
【0182】
<強誘電性液晶セルの作製>
ITO電極付ガラス基板上ポリイミド膜を配向膜として設け、ラビング処理を行なった。この基板を2枚製作し、配向膜同士を対向させて、基板の間隔(ギャップ;d)を1.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わ、次いで屈折率異方性(Δn)が0.15及び自発分極(Ps)が12nCcm-2である強誘電性液晶組成物を封入した。液晶層のd・Δnの値は280nmであった。
【0183】
<第1位相差領域1、第1位相差領域2、第1位相差領域3、第1位相差領域4、第1位相差領域5の作製>
ポリカーボネートのペレットをメチレンクロライドに溶解し、金属製のバンド上に流延し、続いて乾燥することにより厚さ80μmのポリカーボネートフィルムを得た。ポリカーボネートフィルムを170℃の温度条件で横一軸テンター延伸機を用いて幅方向に3.5%、及び4.5%の一軸延伸を行い、それぞれ長さ500mの第1位相差領域1、及び第1位相差領域2を得た。さらにこの厚さ80μmのポリカーボネートフィルムを、170℃の温度条件で長手方向に3.5%、幅方向に1%の二軸延伸を行い、長さ500mの第1位相差領域3を得た。続いてこの厚さ80μmのポリカーボネートフィルムを、170℃の温度条件で長手方向に及び4.5%の一軸延伸を行い、長さ500mの第1位相差領域4を得た。さらに、厚さ100μmのロール状のノルボルネン系ポリマーフィルム(アートン、JSR(株)製)を長手方向に、温度180℃で連続的に延伸し、長さ500mの第1位相差領域5を得た。
【0184】
<第1位相差領域7の作製>
市販のノルボルネン系フィルム(商品名「ゼオノア」、日本ゼオン(株)製)を170℃の温度条件で横一軸テンター延伸機を用いて幅方向に1.25倍の延伸処理を行った後に、クリップ保持部分を切り落として巻き取り、第1位相差領域7を得た。
【0185】
<第1位相差領域8の作製>
市販のノルボルネン系フィルム(商品名「アートン」、JSR(株)製)フィルムを横一軸テンター延伸機を用いて、145℃の温度条件で幅方向に1.27倍の延伸処理を行った。このときフィルムの搬送テンションを調整して長さ方向には3%収縮するようにした。延伸処理後に、クリップ保持部分を切り落として巻き取り、第1位相差領域8を得た。
【0186】
<第1位相差領域9の作製>
特開2005−352138の実施例に記載されたセルロースアシレートフィルムS6と同様の方法で作製し、第1位相差領域9を得た。
【0187】
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性を測定し、これらの光学特性を算出したところ、第1位相差領域1はReが100nm、Rthが50nmで、Nzが1.0であり、第1位相差領域2はReが140nm、Rthが70nmで、Nzが1.0であり、第1位相差領域3はReが80nm、Rthが80nmで、Nzが1.5あり、いずれも遅相軸が長尺状フィルムの長手方向に直角にあった。また、第1位相差領域4はReが140nm、Rthが70nmで、Nzが1.0で第1位相差領域5はReは170nm、Rthは85nmであり、Nzが1.0であり、第1位相差領域7はReが93nm、Rthが133nmで、Nzが1.9であり、第1位相差領域8はReが102nm、Rthが123nmで、Nzが1.7であり、いずれも遅相軸が長尺状フィルムの長手方向に平行にあることが確認できた。
【0188】
《第2位相差領域および保護フィルムの作製》
下記に従い、ロール状の第2位相差領域A〜Eを作製した。
(セルロースアシレートの調製)
表1に記載のアシル基の種類、置換度の異なるセルロースアシレートを下記の方法により合成した。分極率異方性Δαは上述の方法にしたがって測定した。本発明のセルロースアシレートは、アルドリッチ社製セルロースアセテート(アセチル置換度2.45)もしくはダイセル社製セルロースアセテート(アセチル置換度2.41(商品名:L−70)、2.14(商品名:LM−80))を出発原料として、対応する酸クロリドとの反応により得ることができる。
【0189】
[合成例1:アサロン酸クロリドの合成]
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにアサロン酸(2,4,5−トリメトキシ安息香酸)106.1g、トルエン400mlを量り取り、80℃で攪拌した。ここに40.1mLの塩化チオニルをゆっくりと滴下し、添加後さらに80℃にて2時間攪拌した。反応後、アスピレーターを用いて反応溶媒を溜去すると白色固体が得られた。得られた白色固体にヘキサン300mlを加えて激しく攪拌・分散し、吸引ろ過により白色固体をろ別し、さらに大量のヘキサンで3回洗浄を行った。得られた白色固体を60℃で4時間真空乾燥することにより目的のアサロン酸クロリドを白色粉体として得た。(115.3g、収率99%)
【0190】
[合成例2:セルロースアシレート1の合成]
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにアルドリッチ社製セルロースアセテート(アセチル置換度2.45)40g、ピリジン46.0ml、塩化メチレン300mlを量り取り、室温で攪拌した。ここに合成例1のアサロン酸クロリド84.0gを数回に分割して粉体添加し、添加後さらに室温にて6時間攪拌した。反応後、反応溶液をメタノール4Lへ激しく攪拌しながら投入すると、白桃色固体が析出した。白桃色固体を吸引ろ過によりろ別し、大量のメタノールで3回洗浄を行った。得られた白桃色固体を60℃で終夜乾燥した後、90℃で6時間真空乾燥することにより目的の化合物を白桃色粉体として得た。得られたサンプルについて、置換度の測定はC13−NMRにおけるアシル基中のカルボニル炭素のピーク強度から置換度を求めた。
【0191】
[合成例3:セルロースアシレート2の合成]
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにアルドリッチ社製セルロースアセテート(アセチル置換度2.45)40g、ピリジン46.0ml、塩化メチレン300mlを量り取り、室温で攪拌した。ここに62.4mLのベンゾイルクロリドをゆっくりと滴下し、添加後さらに室温にて6時間攪拌した。反応後、反応溶液をメタノール4Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量のメタノールで3回洗浄を行った。得られた白色固体を60℃で終夜乾燥した後、90℃で6時間真空乾燥することにより目的の化合物を白色粉体として得た。合成例2と同様にして置換度を求めた。
【0192】
[合成例4:セルロースアシレート3の合成]
