説明

光学機器の連続的で非同期のオートフォーカスのためのシステムおよび方法

本発明の実施形態は、試料の上の、試料内の、または試料の近くの特定の点または表面において精密でかつ安定した光学機器焦点を維持するために、連続して、光学機器の焦点を監視し、光軸に沿う光学機器内の距離を調整する、光学機器内のオートフォーカスサブシステムを対象とする。本発明の特定の実施形態は、オートフォーカスサブシステムが埋め込まれる光学機器の他の構成要素およびサブシステムの動作に対して非同期に動作する。

【発明の詳細な説明】
【技術分野】
【0001】
[関連出願に対する相互参照]
本出願は、2009年10月29日に出願された仮出願第61/256,242号および2009年12月7日に出願された仮出願第61/267,353号の利益を主張する。
【0002】
本発明は、光学機器に関し、特に、対物レンズと、結像される物体上の、物体内の、または物体の近くの点または表面との間で、光軸に沿って一定の距離を維持する、光学機器内の連続的に非同期で動作するオートフォーカスサブシステムに関する。
【背景技術】
【0003】
光学顕微鏡検査および他の光学ベースの方法が、何百年にわたって科学研究からウェハまでの人間活動の多くの領域で利用されてきたが、マイクロプロセッサ、最新のコンピューティング、および分子生物学の進歩は、新しい光学計測手段および光学結像技術の開発の加速をもたらした。たとえば、最新の蛍光顕微鏡検査計測手段に組込まれる計算機能と組合された、生細胞内のたんぱく質の蛍光標識は、生細胞の生物学的成分の細部が、光学顕微鏡検査についての「回折限界(diffraction limit)」と呼ばれるより著しく低い分解能で結像されることを可能にする。
【0004】
多くの新しい光学機器、光学機器の応用、および光学結像技術は、長い期間にわたる、および/または、光学z軸に垂直なx−y平面内での被結像物体のスキャニング中の、浅い焦点深度を有するハイパワー光学システムの精密な合焦に依存する。例は、比較的長い期間にわたって生物学的試料内の弱く放出する蛍光体を結像させることによって、回折限界以下の分解能を達成する種々の光学顕微鏡検査技法、および、一定のz位置を維持しながら、顕微鏡の光学経路に対してx−y平面内で試料を並進させることによって、これらの試料内の平面を結像するために生細胞および他の生物学的試料をスキャニングする光学顕微鏡検査技法を含む。光学機器の焦点は、たとえば熱的および電気機械的不安定性の結果として、経時的に変動する可能性があり、たとえ非常に精密な電気機械的顕微鏡ステージでも、試料をスキャニングしながら、または、所定期間にわたって試料からデータを収集しながら、ステージがx−y平面内で並進するにつれて、結像光学部品に対して所定の距離、変動する可能性がある。
【発明の概要】
【発明が解決しようとする課題】
【0005】
精密光学計測手段の設計者、製造業者、およびユーザは、所定期間にわたって、また、電気機械的ステージを含む高精度光学機器の種々の副構成要素が動作している間に、高精度光学機器の焦点を安定化するシステムおよび方法を求め続けている。
【課題を解決するための手段】
【0006】
本発明の実施形態は、試料の上の、試料内の、または試料の近くの特定の点または表面において精密でかつ安定した光学機器焦点を維持するために、連続して、光学機器の焦点を監視し、光軸に沿う光学機器内の距離を調整する、光学機器内のオートフォーカスサブシステムを対象とする。本発明の特定の実施形態は、オートフォーカスサブシステムが埋め込まれる光学機器の他の構成要素およびサブシステムの動作に対して非同期に動作する。
【図面の簡単な説明】
【0007】
【図1A】蛍光顕微鏡内の光学経路を示す図である。
【図1B】蛍光顕微鏡内の光学経路を示す図である。
【図1C】蛍光顕微鏡内の光学経路を示す図である。
【図2】図2A所定期間にわたる、試料内の光軸またはz位置に対する対物レンズの焦点の位置の望ましくない変動を示す図である。図2B試料のx並進および/またはy並進中の、試料内の光軸またはz位置に対する対物レンズの焦点の位置の望ましくない変動を示す図である。
【図3】顕微鏡の伝統的なオートフォーカスサブシステムを示す図である。
【図4】伝統的なオートフォーカスモジュールの動作を示す制御フロー図である。
【図5】伝統的なオートフォーカスモジュールの動作を示す制御フロー図である。
【図6】本発明のある実施形態の一態様を示す制御フロー図である。
【図7A】図1A〜1Cおよび図3を参照して先に論じた蛍光顕微鏡の電気機械ステージと独立したzスキャンを示す図である。
【図7B】図1A〜1Cおよび図3を参照して先に論じた蛍光顕微鏡の電気機械ステージと独立したzスキャンを示す図である。
【図7C】図1A〜1Cおよび図3を参照して先に論じた蛍光顕微鏡の電気機械ステージと独立したzスキャンを示す図である。
【図8】小開口焦点検出器の動作の原理を示す図である。
【図9】図9Aは、本発明の一実施形態を示すピンホール開口ロータを示す図である。図9Bは、本発明の一実施形態を示すピンホール開口ロータを示す図である。図9Cは、本発明の一実施形態を示すピンホール開口ロータを示す図である。
【図10】図10Aは、本発明の代替の実施形態で使用される異なるタイプのロータを示す図である。図10Bは、本発明の代替の実施形態で使用される異なるタイプのロータを示す図である。
【図11】本発明のさらなる実施形態で使用される第3のタイプのロータを示す図である。
【図12】本発明の一実施形態を同様に示す蛍光顕微鏡の光学経路内に組込まれた本発明の一実施形態を示すオートフォーカスモジュールを示す図である。
【図13A】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13B】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13C】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13D】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13E】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13F】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13G】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13H】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図13I】本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、対物レンズと顕微鏡のカバースリップとの間の現在の距離を計算するための一手法を示す図である。
【図14】強度値の累積和からの、本発明の一実施形態による光学機器の現在のz位置の計算を示す図である。
【図15】典型的なリング開口を示す図である。
【発明を実施するための形態】
【0008】
