説明

光CT応用装置

【課題】 光CTに含まれる光ファイバ伝送路に対して加わる振動や曲げなどのストレスに起因して生じる誤動作を防止できる光CT応用装置(地中線事故区間判定装置等)を提供すること
【解決手段】 光CT1の出力から基本波成分を抽出する基本波抽出フィルタ11と、抽出された基本波成分に基づき系統事故の有無を判定する系統事故判定処理部12を有する。また、光ファイバ伝送路にストレスが加わった際に生じる光CTの出力に重畳される低周波成分は、低周波抽出フィルタ13で抽出され、含有率判定部14にて、低周波成分/基本波成分を求め、その比率が閾値以上の場合に含有率判定部の出力をHighにする。係るストレス発生時には、基本波抽出フィルタの出力も大きくなり、系統事故判定処理部が誤判定をするおそれがあるが、AND素子16の出力は、Lowのままとなり、誤動作が防止される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、地中線事故区間検出装置や、系統事故判定装置などの光CTの出力に基づき、所定の判定処理を実行する光CT応用装置であって、光CTに含まれる光ファイバ伝送路に対して加わる振動や曲げなどのストレスに起因して生じる誤動作を防止するための技術に関する。
【背景技術】
【0002】
光CT(current transformer)は、ファラデー効果を利用した電流計測装置であり、電力分野において従来から広く用いられている巻線CTと比較して、電磁誘導ノイズの影響を受けず、広帯域で測定でき、長距離信号伝送が可能であるなどの優れた特長を有している。これにより、たとえば特許文献1に開示されたように、地中ケーブルの所定位置にセンサ部を取付け、そのセンサ部にて検出した地中ケーブルを流れる電流(検出電流)に応じてファラデー効果を受けた光信号を光強度信号に変換し、遠方に設置された受光部まで光ファイバ伝送路より伝送し、受光した光信号を光電変換することにより検出電流に対応した電気信号とし、その信号を処理することにより系統事故判定処理を行う地中線事故区間判定装置等に応用される。
【0003】
上記の地中線事故区間判定装置の場合、基本波成分(例えば、50Hz)付近の周波数帯を抽出するフィルタ等を用い、センサ出力を当該フィルタに入力させることで、フィルタ出力に基づいて事故の有無を判定することができる。
【特許文献1】特開2006−46978号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、光ファイバ伝送路の心線部分に強い振動や極度の曲げ(許容曲げ半径(たとえば5cmや3cm)以下)が生じると、光ファイバ中の光信号の進行が阻害され、光CTのファラデー効果による出力に振動や曲げの影響で生じた不要な出力が過渡的に重畳する。その不要出力が過大になると、その出力を処理する装置の誤差増大や不要動作に至る可能性がある。その結果、事故が発生していない定常状態においても、事故が発生したと誤検出するおそれがある。
【0005】
たとえば、上記の系統事故判定処理の場合、センサ部に接続される光ファイバ伝送路は、他の目的のために設置される光ファイバ伝送路と一緒に束ねられて配線される。そのため、系統事故判定処理を行なう地中線事故区間判定装置とは別のシステムに用いられる光ファイバ伝送路に対するメンテナンス等を行なう際に、誤って、地中線事故区間判定装置用の光ファイバ伝送路に接触してしまって振動や曲げを発生させたり、直接接触しなくとも別の光ファイバ伝送路に対するメンテナンスに伴い、そのメンテナンス作業に起因する振動等が地中線事故区間判定装置用の光ファイバ伝送路に伝達したりするおそれがある。すると、係る光ファイバ伝送路に対する振動や曲げにより、異常な出力がされ、誤作動するおそれがある。
【0006】
また、仮に上記の原因により誤作動した場合でも、メンテナンス作業が終了すると、光ファイバ伝送路に対する曲げや振動もなくなり、異常な出力もなくなるので、後日検証しても、誤作動をした要因を特定することは困難となる。
【0007】
この発明は、光CTに含まれる光ファイバ伝送路に対して加わる振動や曲げなどのストレスに起因して生じる誤動作を防止することのできる光CT応用装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、誤検出を生じる原因となる光ファイバ伝送路の心線部に強い振動や極度の曲げが生じた時に光CT出力に過渡的に発生する歪み波形を検証し、20Hz程度以下の低周波成分が多いことを特定できた。低い周波数としては、2Hzや5Hzといった数Hzのものもあり、また、低周波成分中の高い周波数としては25Hz等の場合もある。つまり、低周波成分の上限は、20Hz丁度ではなく、やや高い範囲まで含む。いずれにしても、基本波成分(たとえば、50Hz)よりは低い周波数帯の信号となる。そこで、基本波成分の大きさと、20Hz程度以下の低周波成分の大きさとを比較し、低周波成分が含まれる割合が大きくなった場合には、誤作動防止のための所定の処理(処理自体を停止、出力を停止(安全側にロック)等)を実行するようにした。そして、具体的には、以下に示す各種の構成を採ることで実現できる。上述した目的を達成するために、本発明では、以下の(1)から(4)に記載する構成を採った。