メカニカルスターラー、温度計、冷却管、滴下ロートをつけた1Lの三ツ口フラスコにダイセル社製セルロースアセテート(アセチル置換度2.41)40g、ピリジン46.0ml、塩化メチレン300mlを量り取り、室温で攪拌した。ここに62.4mLのベンゾイルクロリドをゆっくりと滴下し、添加後さらに室温にて4時間攪拌した。反応後、反応溶液をメタノール4Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量のメタノールで3回洗浄を行った。得られた白色固体を60℃で終夜乾燥した後、90℃で6時間真空乾燥することにより目的の化合物を白色粉体として得た。
【0193】
[合成例5:セルロースアシレート4の合成]
ベンゾイルクロリドを添加後の攪拌時間を長くしたこと以外は合成例4と同様にしてセルロースアシレート4を白色粉体として得た。
【0194】
【表1】

【0195】
【表2】

【0196】
(第2位相差領域Aの作製)
合成例2のセルロースアシレート1を120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアシレート溶液を調製した。
【0197】
=====================================
メチレンクロライド 261質量部
メタノール 39質量部
トリフェニルホスフェート 5.9質量部
ビフェニルジフェニルホスフェート 5.9質量部
セルロースアシレート1 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0198】
ミキシングタンクは攪拌羽根を有し、外周を冷却水が循環する400リットルのステンレス製のものを使用した。上記溶媒、およびセルロースアシレート以外の添加剤を投入して撹拌し、分散もしくは溶解させた後、上記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌して、3時間膨潤させた後に再度撹拌を実施した。
なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
このようにして得られたセルロースアシレート溶液を、絶対濾過精度0.01mmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの濾紙(FH025、ポール社製)にて濾過してセルロースアシレート溶液を得た。
【0199】
上記セルロースアシレート溶液を30℃に加温し、流延ギーサー(特開平11−314233号公報に記載)を通して、バンド長60mの鏡面ステンレス支持体上に流延した。流延点は18℃に設定したロールの上に設定し、バンドを支持する他方のロールの温度は35℃とした。また、流延部全体の空間温度は80℃に設定した。流延速度は40m/分、塗布幅は140cmとした。
流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、テンターでフィルム両端を把持した。フィルム幅を徐々に狭めながら110℃のテンター部を搬送し、フィルムを把持した時の幅の98%になるようにしてテンターから離脱させた。フィルム両端のクリップ跡部分を切り取った後、複数のパスロールからなる135℃〜140℃の乾燥部にフィルムを通して残留溶媒量が0.2%以下になるように乾燥させた。このようにして長尺状で膜厚90μmの第2位相差領域Aを得た。
得られた第2位相差領域Aについて、自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0200】
(第2位相差領域Bの作製)
合成例3のセルロースアシレート2を120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアセテート溶液を調製した。素材投入、攪拌は第2位相差領域Aの作製と同様に行った。
【0201】
=====================================
メチレンクロライド 285質量部
メタノール 15質量部
トリフェニルホスフェート 7.0質量部
ビフェニルジフェニルホスフェート 3.5質量部
セルロースアシレート2 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0202】
上記セルロースアシレート溶液を30℃に加温し、完成膜厚を43μmにしたこと以外は第2位相差領域Aの製膜と同様にして第2位相差領域Bを作製した。得られた第位相差領域Bについて自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0203】
(第2位相差領域Cの作製)
第2位相差領域Bで作製したセルロースアシレート溶液を30℃に加温し、完成膜厚を65μmにしたこと以外は第2位相差領域Bと同様にして第2位相差領域Cを作製した。得られた第2位相差領域Cについて自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0204】
(第2位相差領域Dの作製)
合成例4のセルロースアシレート3を120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアセテート溶液を調製した。素材投入、攪拌は第2位相差領域Aの作製と同様に行った。
【0205】
=====================================
メチレンクロライド 261質量部
メタノール 39質量部
下記に示す化合物 12.0質量部
セルロースアシレート3 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0206】
【化35】

【0207】
上記セルロースアシレート溶液を30℃に加温し、完成膜厚を45μmにしたこと以外は第2位相差領域Aの製膜と同様にして第2位相差領域Dを作製した。得られた第2位相差領域Dについて自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0208】
(光学フィルムEの作製)
合成例4のセルロースアシレート3を120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアセテート溶液を調製した。素材投入、攪拌は第2位相差領域Aの作製と同様に行った。
【0209】
=====================================
メチレンクロライド 285質量部
メタノール 15質量部
エチルフタリルエチルグリコレート 2.4質量部
トリフェニルホスフェート 9.0質量部
ビフェニルジフェニルホスフェート 5.9質量部
セルロースアシレート3 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0210】
上記セルロースアシレート溶液を30℃に加温し、流延ギーサーを通して、バンド長60mの鏡面ステンレス支持体上に流延した。流延点は20℃に設定したロールの上に設定し、バンドを支持する他方のロールの温度は35℃とした。また、流延部全体の空間温度は100℃に設定した。流延速度は50m/分、塗布幅は140cmとした。