図1A〜1Cは、蛍光顕微鏡内の光学経路を示す。光学経路および光学経路を含む蛍光顕微鏡は、本発明の一実施形態を記述するためのコンテキストとして役立つ。しかし、以下で同様に述べるように、本発明の方法およびシステムは、多くの場合、特定の用途で使用するために本発明の実施形態の種々のパラメータおよび構成を調整することによって、いろいろの異なるタイプの光学機器内に組込まれてもよい。
【0009】
蛍光顕微鏡の光学経路は、励起光源102、一般に可視光またはUV光レーザ、励起光106を1つまたは複数の対物レンズ108内に反射させる多色性ミラー104を含み、1つまたは複数の対物レンズ108は、励起光が通過する開口116を有する機械ステージプラットフォーム114上に位置するカバースリップ112の遠い面上に載る試料内の点110上に励起光を合焦させる。励起光は、試料内の蛍光体から蛍光放出を刺激する。一般に励起光より長い波長を有する蛍光体からの放出光は、1つまたは複数の対物レンズ108を通り、また、多色性ミラー104を通って1つまたは複数のチューブレンズ118に戻るように通過し、1つまたは複数のチューブレンズ118は、蛍光体によって放出された光を、光検出器120、しばしば電荷結合素子(「CCD」)検出器上に合焦させる。光検出器によって測定される空間強度は、被結像物体の画像を生成するためにコンピューティングサブシステムによって電子的に処理され、画像は、電子メモリおよび大容量記憶デバイスに記憶され、電子表示デバイス上で表示するためにレンダリングされる。
【0010】
多色ミラー104は、励起光を含む短い波長の光を反射し、また、同様に赤外光などの非常に長い波長の光を反射することができるが、蛍光体標識試料内の蛍光体によって放出される光の波長を含む波長の範囲内の可視光に対して透明である。同様に、励起光106の最初の経路上のダイクロイックミラー122は、以下でより詳細に論じるように、比較的短い波長の励起光に対して透明であるが、長い波長の赤外光を反射する。ステージプラットフォーム114、ステージドライブ構成要素124、ならびにx並進機構126、y並進機構128、およびz並進機構130を含む電気機械ステージは、対物レンズおよび機器光学経路に対してx方向、y方向、およびz方向に試料を移動させるために使用される。光軸またはz軸は、図1Aにおいて、試料点110から対物レンズ、多色性ミラー、およびチューブレンズを通って検出器120上の対応する画像点132まで垂直に延在する光経路と平行であることに留意されたい。
【0011】
図1Bでは、x並進機構126が、ステージプラットフォーム114を右に小さな距離+Δx140だけ移動させるために起動されており、それにより、x方向への、試料内の焦点についての同じ大きさであるが、逆のシフト−Δx142が生じる。換言すれば、直前の焦点110および新しい焦点144は、x方向への距離+Δxだけのステージの並進に続いて大きさ|Δx|の距離だけ分離される。図1Cは、図1Bと同様な方法で、z方向または光軸方向に小さな距離−Δz146だけ機械ステージ114を移動させるためのz並進装置130の起動を示し、逆方向であるが同じ大きさ148の距離+Δzだけの、試料内の焦点の並進が生じる。この議論では、図1Aに示す、検出器120とチューブレンズ118との間の距離が、少なくとも試料からの画像収集中のある期間にわたって一定である、したがって、対物レンズの焦点を固定させることが仮定される。
【0012】
生細胞結像を含む多くの蛍光顕微鏡検査用途では、高分解能画像の採取は、試料内の蛍光体標識の画像を再構成するための適切な情報を、弱く放出する蛍光体から収集するのに十分な期間の間、対物レンズに対して固定位置で特定の試料を結像させることに依存する。他の用途では、z方向または光軸方向に、一定焦点または対物レンズと試料との間の一定距離を維持しながら、対物レンズに対してx−y平面内で電気機械ステージを移動させることによって、試料がスキャンされる。両方の場合、対物レンズと試料内の点または表面との間の距離は、ある期間にわたっておよび/または機械ステージがxおよびy方向に並進する間、精密な固定値で維持される必要がある。
【0013】
図2A〜2Bは、図2Aの場合、所定期間にわたって、または、図2Bの場合、試料のx並進中および/またはy並進中に、試料内での、光軸位置またはz位置に対する対物レンズの焦点位置の望ましくない変動を示す。両方の図で、対物レンズと試料との間の所望の距離は、点線202および204で示される。対物レンズと試料との間の実際の距離は、両方の図で、実線曲線206および208として示される。対物レンズと試料内の点または表面との間で固定距離を維持するために最良の努力をしても、z方向または光軸方向における対物レンズと試料との間の実際の距離は、所定期間にわたって、また、x並進および/またはy並進中に変動する。これらの変動には多くの異なる理由がある。顕微鏡環境における熱不安定性は、たとえばz軸成分を有する方向に光学機器の膨張および収縮をもたらしうる。光学機器は、温度制御チャンバによって囲まれることが多いが、光源、モータ、および他のこうした構成要素を含む光学機器の構成要素は、即座に補償されることができない熱を発生し消費する可能性がある。空気圧および他の環境パラメータの変動はまた、対物レンズと試料との間の距離の変動をもたらす可能性がある。電気機械ステージのx−y平面は、x−y平面における並進によるスキャン中に、光軸に対してたとえわずかでも非直交方向に向くと、試料もまた、対物レンズに対してz方向に移動する。
【0014】
図3は、顕微鏡の伝統的なオートフォーカスサブシステムを示す。オートフォーカスサブシステムは、所定期間にわたって、また、試料がx−y平面内で移動する間に、試料内で光軸に対して焦点位置を安定化するために開発された。図3は、図1A〜1Cで使用されるのと同じ説明図の慣例を使用する。図3に示すオートフォーカスサブシステムは、励起光源102と異なるオートフォーカス光源302を使用する。多くのシステムにおいて、オートフォーカス光源302は、赤外光304を放出し、その一部分は、ビームスプリッタ308によって下に反射され、ダイクロイックミラー122に至り、ダイクロイックミラー122は、赤外光を、励起源102によって放出される光によってとられる経路と同じ光学経路に沿って、図3の水平方向106に反射し、水平方向106から、赤外光は、多色ミラー104によって反射され、対物レンズ108を通って試料110に至る。赤外光は、カバースリップ310の遠い面と試料媒体との間の界面で散乱し、後方散乱した赤外光の一部分は、対物レンズ108および光学経路要素104、122、および308を通して戻る。後方散乱した赤外光の一部分は、ビームスプリッタ308を通過してオートフォーカスモジュール320に至る。さらに、オートフォーカス光源302およびオートフォーカス検出器モジュール320の位置は、結果が同等になるよう、ビームスプリッタ308の周りで逆にされることができ、照明源とオートフォーカス光源の相対位置は、種々の代替の構成において、他の光学経路構成要素の特性の変化と共に変更されることができる。フレーズ「カバースリップ(cover slip)」は、顕微鏡で使用されることが多い伝統的なカバースリップならびにいろいろな異なるタイプの試料チャンバおよび試料保持デバイスの任意のものの表面を含むことを意図されることが留意されるべきである。試料に対して固定位置を有する種々の界面の任意の界面は、1つまたは複数の対物レンズに対して試料平面の変位を検出し補正するための、後方散乱したオートフォーカス光用の供給源として使用されうる。
