説明

光ファイバ母材の製造方法及び光ファイバの製造方法

【課題】OH損失が小さい光ファイバの製造に適用でき、製造スケールの大型化が容易で、製造工程も簡便な光ファイバ母材の製造方法、及び該光ファイバ母材を使用する光ファイバの製造方法の提供。
【解決手段】コア11’及び第一クラッド12’を構成する、無水の石英ガラスからなるコア母材1Aを作製する工程と、無水の石英ガラス管130’内にコア母材1Aを挿入し、これらを加熱及び一体化させて、コア母材1Aに無水の石英ガラスからなる第二クラッド13’が積層されてなる無水のガラスロッド1Bを作製する工程と、ガラスロッド1Bに石英ガラス微粒子を外付けし、これを透明ガラス化して、有水の石英ガラスからなる第三クラッド14’を積層する工程と、を有する光ファイバ母材1’の製造方法:かかる製造方法で光ファイバ母材1’を製造し、これを紡糸して、次いで重水素処理する工程を有する光ファイバの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、伝送損失が低減された光ファイバの製造方法、及び該光ファイバの製造に使用する光ファイバ母材の製造方法に関する。
【背景技術】
【0002】
周知のように、光ファイバは1200〜1600nmの波長領域においては、全般的に光の伝送損失は小さいが、通常、波長1383nmには水酸基(−OH)に起因する伝送損失(以下、OH損失と略記することがある)が存在する。この時のピークは広い裾広がりの形状を有するが、このピークを小さくできれば、より広い波長領域の光が使用可能となる。現在、このような低OH損失の光ファイバは、ITU−TのG.652Dとして勧告され、広く適用されている。G.652Dの規格では、OH損失の上限値は決定されておらず、水素試験後のOH損失が、1310〜1625nmの波長領域における最大損失よりも小さいことであると定義されている。一般的に上記波長領域では、波長1310nmでの伝送損失が最大となり、その伝送損失が0.34〜0.35dB/km程度であることから、伝送損失がこれより小さければG.652D準拠となる。そして、一般的には、OH損失が0.31dB/km以下であれば、OH損失が小さい光ファイバであるとされる。
【0003】
一方、光ファイバのさらなる普及のためには、光ファイバの一層の低コスト化が必要となる。そして、光ファイバの低コスト化には、光ファイバ母材の大型化が有効である。
通常、光ファイバ母材の製造方法としては、VAD法や外付け法などのスート法を適用して石英多孔質母材を作製し、これを焼結して透明ガラス化する方法が挙げられる。また、スート法で作製したコアロッドを石英管中に挿入し、加熱炉で加熱することでこれらを一体化する、所謂ロッドインチューブ法が挙げられる。そして、光ファイバは、光ファイバ母材を紡糸することで製造できる。
ここで、光ファイバのOH損失を小さくするためには、光の伝搬領域に含まれる水酸基の量を低減(以下、無水化と略記することがある)する必要がある。そこで従来は、塩素系ガスを使用して石英多孔質母材を無水化処理したり、無水の石英管を使用することが一般的となっている。以下、これらの方法について、具体的に説明する。
【0004】
図10は、従来法で製造された光ファイバを説明するための概略断面図であり、中心軸に対して平行な平面における断面図である。なお、光ファイバは、前記断面において中心軸に対してほぼ左右対称であるため、ここでは、右半分のみを示している。
図10(a)に例示する光ファイバ91は、コア91a及びクラッド91bの一部(911b)をVAD法(スート法)で作製し、クラッド91bの残りの部分(912b)を外付け法(スート法)で作製して、製造したものである。コア91aは光が伝搬する領域であるため、VAD法では無水化処理を行う必要がある。そして、VAD法で作製する領域と外付け法で作製する領域との比率は、任意に設定できるが、VAD法では精密な屈折率制御が必要であり、外付け法よりも製造効率が悪い。そこで、光ファイバ母材の製造コストを低減するためには、VAD法で作製する領域の比率を小さくすることが望ましい。一方で、光ファイバ中を伝搬する光は、クラッドの一部に漏れながらコア中を伝搬する。したがって、VAD法で作製する領域の比率を小さくしていくと、この領域外に光が漏れることがある。そこで、OH損失を小さくするためには、外付け法で作製する領域についても無水化処理を行う必要があり、例えば、クラッドの最外周近傍の領域など、本来であれば伝搬光が到達しないために無水化処理が不要な領域も同時に無水化処理せざるを得ないという問題点があった。また、VAD法で作製する領域と外付け法で作製する領域との比率は、これらの方法を適用する製造設備の能力バランスや製造コストを考慮して決定できるが、光ファイバの製造量が変動した場合、製造設備の能力バランスの調整が難しく、生産性が低いという問題点があった。また、スート法では、石英多孔質母材を経由するため、母材径が大きくなり、塩素系ガスによる無水化処理が難しく、処理不足になる可能性があるという問題点があった。そして、この問題点を解決するためには、長時間の無水化処理が必要であったり、大型の製造設備が必要になるなど、光ファイバ母材の大型化が困難になるという問題点があった。
【0005】
図10(b)に例示する光ファイバ92は、コア92a及びクラッド92bの一部(921b)をVAD法(スート法)で作製してコア母材とし、クラッド92bの残りの部分(922b)を無水石英管で作製する、所謂ロッドインチューブ法で製造したものである。この方法では、コア母材を石英管中に挿入し、加熱炉で加熱することでこれを一体化する。ロッドインチューブ法は、光ファイバ母材の大型化に好適な製造方法であるが、この特徴を生かすためには、無水石英管の領域の比率を大きくする必要があり、この場合、光ファイバ91での説明のように、本来であれば無水化が不要な領域も無水化された高価な無水石英管を使用せざるを得ず、光ファイバ母材の製造コストを低減できないという問題点があった。また、ロッドインチューブ法では、挿入するコア母材の光学特性に応じて、内径、肉厚等のサイズが予め所定の値に設定された無水石英管を準備する必要があり、製造工程が煩雑になるという問題点があった。
【0006】
このように、従来の製造方法では、無水化処理が不要な領域も無水化された原料を使用せざるを得ず、製造工程も煩雑で、光ファイバ母材の大型化も困難であり、光ファイバ母材を低コストで製造するのが困難であった。
これに対して、使用する石英管を二種類とした改良ロッドインチューブ法が開示されている(特許文献1参照)。図10(c)に例示する光ファイバ93は、この方法で製造されたものであり、コア93a及び第一クラッド93bをVAD法(スート法)で作製してコア母材とし、光が伝搬する第二クラッド93cを無水石英管で作製し、光が伝搬しない第三クラッド93dを無水化処理されていない合成石英管又は天然石英管で作製して、製造したものである。この方法によれば、大型化に際して、無水石英管の領域の比率を大きくする必要が無いという長所がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−265095号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、上記の改良ロッドインチューブ法では、石英管を二種類使用するために、製造時において、無水化処理された石英管の径方向内側と外側の双方に空隙部が存在し、コア母材と二種類の石英管を加熱炉で一体化する時に、これらが不均一に潰れ易く、その結果、無水石英管を1種類使用する光ファイバ92の場合と比較して、コア偏心が大きくなり、泡が残留し易くなるという問題点があった。また、組み合わせる二種類の石英管のサイズを考慮する必要があり、通常のロッドインチューブ法よりも製造工程が煩雑になるという問題点があった。
【0009】