流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、テンターでフィルム両端を把持した。フィルム幅を一定に保持しながら、110℃のテンター部を搬送した。テンターから離脱し、フィルム両端のクリップ跡部分を切り取った後、複数のパスロールからなる135℃〜145℃の乾燥部にフィルムを通して残留溶媒量が0.1%以下になるように乾燥させた。乾燥後に巻き芯に巻きつけ、長尺状で膜厚80μmの第2位相差領域Eを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0211】
(第2位相差領域Fの作製)
合成例5のセルロースアシレート4を120℃で2時間乾燥させた後、下記に記載に記載の組成物をミキシングタンクに投入し、攪拌して溶解し、セルロースアシレート溶液を調製した。
【0212】
=====================================
メチレンクロライド 335質量部
トリフェニルホスフェート 7.9質量部
ビフェニルジフェニルホスフェート 3.8質量部
セルロースアシレート4 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0213】
上記セルロースアシレート溶液を30℃に加温し、幅800mmの流延ギーサーを通して、鏡面ステンレス支持体上に流延した。流延点は20℃に設定したロールの上に設定し、バンドを支持する他方のロールの温度は30℃とした。また、流延部全体の空間温度は50℃に設定した。流延速度は3m/分、塗布幅は80cmとした。
流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、テンターでフィルム両端を把持した。フィルム幅を1.03倍になるようにテンターパターンを調整し、110℃のテンター部を搬送した。テンターから離脱し、フィルム両端のクリップ跡部分を切り取った後、複数のパスロールからなる135℃〜145℃の乾燥部にフィルムを通して残留溶媒量が0.1%以下になるように乾燥させた。乾燥後に巻き芯に巻きつけ、長尺状で膜厚115μmの第2位相差領域Fを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0214】
(第2位相差領域Gの作製)
完成厚みを70μmとし、テンター保持後にフィルム幅を一定になるように調整したこと以外は第2位相差領域Eと同様にして作製し長尺状の第2位相差領域Gを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0215】
(第2位相差領域Hの作製)
合成例5のセルロースアシレート4を120℃で2時間乾燥させた後、下記に記載に記載の組成物をミキシングタンクに投入し、攪拌して溶解し、セルロースアシレート溶液を調製した。
【0216】
=====================================
メチレンクロライド 291質量部
メタノール 44質量部
セルロースアシレート4 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0217】
上記セルロースアシレート溶液を30℃に加温し、幅800mmの流延ギーサーを通して、鏡面ステンレス支持体上に流延した。流延点は22℃に設定したロールの上に設定し、バンドを支持する他方のロールの温度は30℃とした。また、流延部全体の空間温度は70℃に設定した。流延速度は3m/分、塗布幅は80cmとした。
流延部から50cm手前で、流延して回転してきたセルロースアシレートフィルムをバンドから剥ぎ取り、テンターでフィルム両端を把持した。フィルム幅を一定に保持しながら、110℃のテンター部を搬送した。テンターから離脱し、フィルム両端のクリップ跡部分を切り取った後、複数のパスロールからなる135℃〜145℃の乾燥部にフィルムを通して残留溶媒量が0.1%以下になるように乾燥させた。乾燥後に巻き芯に巻きつけ、長尺状で膜厚80μmの第2位相差領域Gを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0218】
(第2位相差領域Iの作製)
完成厚みを50μmとしたこと以外は第2位相差領域Hと同様にして作製し長尺状の第2位相差領域Iを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0219】
(第2位相差領域Jの作製)
完成厚みを167μmとしたこと以外は第2位相差領域Hと同様にして作製し長尺状の第2位相差領域Iを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0220】
(第2位相差領域Kの作製)
合成例5のセルロースアシレート4を120℃で2時間乾燥させた後、下記に記載に記載の組成物をミキシングタンクに投入し、攪拌して溶解し、セルロースアシレート溶液を調製した。
【0221】
=====================================
メチレンクロライド 308質量部
メタノール 27質量部
トリフェニルホスフェート 3.8質量部
ビフェニルジフェニルホスフェート 1.9質量部
セルロースアシレート4 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0222】
完成膜厚を95μmとしたこと以外は第2位相差領域Hと同様にして作製し長尺状の第2位相差領域Jを得た。
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0223】
(第2位相差領域Lの作製)
合成例4のセルロースアシレート3を120℃で2時間乾燥させた後、下記に記載の組成物をミキシングタンクに投入し、加熱しながら攪拌して各成分を溶解し、セルロースアセテート溶液を調製した。素材投入、攪拌は第2位相差領域Aの作製と同様に行った。
【0224】
=====================================
メチレンクロライド 285質量部
メタノール 15質量部
トリフェニルホスフェート 10.0質量部
ビフェニルジフェニルホスフェート 5.0質量部
セルロースアシレート2 100質量部
2酸化ケイ素微粒子 0.25質量部
=====================================
【0225】
上記セルロースアシレート溶液を30℃に加温し、完成膜厚を50μmにしたこと以外は第2位相差領域Aの製膜と同様にして第2位相差領域Bを作製した。得られた第位相差領域Lについて自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、レターデーションの光入射角度依存性を測定し、光学特性を算出した。結果を表2に示した。