【0015】
オートフォーカスモジュール320は、ステージドライブ124を周期的に制御して、ある範囲のz位置322にわたって光軸に沿ってステージを並進させ、各z位置において光の強度を記録し、少なくとも概念的に、強度対z位置プロット324を生成する。対物レンズの焦点とカバースリップの遠い側との一致に対応するz範囲内のz位置は、強度曲線のピーク328の下にあるz位置326によって示される。その理由は、カバースリップの遠い側が対物レンズの焦点と一致するときに、後方散乱光の最大強度が起こるからである。カバースリップと試料媒体の界面が、そこで光学機器の焦点に一致するステージプラットフォームの現在のz位置を確定するために、周期的なz軸スキャンを実施する種々の異なるタイプのオートフォーカスモジュールが存在する。オートフォーカスモジュールは、その後、電気機械ステージを、焦点の所定のz軸位置に対して所望のz軸位置に駆動して、焦点を試料内の所望のz軸位置に再位置決めしうる。
【0016】
図4および図5は、伝統的なオートフォーカスモジュールの動作を示す制御フロー図を提供する。図4は、伝統的なオートフォーカス動作の高レベル制御フロー図を提供する。オートフォーカス動作は、ステップ402および404を含む連続ループである。ステップ402にて、オートフォーカス動作は、次のオートフォーカス動作を引起すオートフォーカスタイマの終了または光学機器オペレータからの手動入力などの、次のオートフォーカスイベントが起こるまで待つ。その後、ステップ404にて、図3を参照して先に論じたように、ある範囲のz位置にわたるスキャンを実施するためのルーチン「オートフォーカス(autofocus)」が呼び出されて、対物レンズの焦点が、試料媒体を持つカバースリップの遠い界面にそこで一致する現在のz位置が確定される。オートフォーカス動作は、連続ループとして図4に示されるが、ルーチン「オートフォーカス」に対する呼び出し(call)によって表される実際のオートフォーカス動作が、時間的に離散的な間隔で起こること、および、オートフォーカス動作が、破壊的であり、結像または電気機械ステージの並進を伴う他の動作を中断することが留意されるべきである。
【0017】
図5は、図4のステップ404で呼び出されるルーチン「オートフォーカス」についての制御フロー図を提供する。ステップ502〜505のフォーループ(for-loop)において、オートフォーカスモジュールは、ある範囲のz位置を通してスキャンするようにステージドライブを制御する。範囲内の各z位置について、オートフォーカスモジュールは、ステップ503にて、機械ステージをz位置に駆動し、ステップ504にて、後方散乱したオートフォーカス光の強度を測定する。後方散乱したオートフォーカス光の強度が、一旦z位置の範囲内の各位置について測定されると、ステップ502〜505のフォーループにおいて、ルーチン「オートフォーカス」は、ステップ506にて、後方散乱光の最大強度に対応するz位置を計算し、その後、ステップ508にて、ステップ506で計算されたz位置に関して計算されたz位置に機械ステージを駆動する。たとえば、試料内の10ミクロンの一定z位置に焦点が維持されることが所望されうるため、オートフォーカスモジュールは、光学機器がステップ508にてカバースリップの遠い側で合焦される、10ミクロンに現在のz位置を加えた値に等しいz位置を計算し、電気機械ステージをその位置に駆動する。
【0018】
図3〜5を参照して先に論じた伝統的なまたは従来のオートフォーカスサブシステムは、多くの問題および欠点を伴う。1つの重要な問題は、オートフォーカスサブシステムの動作が、先に述べたように、光学機器によって実施される他の動作を何でも中断することである。たとえば、光学機器が、固定したz位置において試料のx−y平面スキャンを行うとき、各オートフォーカス動作は、スキャン中のz位置の安定性を監視するために、スキャンを中断する。オートフォーカシングのために使用されるz軸スキャンは、画像を採取するために必要とされる時間に対してかなりの時間を付加する可能性がある。伝統的なオートフォーカスサブシステムに関連する第2の欠点は、オートフォーカス動作が、時間的に離散的な間隔で実施されるため、機器のz軸位置が、オートフォーカス間隔の間にドリフトすることである。z軸ドリフトを最小にするために、オートフォーカス動作間の間隔を減少させることは、データ収集時間のさらなる増加をもたらす。オートフォーカス動作に関連するなお別の問題は、オートフォーカス動作自体が、z位置の範囲を通して電気機械ステージを移動させることによって所定期間にわたって実施されるため、機器および環境の不安定性がオートフォーカス動作中に変化し、機器の焦点位置が確定され、z軸ドリフトが補正される精度が大幅に減少することである。
【0019】
本発明の実施形態は、電気機械ステージの並進および画像採取動作を含む、他の光学機器構成要素およびサブシステムの動作に関して非同期で動作する連続動作する高速オートフォーカスモジュールを対象とする。図6は、本発明のある実施形態の一態様を示す制御フロー図を提供する。本発明の実施形態によって使用可能にされる非同期オートフォーカス動作は、ステップ602〜604の連続実行ループによって表される。ステップ602にて、カバースリップと試料媒体との間の界面のz軸位置は、一実施形態では、この界面からの後方散乱光がオートフォーカスモジュール光検出器上のそこで最大強度を生成するz軸位置を計算することによって連続して監視される。対物レンズに対する界面のz軸位置が変化すると、または、対物レンズに対する別のz軸位置が変化すると、ステップ604にて、電気機械ステージが補正距離Δzだけ駆動されて、対物レンズと試料内の特定の地点または表面との間の一定距離が維持される。本発明の一実施形態を表すオートフォーカスモジュールが、光学機器の他の構成要素の動作を中断することなく連続して動作するため、データ収集時間は、影響を受けず、光学機器の焦点は、伝統的なオートフォーカスモジュールに比べて所定期間にわたってより安定してかつより高い精度で維持されうる。本発明の一実施形態を表すオートフォーカスモジュールが、試料媒体とのカバースリップの遠い界面のz軸位置を連続かつ高速に再計算するため、カバースリップの界面に対する対物レンズのz軸位置は、伝統的なオートフォーカスモジュールによるのに比べて高い正確さ連続して確定されうる。その理由は、それぞれのオートフォーカス動作に必要とされる時間量が、伝統的なオートフォーカスモジュールの場合よりずっと少なく、したがって、オートフォーカス動作中に起こりうるドリフトの最大量が、伝統的なオートフォーカスモジュールの場合に比べて本発明の述べる実施形態において少ないからである。
【0020】