本発明は、上記事情に鑑みてなされたものであり、OH損失が小さい光ファイバの製造に適用でき、製造スケールの大型化が容易で、製造工程も簡便な光ファイバ母材の製造方法、及び該光ファイバ母材を使用する光ファイバの製造方法を提供することを課題とする。
【課題を解決するための手段】
【0010】
上記課題を解決するため、
本発明は、コア及び第一クラッドを構成する、無水の石英ガラスからなるコア母材を作製する工程と、無水の石英ガラス管内に前記コア母材を挿入し、これらを加熱及び一体化させて、前記コア母材に無水の石英ガラスからなる第二クラッドが積層されてなる無水のガラスロッドを作製する工程と、前記ガラスロッドに石英ガラス微粒子を外付けし、これを透明ガラス化して、有水の石英ガラスからなる第三クラッドを積層する工程と、を有することを特徴とする光ファイバ母材の製造方法を提供する。
本発明の光ファイバ母材の製造方法においては、前記ガラスロッドを作製する工程において、無水の石英ガラス管内に前記コア母材を挿入し、これらを加熱及び一体化させつつ、長手方向に延伸することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記第三クラッドの水酸基含有量が50ppm以上であっても良い。
本発明の光ファイバ母材の製造方法においては、前記コア母材が、VAD法で作製され、その長手方向に延伸されたものであることが好ましい。
本発明の光ファイバ母材の製造方法においては、前記コア母材を、延伸後、連続的に前記石英ガラス管内に挿入することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記ガラスロッドを作製する工程が、前記石英ガラス管内に支持棒を挿入し、前記石英ガラス管の下方に配置された前記コア母材に前記支持棒を連結する工程(A)と、前記支持棒が連結された前記コア母材を加熱延伸する工程(B)と、延伸後の前記コア母材を前記石英ガラス管内に挿入する工程(C)と、前記石英ガラス管を、挿入された延伸後の前記コア母材と共に予熱した後、前記石英ガラス管の内側を減圧して、前記石英ガラス管及びコア母材を一体化させつつ延伸する工程(D)と、を有することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記工程(B)及び(C)において、前記石英ガラス管内に、上方から不活性ガスを導入することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記工程(B)及び(C)において、前記石英ガラス管内に塩素系ガス及び酸素ガスからなる群より選択される一種以上のガスを、不活性ガスと共に導入することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記工程(D)において、前記石英ガラス管の内側における圧力上昇を確認してから、又は前記石英ガラス管内に導入されている不活性ガスの流量低下を確認してから、前記石英ガラス管の内側を減圧することが好ましい。
本発明の光ファイバ母材の製造方法においては、前記石英ガラス管中のナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、鉄及びチタンの濃度が、いずれも50ppb以下であることが好ましい。
また、本発明は、上記本発明の製造方法で光ファイバ母材を製造し、該光ファイバ母材を紡糸して、次いで重水素処理する工程を有することを特徴とする光ファイバの製造方法を提供する。
本発明の光ファイバの製造方法においては、第一クラッドの外径b、第二クラッドの外径c及び第三クラッドの外径dが、d/b≦4.0、d/c≦2.5の条件を共に満たすことが好ましい。
本発明の光ファイバの製造方法においては、得られた光ファイバの波長1383nmにおける伝送損失が0.31dB/km以下であることが好ましい。
【発明の効果】
【0011】
本発明によれば、OH損失が小さい光ファイバを提供できる。また、該光ファイバの製造に適用でき、製造スケールの大型化が容易で、製造工程も簡便な光ファイバ母材の製造方法を提供できる。
【図面の簡単な説明】
【0012】
【図1】本発明の光ファイバ母材の製造方法を説明するための概略工程図である。
【図2】本発明の光ファイバ母材の製造方法において、コア母材が挿入された石英ガラス管を、加熱及び一体化させつつ、長手方向に延伸する様子を示す概略図である。
【図3】本発明の光ファイバ母材の製造方法において、コア母材を挿入した石英ガラス管を移動させて、加熱炉内へ導入する時の様子を示す概略図である。
【図4】本発明の光ファイバ母材の製造方法において、延伸後のコア母材を連続的に石英ガラス管内に挿入して、ガラスロッドを作製する方法を説明するための概略工程図である。
【図5】図4に示すガラスロッドの作製方法の一例を説明するための概略工程図である。
【図6】本発明の光ファイバ母材の製造方法において、延伸後のコア母材を連続的に石英ガラス管内に挿入して、ガラスロッドを作製する他の方法を説明するための概略工程図である。
【図7】図6に示すガラスロッドの作製方法の一例を説明するための概略工程図である。
【図8】本発明の方法で製造された光ファイバを例示する概略断面図と、その屈折率分布を例示する図である。
【図9】本発明の光ファイバ母材及び光ファイバの製造方法の好ましい実施形態を例示する工程説明図である。
【図10】従来法で製造された光ファイバを説明するための概略断面図である。
【発明を実施するための形態】
【0013】
本発明の光ファイバ母材の製造方法は、コア及び第一クラッドを構成する、無水の石英ガラスからなるコア母材を作製する工程(以下、コア母材作製工程と略記する)と、無水の石英ガラス管内に前記コア母材を挿入し、これらを加熱及び一体化させて、前記コア母材に無水の石英ガラスからなる第二クラッドが積層されてなる無水のガラスロッドを作製する工程(以下、ガラスロッド作製工程と略記する)と、前記ガラスロッドに石英ガラス微粒子を外付けし、これを透明ガラス化して、有水の石英ガラスからなる第三クラッドを積層する工程(以下、第三クラッド積層工程と略記する)と、を有することを特徴とする。
本発明の光ファイバ母材の製造方法は、コアと、光が伝搬する可能性がある第一クラッド及び第二クラッドとを、無水化処理されたものとすることで、OH損失が小さい光ファイバの製造に適用できるものであり、一方で、光が伝搬しない第三クラッドを無水化処理されていない有水のものとすることで、製造スケールの大型化が容易で、製造工程も簡便な光ファイバ母材を製造できるものである。
【0014】
本発明において「無水」とは、水酸基含有量が、赤外線吸収スペクトル分析(IR)による検出限界値程度となるように極限まで低減されていることを指し、具体的には、10ppm未満、好ましくは3ppm以下であることを指す。このような水酸基含有量は、後述する無水化処理で達成できる。
一方、「有水」とは、無水化処理されておらず、水酸基含有量が極限まで低減されていないことを指し、具体的には、10ppm以上、好ましくは50ppm以上であることを指す。
【0015】
また、本発明の光ファイバの製造方法は、上記本発明の製造方法で光ファイバ母材を製造し、該光ファイバ母材を紡糸して、次いで重水素処理する工程を有することを特徴とする。かかる方法で製造された光ファイバは、OH損失が小さく、光学特性が良好なものである。
【0016】
<光ファイバ母材の製造方法>
以下、図1を参照しながら、本発明の光ファイバ母材の製造方法について、工程ごとに詳しく説明する。
(コア母材作製工程)
コア母材作製工程では、コア及び第一クラッドを構成する、無水の石英ガラスからなるコア母材を作製する。
コア母材の作製方法は特に限定されず、公知の方法を適用すれば良いが、スート法を利用する方法が好ましい。すなわち、VAD法や外付け法などの火炎加水分解法により得られた石英ガラス微粒子を、脱水剤(例えば、ハロゲン系ガス、特に塩素系ガス)雰囲気下で石英ガラス微粒子の形態を維持できる温度(例えば、1100〜1300℃程度)で加熱して脱水(無水化)処理し、次いで、この脱水処理された石英ガラス微粒子を、不活性ガス(例えば、ヘリウムガス)雰囲気下で加熱(例えば、1400〜1600℃)して焼結処理し、透明ガラス化する方法が好ましい。