【0226】
【表3】

【0227】
【表4】

【0228】
<偏光板一体型光学補償フィルム1の作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTFY80UF、富士写真フイルム(株)製)を、もう一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックT40UZ、富士写真フイルム(株)製、厚さ40μm、Re=1nm、Rth=35nm)を、ポリビニルアルコール系接着剤を用いて連続して貼り合わせた。さらに前述の第1位相差領域1を接着剤を用いて、T40UZの上に連続して貼り合わせた。続いて、この第1位相差領域1側に前述の第2位相差領域Cを接着剤を用いて連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム1を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域1の遅相軸はフィルム長手方向に対して直交していた。
このロール状の偏光板一体型光学補償フィルム1の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板1を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になる(第1位相差領域1の遅相軸と直交する)ように行った。
【0229】
<偏光板一体型光学補償フィルム2の作製>
上述と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を、もう一方の面に、ケン化処理した上述の第2位相差領域Eを、ポリビニルアルコール系接着剤を用いて連続して貼り合わせた。さらに前述の第1位相差領域2を接着剤を用いて、第2位相差領域Eの上に連続して貼り合わせた。続いて、この第1位相差領域2側に前述のフィルムA(第2位相差領域)を接着剤を用いて連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム2を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域2の遅相軸はフィルム長手方向に対して直交していた。
このロール状の偏光板一体型光学補償フィルム2の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板2を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0230】
<偏光板一体型光学補償フィルム3の作製>
上述と同様にして長さ500mの偏光膜を得た。この偏光膜の両面に、ケン化処理したフジタックTD80UFを用いて連続して貼り合わせた。さらに前述の第1位相差領域3を接着剤を用いてフジタックTD80UFの上に連続して貼り合わせた。続いて、この第1位相差領域3側に第2位相差領域Aと第2位相差領域Bを接着剤を用いて連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム3を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第一位相差領域の遅相軸はフィルム長手方向に対して直交していた。なお、AとBのReおよびRthの光学特性には加成性が認められ、フィルムAとBの積層体のReは−3nmであり、Rthは−150nmであると推定される。
このロール状の偏光板一体型光学補償フィルム3の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板3を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0231】
<偏光板一体型光学補償フィルム4の作製>
上述と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を、もう一方の面に第2位相差領域Bと第2位相差領域Dを用いて連続して貼り合わせた。さらに前述の第1位相差領域5を接着剤を用いて第2位相差領域Dの上に連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム4を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域5の遅相軸はフィルム長手方向に対して平行であった。なお、第2位相差領域Bと第2位相差領域DのReおよびRthの光学特性には加成性が認められ、BとDの積層体のReは0nmであり、Rthは−97nmであると推定される。
このロール状の偏光板一体型光学補償フィルム4の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板4を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0232】
<偏光板一体型光学補償フィルム5の作製>
上述と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を、もう一方の面に第2位相差領域Aを用いて連続して貼り合わせた。さらに前述の第1位相差領域4を接着剤を用いて第2位相差領域Aの上に連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム5を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域4の遅相軸はフィルム長手方向に対して平行であった。
このロール状の偏光板一体型光学補償フィルム5の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板5を20枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0233】
<偏光板一体型光学補償フィルム6の作製>
(第1位相差領域6の形成)
上記フィルムAの表面をケン化後、このフィルムを搬送しながら、フィルム上に下記の組成の配向膜塗布液をワイヤーバーコーターで20ml/m2塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、膜を形成した。次に、形成した膜にフィルムの長手方向と平行の方向にラビング処理を施して配向膜を形成した。
配向膜塗布液の組成
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド 0.5質量部
【0234】
【化36】

【0235】
上記配向膜の上に、以下の組成の塗布液をバーコーターを用いて連続的に塗布した。塗布層を100℃で1分間加熱して、棒状液晶分子を配向させた後、紫外線を照射して棒状液晶分子を重合させ、配向状態を固定した。