図7A〜7Cは、図1A〜1Cおよび図3を参照して先に論じた蛍光顕微鏡の電気機械ステージと独立したzスキャンを示す。図7A〜7Cは、図1A〜1Cおよび図3に示すシステムと同様の仮想システムを示し、オートフォーカスモジュール内の検出器は、試料がz方向に対物レンズに対して移動すると同時にチューブレンズに対して移動しうる。図7Aでは、カバースリップの内部界面上の点が、1つまたは複数の対物レンズ706から特定のz軸位置z704に保たれる。カバースリップの内部表面からの後方散乱光は、合焦レンズ714に対して、固定されたz軸位置z712に保たれた検出器710上に合焦される。図7Bでは、機械ステージは、対物レンズに近づき、カバースリップの内部界面702と対物レンズ706との間の距離は、図7Aに示す初期距離z704ではなく、今やz’720である。オートフォーカスモジュール内の検出器710は、内部カバースリップ界面702からの後方散乱光が検出器上に合焦したままになるように、合焦レンズ714から対応距離だけ離れるように移動している。同様に、図7Cに示すように、ステージが、図7Aの場合より対物レンズから遠くに、内部カバースリップ界面と対物レンズとの間の距離z”724だけ移動すると、検出器710は、合焦レンズ714に向かって近くに移動する必要があり、その結果、検出器および合焦レンズは、内部カバースリップ界面からの後方散乱光が検出器上に合焦したままになるように、短い距離z”726だけ分離する。
【0021】
z軸スキャンは、ステージプラットフォームを対物レンズに対してz方向に移動させることによって実施されるだけでなく、オートフォーカスサブシステムの光軸に沿ってオートフォーカスモジュール合焦レンズに対してオートフォーカスモジュール検出器を移動させることによって実施されうる。検出器が、オートフォーカスモジュール内で合焦レンズに対してz位置の範囲にわたって移動すると、その範囲内の1つのz位置が、オートフォーカスモジュール内の合焦レンズの焦点に対応することになり、それは、光学機器の光軸上の、対物レンズとカバースリップの界面との間のz方向の現在の距離に対応する。オートフォーカスモジュールが検出し補正しようと努める対物レンズとカバースリップ界面との間の距離の変化は、カバースリップ界面からの後方散乱光がオートフォーカス検出器上のそこに合焦する合焦レンズの焦点距離である。そのため、合焦レンズに対して、オートフォーカスモジュール内でz軸方向に物理的または論理的に移動でき、カバースリップ界面からの後方散乱光が検出器にいつ合焦したかを判定できる検出器は、対物レンズとカバースリップの界面との間の現在の距離zに対応する、オートフォーカスモジュール内での、合焦レンズに対する検出器の位置zを確定するために使用されうる。これは、対物レンズとカバースリップの界面との間の距離zについての絶対値が、関係
【0022】
【数1】

【0023】
によって確定されることを可能にする。比例定数αは、オートフォーカスモジュールと光学機器によって共有される光学経路の幾何形状ならびにオートフォーカスモジュール合焦レンズとおよび光学機器の1つまたは複数の対物レンズの特性から確定されうる。
【0024】
図8は、小開口焦点検出器の動作の原理を示す。図8では、3つの異なる合焦ビームについて不透明材料内の小円形開口が802、804、および806で示される。第1の光ビームは、円形開口812の下の点810に合焦し、その結果として、光ビームの一部分が、不透明材料の後側に入り、円形断面814を有する光ビームの中心円錐部だけが円形開口を通過する。光ビームが不透明材料によって部分的に遮断されない場合、円形断面814と同じ焦点からの距離にある、光ビームの円形断面816は、より大きな径および面積を有することになる。そのため、開口を通過後の光の強度の減少は、円形断面814の面積と円形断面816の面積の比に比例する。光ビームが、図8の例804の場合と同様に、開口に一致する点に合焦するとき、入射光の全てが、開口を通過し、開口を通過した光の強度は、開口を通過する前の光ビームの強度に等しい。入力光の焦点が、図8の第3の例806で示すように開口を超えると、焦点の前の入力光の一部分が、不透明材料の後側に入り、したがって、事例802の場合と同様に、合焦された光ビームの一部分だけ820が、開口を通過する。そのため、小円形開口の後に設置された、小円形開口を通過する光ビームの強度を測定する検出器は、入力された合焦光ビームの焦点が開口内に入るときを示すために使用されうる。たとえば、円形開口に対する合焦レンズのz位置に対する光検出器によって検出される強度のプロットは、プロット824の水平軸上の点としての、光が開口内に合焦レンズによって合焦される、合焦レンズに対するピンホール開口のz=0 826のz位置が、測定される強度のピーク828に対応することを示す。
【0025】
図8に示すように、ピンホール開口の後の適切な距離に設置された光検出器を検出器が備える、図7A〜7Cを参照して論じた、合焦レンズに対して検出器を移動させる機械的ドライブは、カバースリップ界面から後方散乱される光の焦点に対応するピンホール開口と合焦レンズとの間の距離zを確定するために使用されうる。しかし、機械的に移動可能な検出器は、高価であり、光学機器によるz方向へのスキャンに関連する同じ時間遅延を受けることになる。図7A〜7Cの場合と同様にz方向にスキャンされうる焦点検出器を使用するのではなく、本発明の実施形態は、固定された光検出器および高速並進ピンホール開口または高速漸次拡張合焦ビームを使用して、本発明の実施形態を表すオートフォーカスモジュール内でのz軸スキャンを実施する。
【0026】
図9A〜9Cは、本発明の一実施形態を表すピンホール開口ロータを示す。ピンホール開口ロータ902は、オートフォーカスモジュールの合焦レンズ904と、オートフォーカスモジュール内の光検出器906であって、光検出器に入る光の強度を測定する、光検出器906との間に挿入される。ピンホール開口ロータ902は、複数の垂直円柱シャフトを含み、垂直円柱シャフトがある位置まで回転し、図9Aの垂直円柱シャフト918のように合焦レンズおよび光検出器と整列すると、垂直円柱シャフトを通して、合焦レンズ904から光検出器906へ光が通る。各垂直円柱シャフトは、垂直円柱シャフト914内に中心ピンホール開口922を有する不透明ディスク920などの中心ピンホールを有する不透明ディスクを含む。不透明ディスクは、異なる垂直円柱シャフトのそれぞれにおいて、ピンホール開口ロータの上部面から異なる距離に位置する。図9Aに示すように、ロータの上部面とピンホール開口との間の距離は、垂直円柱シャフトの数値ラベルの増加について直線的に増加し、ピンホール開口ロータ902の垂直円柱シャフト内でピンホール開口のある範囲のz軸位置を形成する。ピンホール開口ロータ902は、合焦レンズ904から光検出器906に光を送信するために、特定の垂直円柱シャフトがいつ位置決めされるかを決定するために、オートフォーカスモジュール内でインデックス検出器によって読取られうる少なくとも1つの物理的インデックス926を含む。物理的インデックス926の位置の検出およびピンホール開口ロータの回転速度の知識は共に、ピンホール開口ロータが電気モータによって一定速度で回転するときに、合焦レンズから光検出器に光を通すために、各垂直円柱シャフトが整列する時間を計算するために使用されうる。物理的インデックスは、磁気ディスク、発光ダイオード、反射板、または他のタイプの物理的インデックスとすることができ、その位置は、物理的インデックスが特定の位置を通して回転するときに、電磁コイル、光検出器、またはレーザ/光検出器などのインデックス検出器によって迅速に確定されうる。