また、コア母材の作製方法としては、プラズマ法、MCVD法などの酸化法も例示できる。
【0017】
本工程により、図1(a)に示すように、コア11’及び第一クラッド12’からなるコア母材1Aが得られる。図1は、本発明の光ファイバ母材の製造方法を説明するための概略工程図であり、光ファイバ母材の中心軸に対して平行な平面における断面図である。なお、光ファイバ母材とその作製過程にあるものは、前記断面において中心軸に対していずれもほぼ左右対称であるため、ここでは、右半分のみを示している。
【0018】
本発明においては、特に水酸基含有量を上記のように10ppm未満とすることを「無水化処理」と呼ぶ。通常の分光学的手法による分析での検出限界値程度にまで水酸基含有量が低減されていれば、波長1383nmでの光の伝送損失を十分に抑制できる。したがって、コア母材作製工程とは、無水化処理されたコア母材1Aを作製する工程である。
【0019】
(ガラスロッド作製工程)
次いで、ガラスロッド作製工程では、図1(b)に示すように、無水の石英ガラス管130’内に、コア母材1Aを挿入する。図1(b)では、コア母材1Aと石英ガラス管130’の中心軸が互いにほぼ一致するように挿入した場合を示している。
【0020】
石英ガラス管130’中のナトリウム(Na)、カリウム(K)、カルシウム(Ca)、マグネシウム(Mg)、アルミニウム(Al)、鉄(Fe)及びチタン(Ti)の濃度は、いずれも50ppb以下であることが好ましい。このような石英ガラス管130’を使用することで、光学特性が良好な光ファイバ母材及び光ファイバが得られる。なお、これらの濃度は、例えば、ICP発光分光分析法等の常法により測定できる。
石英ガラス管130’は、コア母材1Aの場合と同様の方法で無水化処理できる。
石英ガラス管130’としては、市販品を使用しても良い。
【0021】
次いで、コア母材1Aが挿入された石英ガラス管130’を加熱及び一体化させて、図1(c)に示すように、コア母材1Aに無水の石英ガラスからなる第二クラッド13’が積層されてなる無水のガラスロッド1Bを作製する。
本工程は、公知のロッドインチューブ法で行えば良い。ロッドインチューブ法により、コア母材1Aと石英ガラス管130’との間の空隙部が潰れて一体化され、ガラスロッド1Bが得られる。
【0022】
ロッドインチューブ法では、例えば、コア母材1Aが挿入された石英ガラス管130’を、その内側を減圧しながら加熱及び一体化させることが好ましく、さらに、加熱及び一体化させる時に、同時にこれらを長手方向に延伸することが好ましい。図2は、コア母材1Aが挿入された石英ガラス管130’を、加熱及び一体化させつつ、長手方向に延伸する様子を示す概略図である。なお、図2において、図1に示す要素と同じものには図1の場合と同じ符号を付し、その詳細な説明は省略する。これは、図3以降においても同様である。
【0023】
この時は、例えば、ヒータ81を備えた加熱炉8の内部に、コア母材1Aが挿入された石英ガラス管130’を挿入し、これらを矢印の方向に下降させて加熱及び一体化させながら、さらに長手方向に延伸すれば良い。加熱炉8の外部に引き出されたガラスロッド1Bのように、加熱及び一体化により、コア母材1Aと石英ガラス管130’との間の空隙部が潰れて、これらは一体化され、さらに長手方向への延伸により、ガラスロッド1Bの外径D1Bは、石英ガラス管130’の外径よりも縮小される。
【0024】
石英ガラス管130’の内側の圧力は、コア母材1A及び石英ガラス管130’のサイズ、延伸速度等を考慮して、適宜設定すれば良い。例えば、ゲージ圧を−0.1MPa程度とすることで、前記空隙部を潰すだけでなく、コア母材1A挿入時の傷に起因する泡の残留の抑制効果が高くなる。
【0025】
ガラスロッド1Bのサイズ(外径、長さ)は、次工程の製造条件を考慮して適宜設定すれば良い。例えば、コストダウンを目的として光ファイバ母材を大型化する場合には、外径D1Bを40mm以上とすることが好ましく、50mm以上とすることがより好ましい。
【0026】
本工程では、図3に示すように、石英ガラス管130’の端部にダミー石英管19’を接続したものを使用すれば、石英ガラス管130’の両端部までガラスロッド1Bの作製に使用できる。図3は、ガラスロッド作製工程において、コア母材1Aを挿入した石英ガラス管130’を矢印の方向へ移動させて、加熱炉(図示略)内へ導入する時の様子を示す概略図である。さらにこの時、ダミー石英管19’を把持すれば、ガラスロッド1Bを大型化する場合でも、石英ガラス管130’の落下を抑制する効果が高くなる。
なお、図3中、符号17は、石英ガラス管130’の内部の圧力を調節するためのキャップであり、符号18は、後述するように、コア母材1Aと石英ガラス管130’とを調心するための調心部材である。
【0027】
本工程では、作製後のコア母材1Aをそのまま使用しても良いし、長手方向(中心軸方向)に延伸して使用しても良い。
【0028】
VAD法で作製したコア母材1Aは、通常長手方向において若干の外径変動が生じ得る。そこで、延伸せずに使用した場合、石英ガラス管130’と加熱及び一体化させてガラスロッドとした時に、第一クラッド12’と第二クラッド13’との外径比が長手方向において変動することがある。この時、コア母材1Aの外径D1Aが大きい部位では、相対的に第二クラッド13’の厚さが薄くなり、その程度によっては、伝搬光の漏れに伴うOH損失の発生が懸念される。そこで、外径変動があるコア母材1Aを延伸せずに使用する場合には、コア母材1Aの外径D1Aが最も大きい部位において、第二クラッド13’の厚さが十分となるような厚さの石英ガラス管130’を選択することが好ましい。
【0029】
本工程で、コア母材1Aを延伸せずに使用する場合には、最終的に光ファイバとした時に、コアの偏心量が増大することがある。そこで、コア母材1Aと石英ガラス管130’との間の空隙部においては、径方向の距離(クリアランス)L(=D130’/2−D1A/2)を4mm以下とすることが好ましい。ここで、「D1A」はコア母材1Aの外径を、「D130’」は石英ガラス管130’の内径をそれぞれ示す。このようにすることで、コア母材1Aの外径が長手方向において変動している場合でも、コアの偏心量を低減する高い効果が得られる。
【0030】
そして、コア母材1Aを石英ガラス管130’内に挿入した後に、これらを調心することで、コアの偏心量を一層低減できる。調心は公知の方法で行えば良く、例えば、図3に示すように、コア母材1Aをその上端で支持して行う方法が例示できる。このようにすることで、コア母材1Aの外径が長手方向において変動している場合でも、コアの偏心量を低減する高い効果が得られる。
【0031】
コア母材1Aを延伸せずに使用した場合には、工程数を削減できると共に、ダミー部の取り付けに伴う余長部の確保が不要となり、歩留まりの向上とさらなるコスト低減が可能となる。
【0032】
一方、コア母材1Aを延伸して使用する場合には、上記のようなコア母材1Aの外径変動の問題が無くなる。そして、延伸後に、使用する石英ガラス管130’の長さに応じて、コア母材1Aを切断すれば良い。この時、延伸後のコア母材1Aの屈折率分布をプリフォームアナライザーで測定すれば、光ファイバ母材の特性を一層正確に推定できる。
【0033】
コア母材1Aを延伸する場合には、例えば、ガラスロッド1Bを作製する装置を使用すれば、延伸後のコア母材1Aを装置から取り出すことなく、連続的に石英ガラス管130’内に挿入して、ガラスロッド1Bを作製できる。図4〜7は、このようなガラスロッド1Bの作製方法を説明するための概略工程図であり、コア母材1Aの中心軸に対して平行な平面における断面図である。
【0034】