【0236】
第1位相差領域6の塗布液組成
―――――――――――――――――――――――――――――――――
下記の棒状液晶化合物 38.4質量%
下記の増感剤 0.38質量%
下記の光重合開始剤 1.15質量%
下記の空気界面水平配向剤 0.06質量%
メチルエチルケトン 60.0質量%
―――――――――――――――――――――――――――――――――
【0237】
【化37】

【0238】
【化38】

【0239】
【化39】

【0240】
【化40】

【0241】
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)社製)を用いて、第1位相差領域6を形成したフィルムのReの光入射角度依存性を測定し、予め測定した第2位相差領域Aの寄与分を差し引くことによって、第1位相差領域6のみの光学特性を算出した。Reは137nm、Rthは69nm、Nz値は1.0、棒状液晶分子の長軸の層平面に対する平均傾斜角は0°であり、フィルム平面に対して平行に配向していた。また、棒状液晶性分子は、長軸方向がロール状セルロースアセテートフィルムの長手方向と平行になるように配向していた(すなわち、第1位相差領域6の遅相軸方向はロール状第2位相差領域Aの長手方向に平行になっていた)。
上述と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を、もう一方の面にこの第1位相差領域6を形成した第2位相差領域Aを、第2位相差領域Aと偏光膜が接するようにして連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム6を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域の遅相軸はフィルム長手方向に対して平行であった。
このロール状の偏光板一体型光学補償フィルム6の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板6を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0242】
<偏光板一体型光学補償フィルム7の作製>
幅を650mmにしたこと以外は上述と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、裁断して680mm幅とし、ケン化処理したセルローストリアセテートフィルム(フジタックTF80UL、富士写真フイルム(株)製)、もう一方の面に第2位相差領域Fを水溶性接着剤を用いて貼り合せて乾燥させた。
さらに第1位相差領域8を接着剤を用いて第2位相差領域Fの上に連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム7を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域8の遅相軸はフィルム長手方向に対して平行であった。
このロール状の偏光板一体型光学補償フィルム7の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板7を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0243】
<偏光板一体型光学補償フィルム8の作製>
第2位相差領域Fの代わりに第2位相差領域Gを用い、第1位相差領域8の代わりに第1位相差領域5を用いたこと以外は偏光板一体型光学補償フィルム7と同様にして偏光板一体型光学補償フィルム8を作製した。このロール状の偏光板一体型光学補償フィルム8の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板7を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0244】
<偏光板一体型光学補償フィルム9の作製>
第2位相差領域Fの代わりに第2位相差領域Hを用いたこと以外は偏光板一体型光学補償フィルム7と同様にして偏光板一体型光学補償フィルム9を作製した。このロール状の偏光板一体型光学補償フィルム9の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板7を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0245】
<偏光板一体型光学補償フィルム10の作製>
偏光板一体型光学補償フィルム7と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、裁断して680mm幅とし、ケン化処理したセルローストリアセテートフィルム(フジタックTFY80UL、富士写真フイルム(株)製)、もう一方の面に第2位相差領域Iを水溶性接着剤を用いて貼り合せて乾燥させた。
さらに市販の位相差フィルム(ピュアエースWRF 帝人(株)製)を接着剤を用いて第2位相差領域Iの上に連続して貼り合わせて長さ500mの長尺状の偏光板一体型光学補償フィルム10を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域8の遅相軸はフィルム長手方向に対して平行であった。
【0246】
<偏光板一体型光学補償フィルム11の作製>
偏光板一体型光学補償フィルム7と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面に、裁断して680mm幅とし、ケン化処理したセルローストリアセテートフィルム(フジタックTFY80UL、富士写真フイルム(株)製)、もう一方の面に第2位相差領域Jを水溶性接着剤を用いて貼り合せて乾燥させた。
さらに680mm幅に裁断し、けん化処理を施した第1位相差領域9を水溶性接着剤を用いて第2位相差領域Jの偏光子と反対側の面に貼り合せて乾燥させて長尺状の偏光板一体型光学補償フィルム11を作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であり、第1位相差領域8の遅相軸はフィルム長手方向に対して平行であった。
【0247】
<偏光板一体型光学補償フィルム12の作製>
第2位相差領域Fの代わりに第2位相差領域Kを用い、第1位相差領域8の代わりに第1位相差領域7を用いたこと以外は偏光板一体型光学補償フィルム7と同様にして偏光板一体型光学補償フィルム12を作製した。このロール状の偏光板一体型光学補償フィルム8の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板7を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0248】
<偏光板一体型光学補償フィルム13の作製>