【0027】
図9Bは、z軸に平行な方向で観察したときのピンホール開口ロータを示す。第1の垂直円柱シャフト940が、参照位置R942において合焦レンズおよび光検出器と整列すると、残りの垂直円柱シャフトh〜hn−1は、整列した垂直円柱シャフト940に対して増加する回転角度θ〜θp+1で位置決めされる。ピンホール開口ロータの回転角度が水平軸960に対して0〜360°の範囲にわたってプロットされる図9Cに提供されるプロットにおいて、黒丸962などの黒丸は、左手垂直z位置軸964に関してプロットされた、光検出器に対する各ピンホール開口のz位置を示し、白丸966などの白丸は、右手垂直強度軸968に関してプロットされた、光検出器によって検出される強度を示す。ピンホール開口ロータが0°(図9Cの970)から360°(図9Cの972)まで回転するにつれて、現在のところ整列した垂直円柱シャフト内のピンホール開口と光検出器との間の距離が増加し、一方、光検出器における測定強度は、特定のピンホール開口−光検出器距離z 977に対応する特定の回転角度976においてピークを持つ974。そのため、回転するピンホール開口ロータ902と固定位置の光検出器906の組合せは、測定強度が最大になるピンホール開口と合焦レンズとの間の距離zを確定するために、本発明の一実施形態を示すオートフォーカスモジュール内で、高速にかつ反復してz軸位置を通してスキャンするために使用されうる。その距離は、先に論じたように、光学機器内の対物レンズとカバースリップの界面との間の距離に関連する。
【0028】
図10A〜10Bは、本発明の代替の実施形態で使用される異なるタイプのロータを示す。図10Aに示すように、図9Aの場合と同様に、ピンホール開口ロータの垂直円柱シャフト内で異なる距離にピンホールを設置するのではなく、本発明の代替の実施形態では、経路拡張ロータ1002は、経路拡張ロータの円柱垂直シャフト内に、種々の高さまたは厚さのガラスまたは別の透明材料の中実ロッドを含む。あるいは、いろいろな高さを有するのではなく、中実円柱ロッドは、同じ高さを有するが、異なる屈折率を有する異なる材料で構成されてもよい。本質的に、これらは、いろいろな程度の焦点拡張または焦点拡張長さを提供するディスク状窓と考えられうる。図10Aでは、焦点拡張窓は、経路拡張ロータ1002の円柱垂直シャフト1006内の窓1004などのクロスハッチ部で示される。経路拡張ロータは、連続する垂直円柱シャフトが、合焦レンズ1010と、光検出器1014の上に位置決めされたピンホール開口1012との間の光学経路に整列するように回転する。図10Bに示すように、空気の屈折率nより大きい屈折率nを有する材料の透明円柱ロッドは、透明円柱ロッドがないときにビームが持つことになる焦点1024から、円柱ロッドの高さ1028に比例する距離1026だけ、合焦ビームの焦点1022の距離を拡張するように、入力された合焦ビーム1020を屈折させる。そのため、経路拡張ロッド1002内に増加する厚さまたは増加する屈折率の窓を含むことによって、また、窓を含む垂直円柱シャフトを通して連続してスキャンするようにロータを回転させることによって、経路拡張ロータは、本発明の一実施形態を示すオートフォーカスモジュール内でz軸スキャンを実施するために、ちょうど図9Aのピンホール開口ロータ902のように使用されうる。経路拡張ロータの回転は、図9Aのピンホール開口ロータ902についてのプロット9Cと同様の、回転角度に関するz軸/強度プロットを生成する。
【0029】
図11は、本発明のさらなる実施形態で使用される第3のタイプのロータを示す。このロータは、図9Aに示すピンホール開口ロータと同様であり、その違いは、一連の垂直円柱シャフトを使用するのではなく、ロータ1104内のほぼ円形のスロット1102が使用され、螺旋スリット開口1106および周囲の不透明な螺旋状に形成された材料が、最大z位置1108から最小z位置1110までz軸位置が連続して下がる連続スリット開口を形成することである。さらなる実施形態では、スリット開口ロータの外側部に対してスリット開口ロータの内側部を支持するために、スポークに似た部材が使用される。
【0030】
図9A〜11を参照して先に論じた種々のオートフォーカスロータは、開口のz位置を一様に増減させることまたは窓厚さを一様に増減させることを特徴とし、経路拡張ロータの場合、回転または変位角度と共に、図9Aの垂直シャフト917と918との間のピンホール開口のz位置間の不連続性などの単一の不連続性を有する。しかし、特に物理的インデックスが各垂直円柱シャフトを識別するために使用されるとき、z位置または窓厚さは、回転角度と共に任意に変更され、測定される強度は、マッピングテーブルまたは関数によってz位置にマッピングされることができる。1つだけまたは少数の物理的インデックスが使用される場合でも、窓厚さまたはz位置の任意の配置が、オートフォーカスサブシステムによって計算的に管理されうる。ただし、ロータの各変位角度における垂直シャフト内の窓厚さまたは開口のz位置が、知られており、メモリ内でまたは大容量記憶装置上で利用可能である場合に限る。本発明のある実施形態では、複数の垂直シャフトは、同一の窓または開口の同一のz位置を含んでもよく、場合によっては、z位置または窓厚さは、ロータ回転に伴って窓厚さまたはz位置の不連続性が存在しないように正弦波的に変動してもよい。
【0031】
図12は、蛍光顕微鏡の光学経路内に組込まれる本発明の一実施形態を示すオートフォーカスモジュールを示し、蛍光顕微鏡もまた本発明の一実施形態を示す。図12は、図1A〜1C、図3、および図9A〜11で使用される同じ例証慣行を使用する。オートフォーカスモジュールは、合焦レンズ1202、電気モータ1206によって回転(spin)する軸シャフトに搭載されたオートフォーカスロータ1204、ロータインデックス検出器1208、光検出器1210、および、合焦レンズ1202からロータ1204を通して光検出器1210上に通る光の測定強度に基づいてz軸位置を連続して計算するオートフォーカス処理構成要素1212を含む。本発明のある実施形態では、ロータは、1000回転/分を超える速度で回転することができ、対物レンズとカバースリップ界面との間の距離の計算が、10回/秒以上のレートで計算されることを可能にする。ロータ1204は、図9A〜9Cを参照して先に論じたピンホール開口ロータ、図10A〜10Bを参照して先に論じた経路拡張ロータ、あるいは、単独でまたはピンホール開口と組合せて、合焦レンズ1202と光検出器1210との間の光学経路上で光検出器に対して固定距離において、オートフォーカス光源302によって生成され、カバースリップ界面310から散乱されるオートフォーカス光のz軸スキャンを実施する別のタイプのロータとすることができる。オートフォーカス処理構成要素1210は、連続して、Δz補正を計算し、Δz並進指令をステージドライブ124に発行して、対物レンズ108とカバースリップ界面310との間の距離が一定のままであるように機械ステージを連続して再位置決めする。