例えば、図4(a)に示すように、ヒータ81を備えた加熱炉8の内部にコア母材1Aを挿入して、矢印の方向に下降させながらコア母材1Aを加熱して延伸する。この時、石英ガラス管130’も共に下降させても良い。なお、加熱炉8は図2に示すものと同じものである。
次いで、図4(b)に示すように、延伸後のコア母材1Aを矢印の方向に上昇させて、石英ガラス管130’内に挿入する。
次いで、図4(c)に示すように、延伸後のコア母材1Aが挿入された石英ガラス管130’を、コア母材1Aと共に矢印の方向に下降させて、加熱及び一体化を行いながら、さらに長手方向に延伸することで、図4(d)に示すように、ガラスロッド1Bを作製する。例えば、図4(c)では、コア母材1Aの下端部に接続されているダミー部の、加熱による不必要な延伸を抑制するために、石英ガラス管130’がヒータ81の近傍に到達するまでは、ヒータ81の温度を低下させることが好ましい。
【0035】
ここで、図4を参照して説明したガラスロッド1Bの作製方法のうちの一例を、図5を参照しながらより詳細に説明する。
本法では、まず、石英ガラス管130’内に、コア母材1Aを支持するための支持棒61を挿入し、石英ガラス管130’の下方に配置されたコア母材1Aに支持棒61を連結する(工程(A))。より具体的には、例えば、以下の通りである。
図5(a)に示すように、石英ガラス管130’を加熱炉8の上部に配置する。石英ガラス管130’の上端部には、ダミー石英管19’が接続されており、周知の上部把持手段71でダミー石英管19’を把持することで、石英ガラス管130’を固定する。
【0036】
次いで、図5(b)に示すように、ダミー石英管19’の上端部に、石英ガラス管130’及びダミー石英管19’の内部の圧力を調節するためのキャップ17を装着し、支持棒61をキャップ17に挿通させつつ、石英ガラス管130’内に上部から挿入する。なお、キャップ17は、あらかじめダミー石英管19’に装着しておいても良い。
次いで、コア母材1Aを加熱炉8の下部に配置する。コア母材1Aの上端部には上側ダミー部161が接続され、下端部には下側ダミー部162が接続されており、上側ダミー部161を支持棒61の下端部に連結し、周知の下部把持手段72で下側ダミー部162を把持することで、コア母材1Aを固定する。
なお、ここでは、コア母材1Aとして一端から他端へかけて外径が変化するもの(テーパ状のもの)を使用し、外径が大きい方の端部を下側にして配置した例を示しているが、配置形態はこれに限定されず、外径が大きい方の端部を上側にして配置しても良いし、外径が一定のコア母材を使用しても良い。コア母材1Aは、その作製過程でこのように外径が変化したものが得られ易い。例えば、コア母材の延伸時には、延伸条件によってはコア母材の延伸方向とは反対側の端部(図5の場合には、コア母材1Aの上端部)が、延伸方向側の端部(図5の場合には、コア母材1Aの下端部)よりも外径が小さくなることがある。このような場合には、外径が大きい方の端部を延伸方向とは反対側(図5の場合には上側)にしてコア母材を配置することで、延伸後のコア母材の外径変動をより抑制することが可能となる。このように、コア母材の取り付け方向は、延伸条件、コア母材の外径変動の状態等に応じて適宜選択できる。
【0037】
本法では、次いで、支持棒61が連結されたコア母材1Aを加熱延伸する(工程(B))。より具体的には、例えば、以下の通りである。
図5(c)に示すように、石英ガラス管130’を下降させ、下端部を加熱炉8の内部に挿入する。この時、キャップ17に設けられたガス配管62を介して、石英ガラス管130’の上端側から内部に不活性ガスを導入することが好ましい。このようにすることで、加熱炉8内から石英ガラス管130’内への異物の混入が抑制される。前記不活性ガスは特に限定されないが、窒素ガス、アルゴンガス又はヘリウムガスが好ましい。
【0038】
なお、ここでは、加熱炉8として、その上部(石英ガラス管130’の挿入側)にシール部材82が設けられたものを示しているが、図5以外の図面に示した加熱炉においても、図示は省略しているが、同様にシール部材が設けられていることが好ましい。シール部材82は、石英ガラス管130’が挿入された状態において、加熱炉8の内部を外気から遮断して密閉性を向上させるものであり、カーボン等の耐熱性を有する材質でシート状のものである。シール部材82としては、例えば、石英ガラス管130’が挿入される円形状の開口部を有するものが例示でき、該開口部には径方向外側へ向けて切れ目が形成されていると、石英ガラス管130’の表面との密着性が一層向上する。そして、シール部材82は、一つのみ設けても良いし、複数積層して設けても良い。前記切れ目を有するシール部材82を複数積層する場合には、切れ目が層ごとに重ならないようにシール部材82を配置することが好ましい。
また、ここでは図示を省略しているが、加熱炉8の下側(下部)開口部には、コア母材1Aやガラスロッド1Bが加熱炉8の内部から外部へ突出した状態において、加熱炉8の内部を外気から遮断して密閉性を向上させるための第二のシール部材が設けられていても良い(第二のシール部材を設ける場合には、加熱炉の上部に設けるシール部材(シール部材82)を「第一のシール部材」と称することにする)。これは、図5以外の図面に示した加熱炉においても同様である。第二のシール部材は、シール部材82と同様のものとすることができるが、通過させる対象(コア母材1A、ガラスロッド1B等)を考慮して、開口径が異なるものを複数積層することもできる。また、第二のシール部材は、開口径を調整できるようになっていても良い。
【0039】
次いで、図5(d)に示すように、ヒータ81で、例えば1800〜2000℃の温度で加熱しながら、コア母材1Aを下降させて下側に延伸する。この時、石英ガラス管130’も下降させることが好ましく、コア母材1Aの延伸終了後に下降させても良いし、コア母材1Aと共に下降させても良い。
延伸時には、延伸されたコア母材1Aの外径を外径測定器63で連続的に測定し、その測定値が一定となるように延伸条件を制御することが好ましい。延伸条件はコア母材1Aの移動速度、加熱炉8の電力、引取り張力の制御など、公知の技術を利用して制御すれば良い。
また、延伸時では、通常コア母材1Aを回転させることは不要であるが、コア母材1Aに曲がりの大きい部位がある場合には、延伸後も曲がりが大きくなることがある。この場合、コア母材1Aを回転させながら延伸することにより、延伸後の曲がりを抑制できる。したがって、コア母材1Aの状態に応じて、回転の有無を決定することが好ましい。なお、ここで「回転」とは、コア母材1Aの中心軸を回転軸とする回転を指し、例えば、支持棒61を回転させることで行うことができる。
また、延伸時には、延伸後のコア母材1Aの表面に対する異物の付着を防止するため、イオナイザによる静電気除去を行うことが好ましい。
【0040】
工程(B)においては、塩素系ガス及び酸素ガスからなる群より選択される一種以上のガス(以下、「塩素系ガス等」と略記する)を、石英ガラス管130’の内部に不活性ガスと共に導入することが好ましい。このようにすることで、石英ガラス管130’内の不純物を低減できる。塩素系ガスは無機物の除去に、酸素ガスは有機物の除去に有効である。塩素系ガスとしては、塩素(Cl)ガス、三塩化ホウ素(BCl)ガス、四塩化炭素(CCl)ガス、四塩化ケイ素(SiCl)ガス等が例示できる。前記塩素系ガス等は、前記不活性ガスと同時に導入しても良いし、順次導入しても良い。また、連続的に導入しても良いし、間欠的に導入しても良い。そして、前記塩素系ガス等の導入開始時期は特に限定されず、工程(B)の開始と共に導入しても良い。
【0041】
本法では、次いで、延伸後のコア母材1Aを石英ガラス管130’内に挿入する(工程(C))。より具体的には、例えば、以下の通りである。