偏光板一体型光学補償フィルム1と同様にして長さ500mの偏光膜を得た。この偏光膜の一方の面にけん化処理を施したセルロースアセテートフィルム(TF80UL、富士写真フイルム(株)製)、他方の面に第2位相差領域Dを水溶性粘着剤を用いて貼り合せ、偏光板一体型光学補償フィルム13を得た。
【0249】
<偏光板一体型光学補償フィルム14の作製>
第2位相差領域Fの代わりに第2位相差領域Lを用いたこと以外は偏光板一体型光学補償フィルム7と同様にして偏光板一体型光学補償フィルム8を作製した。このロール状の偏光板一体型光学補償フィルム8の任意の部分から裁断し、20cm×20cmの大きさの積層偏光板7を10枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0250】
<偏光板Aの作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長さ500mの偏光膜を得た。この偏光膜の両面に、ケン化処理したセルローストリアセテートフィルム(フジタックT40UZ、富士写真フイルム(株)製、厚さ40μm、Re=1nm、Rth=35nm)を、ポリビニルアルコール系接着剤を用いて連続して貼り合わせ、長さ500mの偏光板Aを作製した。
偏光膜の吸収軸はフィルム長手方向に対して平行であった。
このロール状偏光板Aの任意の部分から裁断し、20cm×20cmの大きさの偏光板Aを20枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0251】
<偏光板Bの作製>
ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を、もう一方の面にフィルムEとを、ポリビニルアルコール系接着剤を用いて連続して貼り合わせ、長さ500mの偏光板Bを作製した。偏光膜の吸収軸はフィルム長手方向に対して平行であった。
このロール状偏光板Bの任意の部分から裁断し、20cm×20cmの大きさの偏光板Aを50枚得た。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。
【0252】
[実施例1]
<液晶表示装置1の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板1をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、即ち透過軸を黒表示時の液晶分子の遅相軸方向に平行に、第2位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Aをクロスニコルの配置で貼り付け、液晶表示装置1を作製した。
【0253】
上記液晶表示装置1を10台作製し、白表示と黒表示を行い、その正面方向の輝度の比をコントラスト比として求めた。位相差板を含まず、偏光板のみを貼り合せた液晶表示装置のコントラスト比に対して、90%以下であるものを不良品とした。10台の液晶表示装置1のうちの不良品の発生台数は0台であった。
さらに作製した液晶表示装置の漏れ光を測定した。測定はまず、暗室内に設置されたシャーカステン上に、偏光板を貼り合わせない状態で上記IPSモード液晶セルを置き、液晶セルのラビング方向を基準として左方向に45度の方位で、且つ液晶セル法線方向から方向60°の方向に1m離れたところに設置された輝度計で輝度1を測定した。
次いで、上記と同じシャーカステン上に上記液晶表示装置1を同様に配置して、暗表示の状態で同様に輝度2を測定し、これを輝度1に対する100分率で表したものを漏れ光とした。測定した漏れ光の、良品10台の平均値は0.09%であった。
【0254】
[実施例2]
<液晶表示装置2の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板2をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、第2位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置2を作製した。
上記液晶表示装置2を10台作製した。10台の液晶表示装置2のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.06%であった。
【0255】
[実施例3]
<液晶表示装置3の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板3をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、第2位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置3を作製した。
上記液晶表示装置3を10台作製した。10台の液晶表示装置3のうち、不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品1
0台の平均値は0.06%であった。
【0256】
[実施例4]
<液晶表示装置4の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板4をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、第1位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Aをクロスニコルの配置で貼り付け、液晶表示装置4を作製した。
上記液晶表示装置4を10台作製した。10台の液晶表示装置4のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品1
0台の平均値は0.12%であった。
【0257】
[実施例5]
<液晶表示装置5の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板5をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、第1位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置5を作製した。
上記液晶表示装置5を10台作製した。10台の液晶表示装置5のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.05%であった。
【0258】
[実施例6]
<液晶表示装置6の作製>
作製した強誘電性液晶セルの一方に、上記作製した積層偏光板5をその吸収軸が液晶セルの液晶セルに直流電圧10Vを印加した場合の液晶分子の遅相軸と平行になるように(黒表示時の液晶分子の遅相軸方向に直交するように)、且つ第1位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置6を作製した。