先に論じたように、本発明の一実施形態を示すオートフォーカスモジュールは、カバースリップ界面から後方散乱する光または試料に対して固定位置を有する別の界面から後方散乱した光を使用して、対物レンズとカバースリップ界面との間のz方向の距離を計算するが、本発明の一実施形態を示すオートフォーカスモジュールは、光学機器のチューブレンズおよび検出器に対する対物レンズの焦点を、試料内の任意に選択された位置に安定して維持するために使用されうる。再び、成句「カバースリップ界面(cover-slip interface)」および「カバースリップ(cover slip)」は、オートフォーカスシステムによって後方散乱オートフォーカス光源として使用されうる種々のタイプの界面を幅広くカバーすることを意図される。本発明の一実施形態を示すオートフォーカスモジュールは、種々の方法で光学機器に組込まれうることが留意されるべきである。多くの場合、オートフォーカスモジュールは、指定されたまたは計算された期間、オートフォーカスを実施するように、手動でまたは自動で起動されうる。他の場合には、オートフォーカスサブシステムは、あるタイプの画像採取モードの間にプログラム的に起動されうる。全ての場合に、オートフォーカスサブシステムは、光学機器の通常のz並進中または他のときに、手動でまたは自動で解除されうる。
【0032】
図13A〜13Iは、本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理副構成要素によって、顕微鏡の対物レンズとカバースリップ界面との間の現在の距離を計算する一手法を示す。方法は、シフトレジスタのアレイ1302、さらなるレジスタのアレイ1304、加算演算子のアレイ1306、3つのさらなるレジスタ1308〜1310、光検出器入力1312、およびロータインデックス検出器入力1314を使用する。レジスタおよびシフトレジスタのレジスタ構成要素は、本発明の一実施形態を示すコンピューティングサブシステムの述べる実施形態において、光検出器によって報告される最大の値を持つ強度値の3倍に等しい数値を含むために、ビットで適切なサイズを有する。一般に、16ビットまたは32ビットレジスタが、正確なz位置計算のために十分なサイズである。
【0033】
回路および/またはファームウェアまたはソフトウェアに取込まれ、図13A〜13Iに示されるz位置計算ロジックは、本発明の一実施形態を示すオートフォーカスモジュール内で、ロータの回転周波数に等しい周波数で、対物レンズに対するカバースリップ界面の相対位置zを計算する。光検出器入力1312は、特定の時点で光検出器によって検出される光の強度を示す数値である。インデックス検出器入力1314は、時点と特定のシフトレジスタとの間のマッピングを選択すると共に、並列シフト演算、並列加算演算、および、本発明の一実施形態を示すオートフォーカスモジュール内でロータの回転周波数でz位置を計算する他の演算を実行する時点を選択する。
【0034】
計算は、並列性が高くまた非同期態様を含む。図13B〜13Dに示すように、本発明の一実施形態を示すオートフォーカスモジュール内のロータが回転するとき、また、ロータの特定の円柱穴がオートフォーカスモジュールの光学経路と整列する時点を、インデックス検出器が確定するとき、光検出器の強度値は、各4レジスタ式シフトレジスタの最初のレジスタに入力される。図13Bでは、第1のロータシャフトに対応する強度値αが、レジスタ1320〜1323を備える第1のシフトレジスタの第1のレジスタ1320に置かれる。図13Dでは、ロータが完全に一周し、強度値が、シフトレジスタのアレイの第1のレジスタの全てに置かれることになる。その後、1回転の終了時に、並列シフトレジスタが、図13Eに示すように、値の全てを1つの場所だけ右にシフトさせる。こうして、シフトレジスタのアレイ内の値の列1324が、並列シフト演算によって、図13Eの列1326にシフトされる。レジスタの最終列1328内の値は破棄される。図13Fに示すように、次の一連の強度値でシフトレジスタのアレイ内の第1の列1324のレジスタを満たすことと同時に起こる、図13Eに示す並列シフト演算に続いて、並列加算演算1306が起動されて、各4レジスタ式シフトレジスタ内の最後の3つのレジスタの和が計算され、その和が、レジスタの列1304に置かれる。加算プロセスは、シフトレジスタのアレイ内でのレジスタの第1の列1324への新しい光検出器の値の転送と非同期に、並列に実施される。加算が終了すると、マイクロプロセッサ実装ルーチンが呼び出されて、レジスタの列1304内の最大検出強度に対応する、ある範囲のz軸位置内のz軸位置が計算される。このプロセスは、ロータの3つの最新のスキャンにわたって平均されることに留意されたい。計算されたz軸位置は、レジスタ1308に置かれて、図13Gに示すように、対物レンズとカバースリップ界面との間の、z方向の現在の距離を示す。その後、図13Hに示すように、現在のz位置が、レジスタ1309に記憶される所望のz位置から減算されて、レジスタ1310に記憶されるΔz補正が生成され、Δz補正が、その後、ステージドライブに出力される。Δz補正の計算が、光検出器入力から得られる強度値の次のセットで、並列シフトレジスタ式レジスタの第1の列1324を満たすことと並列に進むことに留意されたい。強度値の次のセットが得られると、図13Iに示すように、並列シフトレジスタが起動されて、次のΔz補正の計算を準備するために、強度値の列が1つの場所だけシフトされる。
【0035】
図14は、強度値の累積和からの、本発明の一実施形態による、光学機器の現在のz位置の計算を示す。図14は、図13Gを参照して論じた本発明の実施形態による、レジスタ1308に置かれる現在のz位置の計算を示す。図14において、各円柱シャフト位置における強度値は、黒丸1402などの黒丸で表される。強度値は垂直軸1404に関してプロットされ、円柱シャフト位置は水平軸1406に関してプロットされる。プロットされた黒丸は、図13Gを参照して論じたように、並列加算に続くレジスタの列1304のコンテンツに対応する。強度ピークが、特定の円柱シャフトに対応するロータ位置に常になることが好都合であるが、また、測定強度が誤差なしであることが好都合であるが、これは、一般に当てはまらない。したがって、本発明の一実施形態を示すオートフォーカスモジュールのオートフォーカス処理構成要素は、理想化された強度曲線1408をプロットされた点に当てはめるために、多くの異なる曲線当てはめアルゴリズムのうちの1つを使用することができる。推定されるz位置は、その後、計算された曲線1408のピーク強度1412に対応するz位置1410として計算されうる。計算された曲線1408は、図14に示すように、本発明の一実施形態を示すオートフォーカスモジュールによって光強度が測定される回転角度に対応するz位置間になる。そのため、ロータ内のシャフトの数は、オートフォーカスモジュールによってスキャンされるz位置の範囲内で電気機械ステージが駆動されうる位置の数より少なくても、それと同じでも、それより多くてもよい。
【0036】