図5(e)に示すように、延伸後のコア母材1Aを上昇させて、石英ガラス管130’内に挿入する。この時、延伸後のコア母材1Aは、温度が高い状態で挿入することが好ましい。例えば、室温程度の場合、ガラス表面には大気中の水分が付着することがあり、この水分は水酸基含有量の増加の原因となる。延伸後のコア母材1Aを温度が高い状態にしておけば、このような水酸基含有量の増加が抑制されて、OH損失が抑制される。このような水酸基含有量の増加抑制効果は、挿入時のコア母材1Aの表面温度が50〜70℃の場合でもが見られるが、十分な効果を得るためには、150℃以上であることが好ましい。
また、延伸後のコア母材1Aを挿入する際は、石英ガラス管130’の内部に前記塩素系ガス等を、不活性ガスと共に導入することが好ましい。このようにすることで、延伸後のコア母材1A表面の不純物を低減でき、延伸後のコア母材1Aの温度が高い場合には、石英ガラス管130’内の不純物低減効果を一層高めることができる。この時、前記塩素系ガス等は、前記不活性ガスと同時に導入しても良いし、順次導入しても良い。また、連続的に導入しても良いし、間欠的に導入しても良い。そして、上記のように工程(B)において前記塩素系ガス等を導入した場合、コア母材1Aの挿入が終了するまで連続して導入することが好ましい。
【0042】
本法では、次いで、石英ガラス管130’を、挿入された延伸後のコア母材1Aと共に予熱した後、石英ガラス管130’の内側を減圧して、石英ガラス管130’及びコア母材1Aを一体化させつつ延伸する(工程(D))。より具体的には、例えば、以下の通りである。
石英ガラス管130’の下端部を予熱して、溶融変形させることにより、延伸後のコア母材1Aと融着させて、石英ガラス管130’の下端部における開口部を密閉する。この時の予熱は、加熱温度を段階的に上昇させることで行うのが好ましい。密閉の有無は、例えば、石英ガラス管130’の内側における圧力上昇を圧力ゲージ(図示略)で確認するか、又は石英ガラス管130’内に導入されている不活性ガスの流量低下を確認することで判断できる。
そして、密閉を確認後、図5(f)に示すように、石英ガラス管130’の内側を減圧する。この時の圧力は、先に説明した通りである。
【0043】
次いで、図5(g)に示すように、減圧を行いながら、石英ガラス管130’及び延伸後のコア母材1Aを下降させて、これらを加熱炉8内で加熱して一体化させる。この時、石英ガラス管130’及びコア母材1Aは、下降速度を独立して調節することが好ましい。
一体化後、さらに条件を調節して延伸することで、ガラスロッド1Bが得られる。
【0044】
また、例えば、図6(a)に示すように、コア母材1Aを加熱炉8の内部で矢印の方向に上昇させながら延伸して、そのまま石英ガラス管130’内に挿入し、次いで、図6(b)に示すように、図4(c)で説明したように、延伸後のコア母材1Aが挿入された石英ガラス管130’を、コア母材1Aと共に矢印の方向に下降させて、加熱及び一体化を行いながら、さらに長手方向に延伸することで、ガラスロッド1Bを作製できる。
【0045】
ここで、図6を参照して説明したガラスロッド1Bの作製方法のうちの一例を、図7を参照しながらより詳細に説明する。
本法では、まず、上記の図5(a)及び(b)の場合と同様の方法で、石英ガラス管130’の下方に配置されたコア母材1Aに支持棒61を連結し(工程(A))、コア母材1Aを加熱炉8の下部に配置する(図7(a)及び(b)参照)。
【0046】
次いで、支持棒61が連結されたコア母材1Aを加熱延伸する(工程(B))。より具体的には、例えば、以下の通りである。
上記の図5(c)の場合と同様の方法で、石英ガラス管130’を下降させ、下端部を加熱炉8の内部に挿入する。また、上端部がヒータ81の近傍に到達するまで、コア母材1Aも下降させる(図7(c)参照)。
【0047】
次いで、図7(d)に示すように、ヒータ81で、例えば1800〜2000℃の温度で加熱しながら、コア母材1Aを上昇させて上側に延伸する(工程(B))。延伸時には、上記の図5(d)の場合と同様の方法で、延伸条件を制御し、コア母材1Aの回転の有無を決定すれば良い。コア母材1Aは、延伸されながら石英ガラス管130’内に挿入される(工程(C))。
工程(B)及び(C)においては、図5(d)及び(e)の場合と同様に、前記塩素系ガス等を、石英ガラス管130’の内部に不活性ガスと共に導入することが好ましい。このようにすることで、石英ガラス管130’内の不純物を低減できる。導入するガスの種類とその導入方法は、図5(d)及び(e)の場合と同様である。
【0048】
次いで、図7(e)に示すように、石英ガラス管130’を、その下端部がヒータ81の近傍に到達するまで、コア母材1Aと共に下降させる。ここでは、前記下端部がヒータ81の上端部よりも下側にまで下降させた例を示している。
本法では、延伸後のコア母材1Aは、必ず温度が高い状態で石英ガラス管130’内に挿入されるので、上記の図5(e)を参照して説明した方法の場合よりも、容易にOH損失が抑制される。
この段階で、石英ガラス管130’及び延伸後のコア母材1Aは、上記の図5(e)に示す状態と同じになる。
【0049】
次いで、上記の図5(f)及び(g)の場合と同様の方法で、石英ガラス管130’及びコア母材1Aを一体化させつつ延伸する(工程(D))ことで、ガラスロッド1Bが得られる(図7(f)及び(g)参照)。
【0050】
(第三クラッド積層工程)
次いで、第三クラッド積層工程では、ガラスロッド1Bに石英ガラス微粒子を外付けし、これを透明ガラス化して、図1(d)に示すように、有水の石英ガラスからなる第三クラッド14’を積層する。第三クラッド積層工程とは、無水化処理されていない第三クラッド14’を積層する工程である。そして、本工程により、光ファイバ母材1’が得られる。
【0051】
本工程では、公知の外付け法を適用でき、ガラスロッド1Bに石英ガラス微粒子を外付けして得られた石英多孔質母材を、例えば、ヘリウムガス雰囲気下で焼結して透明ガラス化すれば良い。この時、脱水(無水化)処理を行わないので、作製された第三クラッド14’は水酸基含有量が10ppm以上となる。そして、第三クラッド14’の水酸基含有量は、透明ガラス化の条件、例えば、酸水素ガスの流量比、石英ガラス微粒子のサイズ、加熱温度、加熱時間、雰囲気により異なるが、50ppm以上であっても良い。無水化処理を行わない場合、このような水酸基含有量の第三クラッド14’であれば、安定して且つ簡便に作製できる。
【0052】
本工程では、外付け法を適用するため、例えば、ガラスロッド作製工程におけるロッドインチューブ法とは異なり、石英ガラス管130’の厚さに関する厳密な管理が不要である。そして、ガラスロッド1Bの光学特性に応じて外付け量を調節することで、第三クラッド14’の厚さを任意に調節できる。このように、光ファイバ母材の製造工程及び製造管理を大幅に簡略化できる。
【0053】
<光ファイバの製造方法>
上記本発明の方法で製造した光ファイバ母材を紡糸する方法は、公知の方法で良く、特に限定されない。
【0054】
図8は、本発明の方法で製造された光ファイバを例示する概略断面図と、その屈折率分布を例示する図である。
光ファイバ1において、コア11及び第一クラッド12は、コア母材1Aから形成され、水酸基含有量が10ppm未満である。また、第二クラッド13は石英ガラス管130’から形成され、同様に水酸基含有量が10ppm未満である。そして、第三クラッド14は、無水化処理を行っていないので、水酸基含有量は10ppm以上である。
コア11の外径はa、第一クラッド12の外径はb、第二クラッド13の外径はc、第三クラッド14の外径はdとなっている。そして、紡糸前の光ファイバ母材1’におけるコア11’ の外径a’、第一クラッド12’ の外径b’、第二クラッド13’ の外径c’、第三クラッド14’ の外径d’(いずれも、図示略)とは、a:b:c:d=a’:b’:c’:d’の関係にある。
【0055】
紡糸後の光ファイバは、重水素(D)処理する。重水素処理しないと、光ファイバは紡糸後にOH損失が増大してしまう。これは、無水化処理していない第三クラッド14中の水酸基から、紡糸時の熱により水素が遊離し、これが経時的に光ファイバ中に拡散して、コア中のNBOHC欠陥(Si−O・)と結合することで、コア中の水酸基含有量が増大することが原因であると推測される。