上記液晶表示装置6を10台作製した。10台の液晶表示装置6のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.06%であった。
【0259】
[実施例7]
<液晶表示装置7の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板6をその吸収軸を液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)に直交に、第1位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置7を作製した。
上記液晶表示装置7を10台作製した。10台の液晶表示装置7のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.05%であった。
【0260】
[参考例1]
<積層偏光板7の作製>
上記作製したロール状の第1位相差領域6を形成したフィルムAの任意の部分から裁断し、20cm×20cmの大きさの位相差板16Aを10枚得た。なお、裁断は一方の辺が第1位相差領域6の遅相軸と平行になるように行った。
続いて、ヨウ素水溶液中で連続して染色した厚さ80μmのロール状ポリビニルアルコールフィルムを搬送方向に5倍延伸し、乾燥して長さ500mの偏光膜を得た。この偏光膜の一方の面に、ケン化処理したセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)を貼合して、20cm×20cmの大きさに10枚裁断した。なお、裁断は一方の辺が偏光膜の吸収軸と平行になるように行った。位相差板16Aの遅相軸と偏光板の吸収軸が平行になるように、フィルムA側が偏光膜側になるようにして位相差板16Aと偏光板を貼り合せ、積層偏光板7とし、これを10枚作製した。
【0261】
[実施例8]
<液晶表示装置8の作製>
作製したIPSモード液晶セルの一方に、上記作製した積層偏光板7をその吸収軸が液晶セルのラビング方向(黒表示時の液晶分子の遅相軸方向)と直交するように、第1位相差領域が液晶セル側になるように貼り付けた。続いて、液晶セルのもう一方の側に上記作製した偏光板Bをクロスニコルの配置で貼り付け、液晶表示装置8を作製した。
上記液晶表示装置8を10台作製し、実施例1と同様にして調べた不良品の発生台数は3台であった。さらに、左斜め方向60°方向での漏れ光を測定したところ、良品7台の平均値は0.11%であった。この結果から、一旦長尺状の偏光板一体型光学補償フィルムとし、その後、裁断して作製したほうが、偏光板と位相差板とを各々裁断した後、積層して作製するよりも、不良品の発生が極めて少ないことがわかった。
【0262】
[比較例1]
<液晶表示装置9の作製>
実施例1と同様に作製したIPSモード液晶セルの両方に、20cm×20cmの大きさで、一方の辺が偏光膜の吸収軸と平行になるように裁断した市販の偏光板(HLC2−5618、(株)サンリッツ製)をクロスニコルの配置で貼り付け、液晶表示装置9を作製した。
上記液晶表示装置9を10台作製し、実施例1と同様にして調べた不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.55%であった。
【0263】
[実施例9]
<液晶表示装置10の作製>
市販のIPS液晶表示装置(37Z1000 東芝(株)製)のパネルのフロント側の偏光板を剥離し、上記で作製した偏光板一体型光学補償フィルム7を位相差領域が液晶セル側になるように粘着シートを用いて貼り合せた。本発明で作製した偏光板の吸収軸は、剥離した製品の偏光板の吸収軸の方向と合わせた。また、貼り合わせた後、50℃5気圧でオートクレーブ処理を施しIPS液晶セルを用いた液晶表示装置10を作製した。
上記液晶表示装置10を10台作製した。10台の液晶表示装置10のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.05%であった。
【0264】
[実施例10]
<液晶表示装置11〜15の作製>
偏光板一体型光学補償フィルム7の代わりに偏光板一体型光学補償フィルム8〜12を用いたこと以外は液晶表示装置10と同様にして液晶表示装置11〜15を作製した。液晶表示装置10の評価と同様にして不良品の発生台数を調べたところ、発生台数はいずれも0台であった。またモレ光を測定したところ、液晶表示装置11、13は0.04%、液晶表示装置12、15は0.05%、液晶表示装置14は0.06%であった。
【0265】
[実施例11]
<液晶表示装置16の作製>
市販のIPS液晶表示装置(37Z1000 東芝(株)製)のパネルのリア側の偏光板を剥離し、上記で作製した偏光板一体型光学補償フィルム13を位相差領域が液晶セル側になるように粘着シートを用いて貼り合せた。本発明で作製した偏光板の吸収軸は、剥離した製品の偏光板の吸収軸の方向と合わせた。また、貼り合わせた後、50℃5気圧でオートクレーブ処理を施しIPS液晶セルを用いた液晶表示装置16を作製した。
上記液晶表示装置16を10台作製した。10台の液晶表示装置10のうちの不良品の発生台数は0台であった。さらに、実施例1と同様な方法で漏れ光を測定したところ、良品10台の平均値は0.07%であった。
【0266】
[比較例2]
<液晶表示装置17の作製>
偏光板一体型光学補償フィルム7の代わりに偏光板一体型光学補償フィルム14を用いたこと以外は液晶表示装置10と同様にして液晶表示装置17を作製した。液晶表示装置10の評価と同様にして不良品の発生台数を調べたところ、発生台数は1台であった。またモレ光を測定したところ0.49%であった。
【図面の簡単な説明】
【0267】
【図1】本発明の液晶表示装置の画素領域例を示す概略図である。
【図2】本発明の液晶表示装置の一例を示す概略図である。
【図3】本発明の液晶表示装置の他の例を示す概略図である。
【符号の説明】
【0268】
1 液晶素子画素領域
2 画素電極
3 表示電極
4 配向膜のラビング方向
5a、5b 電圧無印加または低印加状態での液晶分子の配向方向
6a、6b 電圧印加状態での液晶分子の配向方向
7a,7b、19a,19b 偏光膜用保護膜
8、20 偏光膜
9、21 偏光膜の偏光透過軸
10 第1位相差領域
11 第1位相差領域の遅相軸
12 第2位相差領域
13、17 基板
14、18 ラビング処理方向
15 液晶層
16 液晶層の遅相軸方向

【特許請求の範囲】
【請求項1】
少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜、(B)下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、厚み方向のレターデーションRthが−300nm〜−40nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜、及び前記偏光膜と前記第2位相差膜との間に、(C)長手方向に実質的に直交する遅相軸を有する長尺状の第1位相差膜を有する長尺状の偏光板一体型光学補償フィルム。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