図3のグラフ324を参照して先に論じたように、後方反射したオートフォーカス光の強度を解析することによって、対物レンズからカバースリップ界面までの距離を確定することは、オートフォーカス処理構成要素(図12の1212)による、オートフォーカス光検出器によって収集されたデータの解析のための1つの基礎を提供するが、他の手法が可能である。本発明の代替の実施形態を示す1つの代替の手法では、後方散乱光の強度が最大であるz位置を確定するのではなく、オートフォーカスシステムは、光学システムのユーザによって、または、光学システムの自動化されたプログラム制御によって選択されるz位置で較正動作を行い、較正動作において、z位置スキャンが、選択されたz位置よりわずかに上でまたわずかに下で実施される。スキャンの目的は、カバースリップ界面からの後方散乱光についてのガウスに似た強度曲線において、ガウスに似た曲線の急峻な面に対応するz位置および対応するオートフォーカスロータ位置を識別することである。後方散乱オートフォーカス光強度の測定される変化が、カバースリップ界面に対する対物レンズのz位置の変化に最も敏感に依存するのは、ガウス曲線のこの位置である。その後、較正に続くデータ収集フェーズ中に、識別されたオートフォーカスロータ位置から測定される強度の変化が、連続して監視され、識別されたオートフォーカスロータ位置において較正ステップ強度を維持するようにz位置が制御される。そのため、オートフォーカス光検出器採取データを解析するこの代替の手法において、光学機器のz位置は、後方散乱オートフォーカス光が最大に強いz位置に対する相対オフセットとして制御されるのではなく、代わりに、z位置の変化に最も敏感なオートフォーカスロータ位置で測定される後方散乱光について較正ステップ確定強度を維持するように制御される。本発明のさらなる実施形態では、より複雑な曲線当てはめアルゴリズムが使用されて、測定された後方散乱オートフォーカス光強度を、経験的に確定されたまたは理論的な後方散乱オートフォーカス光対z位置曲線に精密に当てはめることができ、それにより、光学機器のz位置が所望の値に維持される。
【0037】
本発明の別の実施形態では、さらなる光学構成要素が、赤外オートフォーカス源302とビームスプリッタ308との間でオートフォーカスシステムに導入されるか、または、光学経路内に既に入っている光学構成要素が、調節されるかまたは修正されて、平行光線ビームではなく、わずかに収束するかまたはわずかに発散するオートフォーカス光ビームが生成される。わずかに収束または発散するビームを光学システムに入力することによって、オートフォーカス光は、最終的に試料内のある点に合焦しない。オートフォーカス光が試料内で精密に合焦されると、高強度のオートフォーカス光が、試料および光学データ収集に有害な影響を及ぼしうる。たとえば、赤外オートフォーカス光が使用されると、著しく合焦されたオートフォーカス光は、試料内の高温および生細胞に対する損傷または試料の化学組成物の温度誘発変化をもたらす可能性がある。
【0038】
本発明の別の実施形態では、リング開口が、赤外オートフォーカス源302とビームスプリッタ308との間に設置されて、対物レンズによって急峻な角度で集束されることになる光線だけが、リング開口を通してカバースリップ界面に向かって伝えられる。後方反射光のパーセンテージは、こうした急峻な角度の光線について最大になり、したがって、リング開口を使用して、後方反射光の強度にほとんど寄与しない、急峻でない角度の光線をろ過することによって、必要な後方反射オートフォーカス光強度を維持しながら、試料への入射光の総量を低減することが可能である。図15は、典型的なリング開口を示す。リング開口1502は、普通なら不透明または半透明のディスク1506内に透明または空のリング1505を含む。種々の異なるタイプのリング開口の任意の開口が、本発明の種々の実施形態で使用されうる。
【0039】
本発明は、特定の実施形態によって述べられたが、本発明がこれらの実施形態に限定されることが意図されない。変更が、当業者に明らかになるであろう。たとえば、先に論じたように、種々の異なるタイプの機械ロータの任意のロータが、光軸方向へのz位置スキャンを行うために使用され、それにより、カバースリップ界面からの後方散乱オートフォーカス光のピーク強度の位置を特定して、カバースリップに対する対物レンズの現在のz位置が確定されうる。種々の異なるタイプのオートフォーカス処理副構成要素が、ロジック回路またはソフトウェア制御式マイプロプロセッサから実装されて、プログラミング言語、モジュール式編成、制御構造、データ構造、および他のパラメータを含む、多くの設計および実装パラメータの任意のパラメータを変更することによって、オートフォーカスシステムの光検出器から収集される強度データからz位置が連続して計算されうる。
【0040】
先の説明は、説明のために、本発明の完全な理解を可能にするために特定の専門語を使用した。しかし、本発明を実施するために、特定の詳細が必要とされないことが当業者に明らかになるであろう。本発明の特定の実施形態の先の説明は、例証および説明のために提示される。それらは、網羅的である、または、開示される厳密な形態に本発明を限定することを意図されない。多くの変更および変形が、上記教示を考慮して可能である。実施形態は、本発明の原理およびその実用的な用途を最もよく説明し、それにより、本発明および想定される特定の使用に適した種々の変更を有する種々の実施形態を当業者が最もよく利用することを可能にするために示し述べられる。本発明の範囲は、添付特許請求の範囲およびその均等物によって規定されることが意図される。

【特許請求の範囲】
【請求項1】
オートフォーカスサブシステムであって、
オートフォーカス光源と、
前記オートフォーカス光源から光学機器の光学経路内に光を向ける光学構成要素と、
前記光学機器の光学経路からオートフォーカスシステムに戻るオートフォーカス光を光検出器上に合焦する合焦レンズと、
前記合焦レンズと前記光検出器との間に挿入されたオートフォーカスロータであって、前記光学機器の光学経路内の表面から後方反射されるオートフォーカス光のための、前記合焦レンズの焦点を確定するために光軸スキャンを実施する、オートフォーカスロータとを備えるオートフォーカスサブシステム。
【請求項2】
前記オートフォーカスロータは、
中心軸の周りに回転する円柱ロータと、
前記ロータを前記中心軸の方向にまたがる、複数の中空で円形に配置された円柱シャフトと、
前記合焦レンズからのオートフォーカスサブシステム光軸位置zに対応する、前記ロータの上部からの特定の距離に、各円柱シャフト内に搭載された中心ピンホールを有する不透明ディスクとを含む請求項1に記載のオートフォーカスサブシステム。
【請求項3】
前記オートフォーカスロータが回転するにつれて、各円柱シャフトは、前記合焦レンズと前記光検出器との間の前記オートフォーカスサブシステム光学経路に順に出入りし、それにより、前記中心ピンホールが前記オートフォーカスサブシステム光軸に整列すると、前記中心ピンホールを通過するオートフォーカス光が前記光検出器に入る請求項2に記載のオートフォーカスサブシステム。
【請求項4】
光強度は、各円柱シャフト内の各ピンホールが前記オートフォーカスサブシステム光軸に整列すると、前記オートフォーカスサブシステムによって記録される請求項3に記載のオートフォーカスサブシステム。
【請求項5】