これに対して、紡糸後の光ファイバを重水素処理することにより、コア中のNBOHC欠陥に重水素が結合して、水素の結合による水酸基含有量の増大が抑制されると推測される。
【0056】
紡糸後の光ファイバは、公知の手法により、各種樹脂で被覆することが好ましい。
【0057】
なお、ここでは、第一クラッド12、第二クラッド13及び第三クラッド14の比屈折率差Δが同じである例を示しているが、これに限定されず、比屈折率差Δは目的に応じてそれぞれ所望の値に設定できる。また、各クラッドの境界においては、例えば、塩素含有量、水酸基含有量等の相違に起因して、比屈折率差Δに差が生じることもあるが、通常、その差は微小であり、光学特性への影響は無視できる。
【0058】
コア母材作製工程後のコア母材1Aは、全体として水酸基含有量が1ppm未満となるが、工程条件によっては、例えば、表面から深さ0.1〜0.2mm程度の表層部において、局所的に水酸基含有量が数ppm〜100ppm程度となることがある。その原因は定かではないが、焼結を行った加熱炉から作製したコア母材1Aを取り出した際に、あるいはコア母材1Aを延伸した後に、空気中の水分がコア母材1Aに吸着しているからであると推測される。この場合、最終的に光ファイバにおいて、第一クラッド表層部での水酸基含有量が増大してしまう。そこで、増大が著しい場合には、コア母材1A表層部の水酸基を除去することが好ましく、プラズマエッチング、フッ化水素酸(HF)処理、機械的研削等によって除去できるが、工程数の増加を伴う。
【0059】
そこで、本発明においては、例えば、コア母材1Aを、延伸後、連続的に石英ガラス管130’内に挿入することが好ましい。ここで、「コア母材1Aを、延伸後、連続的に石英ガラス管130’内に挿入する」とは、延伸後のコア母材1Aを他の処理に供することなく、直ちに連続して石英ガラス管130’内に挿入して、延伸後のコア母材1Aが空気中に開放された状態に置かれる時間を最小限にとどめることを指す。このようにすることで、コア母材1Aへの水分の吸着が効果的に抑制されると考えられ、上記のようなコア母材1A表層部での局所的な水酸基含有量の増大を抑制できる。
【0060】
また、本発明においては、コア母材1A表層部での局所的な水酸基含有量の増大が認められる場合、コア母材1A表層部の水酸基が伝搬光へ与える影響を低減するために、これら水酸基がコア11’から遠ざかるように第一クラッド12’の外径b’を大きくすることが好ましい。一方で、上記のように、光ファイバ母材1’を一層安価に製造するためには、コア母材1Aの外径を小さくすることが好ましい。そこで、光ファイバ1の光学特性と製造コストとのバランスを考慮して、第一クラッド12’の外径b’を設定することが好ましい。
【0061】
このような観点から、本発明においては、第一クラッド12の外径b、及び前記第三クラッド14の外径dが、d/b≦4.0の条件を満たすことが好ましい。このような範囲とすることで、コア母材1Aの表層部に局所的に水酸基が存在しても、OH損失が一層抑制され、例えば、0.31dB/km以下に抑制できる。
一方、d/bの下限値は特に限定されないが、VAD法等のスート法で作製する第一クラッド12の外径を小さくするという観点からは、3.0であることが好ましい。
なお、d/bについては、作製したコア母材1Aの屈折率分布から、目的とする光ファイバの特性(例えば、カットオフ波長等)を得るための値を特性推定することで求められる。
また、d/bを上記範囲とする場合には、光ファイバ母材製造時に、d’/b’が同様の範囲となるように調節すれば良い。
【0062】
一方、本発明においては、コア11の外径a、及び第一クラッド12の外径bについて、b/aは、目的とする光ファイバの特性や、コア11の第一クラッド12に対する比屈折率差(Δ)等を考慮して適宜調節すれば良い。例えば、カットオフ波長が1.24±0.6μm、モードフィールド径(MFD)が9.2±0.4μmである光ファイバを作製する場合には、Δを0.30〜0.39%とし、b/aを4.2〜5.0とすれば良い。そして、光ファイバ母材製造時に、b’/a’が同様の範囲となるように調節すれば良い。
【0063】
ガラスロッド作製工程で使用する石英ガラス管130のサイズは、例えば、以下のように設定できる。
石英ガラス管130の内径D130’は、例えば、上記d/bの値、コア母材1Aと石英ガラス管130とのクリアランスLが決定されれば、一意的に決定される。本発明においては、先の説明のように、前記クリアランスLを4mm以下、好ましくは1.5〜2.5mmとすることで、光ファイバのコアの偏心量を一層低減でき、例えば、0.25μm以下に抑制できる。
また、石英ガラス管130’の外径は、例えば、ガラスロッド1Bの外径D1Bと、目的とする光ファイバの特性(例えば、カットオフ波長等)を得るためのd/cの値を仮設定しておけば、これらの値から逆算して求めることができる。
【0064】
本発明においては、第二クラッド13の外径c、及び第三クラッド14の外径dが、d/c≦2.5の条件を満たすことが好ましい。このような範囲とすることで、第二クラッド13中に漏れて伝搬する光があっても、無水化処理されているので、OH損失が一層抑制される。
一方、d/cの下限値は特に限定されないが、無水化処理された石英ガラス管130’が高価であるため、必要以上にサイズが大きい石英ガラス管130の使用を避けるという観点からは、2.0であることが好ましい。
d/cを上記範囲とする場合には、光ファイバ母材製造時に、d’/c’が同様の範囲となるように調節すれば良い。
【0065】
本発明においては、d/b≦4.0、d/c≦2.5の条件を共に満たすことが特に好ましい。このようにすることで、OH損失の抑制効果が最大限に発揮される。
【0066】
本発明の光ファイバ母材及び光ファイバの製造方法の好ましい実施形態について、図9に工程説明図を例示する。
【0067】
本発明の方法で製造された光ファイバは、OH損失が抑制され、0.31dB/km以下に低減でき、優れた光学特性を示す。これは、光ファイバ母材において、コア、第一クラッド及び第二クラッドの水酸基含有量を所定の範囲に設定することで、得られる光ファイバもこのような水酸基含有量を反映したものとなることによる。
また、本発明の製造方法によれば、光ファイバ母材の大型化が容易で、製造工程も簡便なので、光ファイバを安価に提供できる。
【実施例】
【0068】
以下、具体的実施例により、本発明についてさらに詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。
【0069】
[実施例1]
VAD法で外径220mm、長さ1800mmの石英多孔質母材を作製した。この石英多孔質母材を焼結炉に収容し、塩素系ガスを含むヘリウムガス雰囲気中、1200℃で無水化処理し、次いで、1450℃まで昇温し、ヘリウムガス雰囲気中で焼結することにより、コア母材(長さ650mm、最大外径113mm、最小外径109mm、平均外径110mm)とした。得られたコア母材は、水酸基含有量が10ppm未満であることを確認した。
【0070】
コア母材を延伸しない場合、脈理の影響で正確な屈折率測定ができない場合がある。そのため、コア母材の特性推定は以下の手順で行った。すなわち、あらかじめ同条件で作製した別のコア母材を外径が42mmとなるように延伸し、プリフォームアナライザーで屈折率分布を測定した。得られた屈折率分布を解析し、所望のファイバ特性にするためには、d/b=3.67とする必要があることが判った。そこで、実際に使用するコア母材についても、d’/b’を同じとして、以降の作業を行った。
【0071】