【請求項2】
少なくとも、(A)長手方向に平行な吸収軸を有する長尺状の偏光膜、(B)下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、厚み方向のレターデーションRthが−300nm〜−40nmで、面内のレターデーションReが50nm以下であり、且つ光学軸がフィルム面内に含まれない長尺状の第2位相差膜、及び(C)長手方向に実質的に平行な遅相軸を有する長尺状の第1位相差膜を、前記偏光膜、前記第2位相差膜及び第1位相差膜の順で配置した長尺状の偏光板一体型光学補償フィルム。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
【請求項3】
前記第1位相差膜のReが60nm〜200nmであり、第1位相差膜のNz=Rth/Re+0.5で定義されるNz値が0.8を超え1.5以下である請求項1又は2に記載の偏光板一体型光学補償フィルム。
【請求項4】
少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層及び該液晶層を挟持する一対の基板を含む液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、第2位相差領域の厚み方向のレターデーションRthが−300nm〜−40nmである液晶表示装置。
【請求項5】
少なくとも、第1偏光膜と、第1位相差領域と、第2位相差領域と、液晶層及び該液晶層を挟持する一対の基板を含む液晶セルと、第2偏光膜とを含み、黒表示時に該液晶層の液晶分子が前記一対の基板の表面に対して平行に配向する液晶表示装置であって、前記第1位相差領域は、面内のレターデーションReが60nm〜200nmで、Nz=Rth/Re+0.5で定義される第1位相差領域のNz値が0.8を超え1.5以下で、且つ面内のレターデーションReが50nm以下であって、前記第2位相差領域は、下記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、且つ前記第1偏光膜の透過軸が、黒表示時の液晶分子の遅相軸方向に平行である請求項4に記載の液晶表示装置。
式(1) : Δα=αx−(αy+αz)/2
(式中、αx、αy、αzは分極率テンソルを対角化後に得られる固有値であり、αx≧αy≧αzを満足する)
【請求項6】
前記第1偏光膜、第1位相差領域、第2位相差領域及び液晶セルが、この順序で配置され、且つ前記第1位相差領域の遅相軸が、第1偏光膜の透過軸に平行である請求項4または5に記載の液晶表示装置。
【請求項7】
前記第1偏光膜、第2位相差領域、第1位相差領域及び液晶セルが、この順序で配置され、且つ第1位相差領域の遅相軸が、第1偏光膜の透過軸に直交である請求項4または5に記載の液晶表示装置。
【請求項8】
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向のレターデーションRthが−40nm〜40nmである請求項4〜7のいずれかに記載の液晶表示装置。
【請求項9】
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚み方向のレターデーションRthが−20nm〜20nmである請求項4〜8のいずれかに記載の液晶表示装置。
【請求項10】
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち少なくとも液晶層に近い側の保護膜の厚みが60μm以下である請求項4〜9のいずれかに記載の液晶表示装置。
【請求項11】
前記第1偏光膜及び第2偏光膜の少なくとも一方を挟んで配置された一対の保護膜を有し、該一対の保護膜のうち液晶層に近い側の保護膜がセルロースアシレートフィルム又はノルボルネン系フィルムである請求項4〜10のいずれかに記載の液晶表示装置。
【請求項12】
前記第1位相差領域又は前記第2位相差領域が前記第1偏光膜に隣接してなる請求項4〜11のいずれかに記載の液晶表示装置。
【請求項13】
前記液晶セルの一対の基板のうち視認側と反対側の基板により近い位置に、他の膜を介することなく前記第1位相差領域及び前記第2位相差領域が配置されている請求項4〜12のいずれかに記載の液晶表示装置。
【請求項14】
前記セルロースアシレートフィルムが延伸処理されていることを特徴とする請求項1〜3のいずれかに記載の偏光板一体型光学補償フィルム。
【請求項15】
前記セルロースアシレートフィルムの分極率異方性Δαが2.5×10−24cm−3以上である置換基が芳香族アシル基であることを特徴とする請求項1,2,3または14に記載の偏光板一体型光学補償フィルム。
【請求項16】
前記セルロースアシレートフィルムのアシル基の総置換度PAが2.4以上3.0以下であり、芳香族アシル基の置換度が0.1以上1.0以下であることを特徴とする請求項15に記載の偏光板一体型光学補償フィルム。
【請求項17】
Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする請求項15または16に記載の偏光板一体型光学補償フィルム。
【請求項18】
前記第2位相差領域は、前記式(1)で表される分極率異方性Δαが2.5×10−24cm−3以上である置換基を含むセルロースアシレートフィルムを含み、前記セルロースアシレートフィルムが延伸処理されていることを特徴とする請求項5〜13のいずれかに記載の液晶表示装置。
【請求項19】
前記セルロースアシレートフィルムの分極率異方性Δαが2.5×10−24cm−3以上である置換基が芳香族アシル基であることを特徴とする請求項4〜13または18のいずれかに記載の液晶表示装置。
【請求項20】
前記セルロースアシレートフィルムのアシル基の総置換度PAが2.4以上3.0以下であり、芳香族アシル基の置換度が0.1以上1.0以下であることを特徴とする請求項19に記載の液晶表示装置。
【請求項21】
Rthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01〜30質量%含むことを特徴とする請求項19または20に記載の液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−286578(P2007−286578A)
【公開日】平成19年11月1日(2007.11.1)
【国際特許分類】
【出願番号】特願2006−265937(P2006−265937)
【出願日】平成18年9月28日(2006.9.28)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】