記録された各光強度は、前記オートフォーカスサブシステム光軸に整列したときに、前記光検出器に入り、前記記録される強度を生成するように前記オートフォーカス光が通過した前記円柱シャフト内のピンホールのzに対して、前記オートフォーカスサブシステムによってマッピングされる請求項4に記載のオートフォーカスサブシステム。
【請求項6】
前記オートフォーカスロータは、
中心軸の周りに回転する円柱ロータと、
前記ロータを前記中心軸の方向にまたがる、複数の中空で円形に配置された円柱シャフトと、
各円柱シャフト内に搭載された円柱透明ロッドまたは焦点拡張窓とを含み、各円柱透明ロッドまたは焦点拡張窓は、特定の厚さおよび/または特定の屈折率を有する請求項1に記載のオートフォーカスサブシステム。
【請求項7】
単一固定ピンホール開口は、前記ロータと前記光検出器との間に搭載される請求項6に記載のオートフォーカスサブシステム。
【請求項8】
前記オートフォーカスロータが回転するにつれて、各円柱シャフトは、前記合焦レンズと前記光検出器との間の前記オートフォーカスサブシステム光学経路に順に出入りし、それにより、現在のところ前記光学経路内にある円柱シャフトを通過するオートフォーカス光が、前記合焦レンズの光学特性および前記円柱シャフト内に搭載された前記焦点拡張窓の焦点拡張特性によって決定されるピンホール開口に対するz位置に合焦する請求項7に記載のオートフォーカスサブシステム。
【請求項9】
光強度は、各円柱シャフト内の各窓が前記オートフォーカスサブシステム光軸に整列すると、前記オートフォーカスサブシステムによって記録される請求項8に記載のオートフォーカスサブシステム。
【請求項10】
記録された各光強度は、前記オートフォーカスサブシステム光軸に整列したときに、前記光検出器に入り、前記記録される強度を生成するように前記オートフォーカス光が通過した前記円柱シャフト内の前記焦点拡張窓の焦点拡張特性に対して、前記オートフォーカスサブシステムによってマッピングされる請求項9に記載のオートフォーカスサブシステム。
【請求項11】
前記オートフォーカスロータは、
中心軸の周りに回転する円柱ロータと、
前記ロータを前記中心軸の方向にまたがる、1つまたは複数の中空螺旋シャフトと、
前記1つまたは複数の中空螺旋シャフト内の螺旋スリットとを含み、前記ロータの上部から前記螺旋スリットまでの特定の距離は、前記ロータの円周上のまたは前記円周の近くの参照点からの角度変位と共に、z位置の範囲にわたって連続して変動する請求項1に記載のオートフォーカスサブシステム。
【請求項12】
前記オートフォーカスロータが回転するにつれて、前記1つまたは複数の螺旋スリットを通過し、回転参照点に対する前記ロータの角度変位に関連するz位置で前記螺旋スリットを通過したオートフォーカス光は、前記光検出器に入る請求項11に記載のオートフォーカスサブシステム。
【請求項13】
記録された各光強度は、前記光検出器に入り、前記記録される強度を生成するように前記オートフォーカス光が通過した前記1つまたは複数の螺旋シャフト内の前記1つまたは複数の螺旋スリットのz位置に対して、前記オートフォーカスサブシステムによってマッピングされる請求項12に記載のオートフォーカスサブシステム。
【請求項14】
前記オートフォーカスロータが回転するにつれて、前記オートフォーカスサブシステム光軸のスキャンが行われ、種々の回転位置で前記ロータを通過し、前記光検出器に入る光の強度は、前記回転位置に対応するz位置の指示と共に記録される請求項1に記載のオートフォーカスサブシステム。
【請求項15】
前記記録された強度およびz位置から、最大強度に対応するz位置を計算する計算サブシステムをさらに含む請求項14に記載のオートフォーカスサブシステム。
【請求項16】
前記計算サブシステムは、最大強度に対応するz位置から、前記光学機器の対物レンズから、オートフォーカス光が後方反射される光学経路上の点までの、前記光学機器の光軸に沿う、対応する距離を計算する請求項15に記載のオートフォーカスサブシステム。
【請求項17】
前記計算サブシステムは、前記オートフォーカスロータが回転する周波数において、前記光学機器の対物レンズから、オートフォーカス光が後方反射される光学経路上の点までの、前記光学機器の光軸に沿う、対応する距離についての連続する値を計算する請求項16に記載のオートフォーカスサブシステム。
【請求項18】
さらに、前記光学機器の対物レンズから、オートフォーカス光が後方反射される光学経路上の点までの、前記光学機器の光軸に沿う、計算された対応する距離、および、前記光学機器の対物レンズから、オートフォーカス光が後方反射される光学経路上の点までの、前記光学機器の光軸に沿う、所望の距離から光軸補正Δzを計算し、前記光軸補正Δzを前記光学機器の電気機械構成要素に送信して、前記光学機器の対物レンズから、オートフォーカス光が後方反射される光学経路上の点までの、前記光学機器の光軸に沿う距離を維持する請求項15に記載のオートフォーカスサブシステム。
【請求項19】
インデックス検出器をさらに含み、前記インデックス検出器は、前記オートフォーカスロータ上の物理インデックスを、前記物理インデックスが前記インデックス検出器に近い位置まで回転すると検出する請求項1に記載のオートフォーカスサブシステム。
【請求項20】
前記光源はレーザである請求項1に記載のオートフォーカスサブシステム。
【請求項21】
さらなる合焦要素を含み、前記さらなる合焦要素は、前記光学機器の光学構成要素によって、前記光源からの光が試料内の鮮鋭な点に合焦されることを防止するために、前記光源からの光をわずかに収束するオートフォーカスビームに集束させる請求項20に記載のオートフォーカスサブシステム。
【請求項22】
さらなる合焦要素を含み、前記さらなる合焦要素は、前記光学機器の光学構成要素によって、前記光源からの光が試料内の鮮鋭な点に合焦されることを防止するために、前記光源からの光をわずかに発散するオートフォーカスビームに集束させる請求項20に記載のオートフォーカスサブシステム。
【請求項23】
前記光源によって放出される光はリング開口を通過する請求項20に記載のオートフォーカスサブシステム。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図13D】
image rotate

【図13E】
image rotate

【図13F】
image rotate

【図13G】
image rotate

【図13H】
image rotate

【図13I】
image rotate

【図14】
image rotate

【図15】
image rotate


【公表番号】特表2013−509617(P2013−509617A)
【公表日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2012−536910(P2012−536910)
【出願日】平成22年10月22日(2010.10.22)
【国際出願番号】PCT/US2010/053859
【国際公開番号】WO2011/059679
【国際公開日】平成23年5月19日(2011.5.19)
【出願人】(508253513)アプライド プレシジョン インコーポレイテッド (6)
【氏名又は名称原語表記】APPLIED PRECISION, INC.
【Fターム(参考)】