前記コア母材は、不要なダミー部を切断し、純水で洗浄して、乾燥させた。第二クラッドとなる無水石英ガラス管(水酸基含有量10ppm未満)としては、加熱及び一体化後にd’/c’=2.47となるように、内径116mm、外径167mm、長さ700mmのものを選択した。なお、無水石英ガラス管には、図3に示すようにあらかじめダミー石英管を溶接しておいた。コア母材を無水石英ガラス管とダミー石英管との溶接部まで挿入後、ロッドインチューブ法によって加熱及び一体化しながら延伸し、外径54mmのガラスロッドとした。加熱炉での一体化の際には、無水石英ガラス管内の空隙部を真空ポンプ(図示略)で減圧し、ブルドン管圧力計の表示で−0.1MPa(ゲージ圧)とした。
【0072】
得られたガラスロッドを長さ1400mm(切割り長さ)に分割後、再びプリフォームアナライザーでこのガラスロッドの屈折率分布を測定した。そして、得られた測定値を解析し、所望の光学特性にするための最終的なd/cを求め、第三クラッドの外付け量を求めて、外付け法によりガラス微粒子を堆積させ、石英多孔質母材とした。得られた石英多孔質母材をヘリウムガス雰囲気中で焼結することで、透明な光ファイバ母材(平均外径133mm、長さ1400mm)とした。なお、第三クラッドの水酸基含有量は60ppmであった。
【0073】
次いで、得られた光ファイバ母材を紡糸炉で加熱し、ガラス外径(第三クラッドの外径d)が125μm、被覆外径が250μmの光ファイバとした。そして、2%の重水素を含むヘリウムガス雰囲気中、25℃で、紡糸終了後の光ファイバを三時間処理することで、光ファイバを作製した。
次いで、作製後の光ファイバを所定の長さに切割りした後、各ボビンの波長1383nmにおける伝送損失(OH損失)を測定した。その結果、平均0.279dB/kmと低い伝送損失を示した。また、コア偏心は最大でも0.15μmと小さく、良好であった。
【0074】
[実施例2、比較例1〜2]
無水石英ガラス管、ガラスロッド、光ファイバ母材、光ファイバのサイズを、それぞれ表1に示す通りとしたこと以外は、実施例1と同様の方法で、光ファイバを作製した。
【0075】
表1から明らかなように、実施例1〜2では、光ファイバのコア偏心の最大値がいずれも0.15μm以下と小さく、良好な値であった。また、d/bの値が3.97以下であり、波長1383nmにおける伝送損失が0.302dB/km以下と小さく、良好な特性を有していた。一方で、d/bの値が大きくなるに従い、波長1383nmにおける伝送損失も大きくなる傾向が見られ、比較例1では大きく悪化していた。これは、第一クラッド表面に局所的に存在する水酸基の影響であると推測された。また、比較例2では、d/bの値が実施例1と同じであるにも関わらず、OH損失が大きくなっていた。これは、d/cの値から明らかなように第二クラッドの厚さが薄く、コアから漏出した光が第三クラッドに到達し、第三クラッド中に存在する水酸基の影響を受けたためであると推測された。
【0076】
なお、作製後2週間の時点で、実施例1の上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.282dB/kmであり、OH損失の経時変化は認められなかった。
また、作製後2週間の時点で、実施例2の上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.304dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0077】
【表1】

【0078】
[実施例3]
無水石英ガラス管、光ファイバ母材、光ファイバのサイズをそれぞれ表2に示す通りとしたこと以外は、実施例1と同様の方法で、光ファイバを作製した。
その結果、OH損失、コア偏心の最大値が共に小さく、良好な値であった。OH損失が小さいのは、d/cの値から明らかなように、第二クラッドの厚さが厚いため、第三クラッド中に水酸基が存在してもその影響を受けなかったためであると考えられる。
なお、作製後2週間の時点で、上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.282dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0079】
【表2】

【0080】
[実施例4〜5]
VAD法で作製したコア母材を外径が50mmとなるように延伸し、これを無水石英ガラス管内に挿入した。延伸によりコア母材の外径が安定したため、コア母材とのクリアランスが1.5mmとなるように無水石英ガラス管のサイズを設定し、d/bとd/cの値を表3に示す通りに設定した。そして、上記の点以外は、実施例1と同様の方法で、光ファイバを作製した。
その結果、表3から明らかなように、実施例4ではd/bの値と伝送損失は、実施例1の場合とほぼ同等であり、コア母材を延伸することによる光学特性への影響は小さいことが判った。
また、実施例4及び5のいずれも、コア偏心の最大値が小さく、良好な値であった。これは、コア母材の外径が安定したため、コア母材と無水石英ガラス管とのクリアランスを小さくできたためと推測される。
なお、作製後2週間の時点で、実施例4の上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.285dB/kmであり、OH損失の経時変化は認められなかった。
また、作製後2週間の時点で、実施例5の上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.290dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0081】
【表3】

【0082】
[比較例3]
光ファイバ母材を紡糸後に、重水素処理をしなかったこと以外は、実施例4と同様の方法で光ファイバを作製した。
その結果、OH損失は0.281dB/km、コア偏心の最大値は0.09μmで、いずれも小さく、良好な値であった。しかし、作製した光ファイバを大気中で放置したところ、経時的に伝送損失が上昇する傾向がみられた。作製後2週間の時点でOH損失を測定したところ、0.312dB/kmまで上昇していた。これは、重水素処理を行わなかったことで、コア中にNBOHC欠陥(Si−O・、「・」はラジカルを表す)が存在し、一方で紡糸時に第三クラッド中の水酸基から遊離し、経時的に光ファイバ中に拡散した水素が、このNBOHC欠陥と結合することで、結果的にコア中の水酸基含有量が上昇して、その影響を受けたためと推測される。
【0083】
[実施例6]
VAD法で作製したコア母材を、図4に示した方法で外径が50mmとなるように延伸し、これを連続的に直ちに、長さが3000mmである無水石英ガラス管内に挿入したこと以外は、実施例4と同様の方法で、光ファイバを作製した。
その結果、波長1383nmにおけるOH損失は0.279dB/kmであり、実施例4の場合よりもやや小さくなった。これは、コア母材を延伸して直ちに無水石英ガラス管内に挿入したため、コア母材の表面が高温の状態で水酸基が生じにくくなり、水酸基の影響を受けにくくなったためであると推測される。
また、コア偏心の最大値も0.07μmと小さく、良好な値であった。これは、コア母材と無水石英ガラス管とのクリアランスを小さくできたためであると推測される。
なお、作製後2週間の時点で、上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.280dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0084】
[実施例7]
VAD法で作製したコア母材を、図5に示した方法で外径が50mmとなるように延伸し、これを連続的に直ちに、長さが3000mmである無水石英ガラス管内に挿入した。この時、図5(c)における石英ガラス管の下降開始時から、石英ガラス管が加熱炉のシール部材に到達するまでの間は、石英ガラス管内に窒素ガスを導入し、石英ガラス管がシール部材に到達後、図5(f)における石英ガラス管の内側の減圧開始時までの間は、石英ガラス管内に窒素及び塩素の混合ガス(塩素濃度3%)を導入した。そして、上記の点以外は、実施例4と同様の方法で、光ファイバを作製した。
その結果、波長1383nmにおけるOH損失は0.273dB/kmであり、実施例6の場合よりも小さくなった。これは、塩素ガスの導入によって、石英ガラス管内の不純物を低減できたためであると推測される。また、作製したガラスロッドの外観を観察したところ、全長に渡って泡等の欠陥は1個しか確認できず、良好な品質であった。
なお、作製後2週間の時点で、上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.276dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0085】
[実施例8]
VAD法で作製したコア母材を、図7に示した方法で、外径が50mmとなるように延伸しながら、長さが3000mmである無水石英ガラス管内に挿入した。この時、図7(c)における石英ガラス管の下降開始時から、石英ガラス管が加熱炉のシール部材に到達するまでの間は、石英ガラス管内に窒素ガスを導入し、石英ガラス管がシール部材に到達後、図7(f)における石英ガラス管の内側の減圧開始時までの間は、石英ガラス管内に窒素及び塩素の混合ガス(塩素濃度3%)を導入した。そして、上記の点以外は、実施例4と同様の方法で、光ファイバを作製した。
その結果、波長1383nmにおけるOH損失は0.272dB/kmであり、実施例7の場合よりも小さくなった。これは、コア母材が延伸により予熱された状態であったことにより、塩素ガスの反応性が高く、石英ガラス管内の不純物除去効果がより高かったためであると推測される。また、作製したガラスロッドの外観を観察したところ、全長に渡って泡等の欠陥は2個しか確認できず、良好な品質であった。
なお、作製後2週間の時点で、上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.275dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【0086】
[実施例9]
図7(c)における石英ガラス管の下降開始時から、石英ガラス管が加熱炉のシール部材に到達するまでの間は、石英ガラス管内に窒素ガスを導入し、石英ガラス管がシール部材に到達後、図7(d)における石英ガラス管内へのコア母材の挿入終了時までの間は、石英ガラス管内に窒素及び塩素の混合ガス(塩素濃度3%)を導入し、石英ガラス管内へのコア母材の挿入終了後、図7(f)における石英ガラス管の内側の減圧開始時までの間は、石英ガラス管内に窒素及び酸素の混合ガス(酸素濃度3%)を導入したこと以外は、実施例8と同様の方法で、光ファイバを作製した。
その結果、波長1383nmにおけるOH損失は0.273dB/kmであり、実施例8と同程度であったが、作製したガラスロッドの外観を観察したところ、全長に渡って泡等の欠陥は0個であった(確認できなかった)。塩素ガスと酸素ガスを併用することで、石英ガラス管内の不純物除去効果がさらに高まることが確認できた。
なお、作製後2週間の時点で、上記光ファイバの波長1383nmにおけるOH損失を測定したしたところ、0.275dB/kmであり、作製直後よりもOH損失が若干増加したが、損失は飽和傾向が見られ、実質的な影響はなく、良好な結果であった。
【産業上の利用可能性】
【0087】
本発明は、光ファイバの製造に利用可能であり、光通信分野全般へ適用可能である。
【符号の説明】
【0088】
1・・・光ファイバ、1’・・・光ファイバ母材、1A・・・コア母材、1B・・・ガラスロッド、11,11’・・・ コア、12,12’・・・第一クラッド、130’・・・石英ガラス管、13,13’・・・第二クラッド、14,14’・・・第三クラッド、a・・・コアの外径、b・・・第一クラッドの外径、c・・・第二クラッドの外径、d・・・三クラッドの外径、61・・・支持棒

【特許請求の範囲】
【請求項1】
コア及び第一クラッドを構成する、無水の石英ガラスからなるコア母材を作製する工程と、
無水の石英ガラス管内に前記コア母材を挿入し、これらを加熱及び一体化させて、前記コア母材に無水の石英ガラスからなる第二クラッドが積層されてなる無水のガラスロッドを作製する工程と、
前記ガラスロッドに石英ガラス微粒子を外付けし、これを透明ガラス化して、有水の石英ガラスからなる第三クラッドを積層する工程と、
を有することを特徴とする光ファイバ母材の製造方法。
【請求項2】
前記ガラスロッドを作製する工程において、無水の石英ガラス管内に前記コア母材を挿入し、これらを加熱及び一体化させつつ、長手方向に延伸することを特徴とする請求項1に記載の光ファイバ母材の製造方法。
【請求項3】
前記第三クラッドの水酸基含有量が50ppm以上であることを特徴とする請求項1又は2に記載の光ファイバ母材の製造方法。
【請求項4】
前記コア母材が、VAD法で作製され、その長手方向に延伸されたものであることを特徴とする請求項1〜3のいずれか一項に記載の光ファイバ母材の製造方法。
【請求項5】
前記コア母材を、延伸後、連続的に前記石英ガラス管内に挿入することを特徴とする請求項4に記載の光ファイバ母材の製造方法。
【請求項6】
前記ガラスロッドを作製する工程が、
前記石英ガラス管内に支持棒を挿入し、前記石英ガラス管の下方に配置された前記コア母材に前記支持棒を連結する工程(A)と、
前記支持棒が連結された前記コア母材を加熱延伸する工程(B)と、
延伸後の前記コア母材を前記石英ガラス管内に挿入する工程(C)と、
前記石英ガラス管を、挿入された延伸後の前記コア母材と共に予熱した後、前記石英ガラス管の内側を減圧して、前記石英ガラス管及びコア母材を一体化させつつ延伸する工程(D)と、
を有することを特徴とする請求項5に記載の光ファイバ母材の製造方法。
【請求項7】
前記工程(B)及び(C)において、前記石英ガラス管内に、上方から不活性ガスを導入することを特徴とする請求項6に記載の光ファイバ母材の製造方法。
【請求項8】
前記工程(B)及び(C)において、前記石英ガラス管内に塩素系ガス及び酸素ガスからなる群より選択される一種以上のガスを、不活性ガスと共に導入することを特徴とする請求項6又は7に記載の光ファイバ母材の製造方法。
【請求項9】
前記工程(D)において、前記石英ガラス管の内側における圧力上昇を確認してから、又は前記石英ガラス管内に導入されている不活性ガスの流量低下を確認してから、前記石英ガラス管の内側を減圧することを特徴とする請求項6〜8のいずれか一項に記載の光ファイバ母材の製造方法。
【請求項10】
前記石英ガラス管中のナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、鉄及びチタンの濃度が、いずれも50ppb以下であることを特徴とする請求項1〜9のいずれか一項に記載の光ファイバ母材の製造方法。
【請求項11】
請求項1〜10のいずれか一項に記載の製造方法で光ファイバ母材を製造し、該光ファイバ母材を紡糸して、次いで重水素処理する工程を有することを特徴とする光ファイバの製造方法。
【請求項12】
第一クラッドの外径b、第二クラッドの外径c及び第三クラッドの外径dが、d/b≦4.0、d/c≦2.5の条件を共に満たすことを特徴とする請求項11に記載の光ファイバの製造方法。
【請求項13】
得られた光ファイバの波長1383nmにおける伝送損失が0.31dB/km以下であることを特徴とする請求項11又は12に記載の光ファイバの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−62240(P2012−62240A)
【公開日】平成24年3月29日(2012.3.29)
【国際特許分類】
【出願番号】特願2010−280564(P2010−280564)
【出願日】平成22年12月16日(2010.12.16)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】