【0009】
(1)光CTの出力に基づき、所定の判定処理を実行する光CT応用装置であって、前記所定の判定処理を実行する判定手段と、その処理手段と並列に配置され、前記光CTの出力から低周波成分を抽出する低周波抽出手段と、その低周波抽出手段の出力が定常状態よりも大きいか否かを判断する判断手段と、その判断手段の結果が、定常状態よりも大きい場合に前記判定手段の判定結果を無効とする手段と、を備えて構成した。
【0010】
判定手段は、実施形態の87Gリレー,リレー要素等の系統事故判定処理部12に対応する。判断手段は、実施形態の含有率判定部14や低周波含有率検出部24に対応する。無効とする手段は、実施形態では、AND素子16,18に対応する。実施形態では、いずれも判定手段と判断手段の出力を共にAND素子に入力することで、ストレスが加わり判定手段が誤判定をするおそれがある場合でも判定手段による判定処理は行なうものの、その判定結果を出力させない(定常状態・正常状態のままとする)ようにしたが、判定処理自体を停止するようにしても良い。
【0011】
また、光CT応用装置は、例えば、地中線等に流れる電流を測定し、地絡事故の有無(複数の光CTを用いることで、事故区間の検出)等を判定する系統事故判定装置や地中線事故区間検出装置等であったり、保護リレー装置であったりする他、各種の装置により実現できる。
【0012】
(2)前記判定手段は、前記光CTの出力から抽出される基本波成分に基づき系統事故判定を行なうものであり、前記判断手段は、基本波成分に対する低周波成分の含有率を求め、その含有率に基づいて判断を行なうように構成することができる。
【0013】
(3)前記判定手段は、複数の光CTの出力に基づいて判定処理を行なうものであり、前記低周波抽出手段と前記判断手段は、各光CTの出力に対してそれぞれ接続され、少なくとも1つの光CTの出力に接続された判断手段の出力が定常状態よりも大きいと判断した場合には、前記判定手段の判定結果を無効にするように構成することができる。
【0014】
(4)前記判定手段は、複数の光CTの出力の差に基づいて判定処理を行なう電流差動リレーを含み、前記低周波抽出手段は、その複数の光CTの出力の差分出力から低周波成分を抽出するものとすることもできる。このようにすると、複数の光CTであっても、低周波抽出手段と、判断手段は、1組用意すれば足りるので、構成が簡易になる。
【発明の効果】
【0015】
本発明では、光CTに含まれる光ファイバ伝送路に対して加わる振動や曲げなどのストレスに起因して生じる誤動作を防止することができる。
【発明を実施するための最良の形態】
【0016】
図1は、光CT及び光CT応用装置を含むシステムの一例を示している。この例では、光CT応用装置として、系統事故判定を行なう事故判定装置に適用している。図1に示すように、このシステムは、光CT1と、その光CT1の出力に基づき、系統事故の有無を判定する事故判定装置10とを備えている。
【0017】
光CT1は、検査対象の地中送電線9が貫通するように配置されるセンサ部2と、そのセンサ部2に接続される2本の光ファイバ伝送路(第1光ファイバ伝送路3a,第2光ファイバ伝送路3b)と、を備える。第1光ファイバ伝送路3aには、光サーキュレータからなる3ポートの分光素子4に接続され、その分光素子4の他のポートには、光源5と、光電変換器たる第1受光素子6aと、が接続される。また、第2光ファイバ伝送路3bには、光電変換器たる第2受光素子6bが接続される。そして、両受光素子6a,6bの出力には、平均化処理部7が接続され、両受光素子6a,6bの出力を平均化した値(電圧値)を光CT1の出力としている。これら第1,第3受光素子6a,6bと平均化処理部7にて、光電変換器8が構成される。また、分光素子4,光源5並びに光電変換器8は、センサ部2から適宜距離離れて設置され、通常、事故判定装置10の近傍に配置される。
【0018】
光源5には、希土類元素添加物ファイバを半導体レーザ等の励起用光源で励起することにより生じた自然放出光がファイバ内を導波するに従い増幅する現象を利用した光源(ASE)を使用する。また、第1,第2光ファイバ伝送路3a,3bは、単一モード光ファイバを使用する。ASEは、出力光量が大きい(数十mW)、時間的コヒーレンスが低い、空間的コヒーレンスが高いなどの特徴を有しており、光CT(電流センサ)の光源として適している。また、出力光の偏光度は小さいため、単一モードファイバからなる光ファイバ伝送路を用いた光CTにおける光源として優れている。特許文献1に開示されたように、光ファイバ伝送路中(分光素子4と第1光ファイバ伝送路3aとの間)に、偏光解消素子を介在させる構成を採るとよく、このようにすると偏光度が小さいことから偏光解消素子による無偏光化が容易となる。
【0019】
また、分光素子4は、偏波無依存型サーキュレータから構成される。この分光素子4は、光源5から出射された光を第1光ファイバ伝送路3aに供給し、第1光ファイバ伝送路3aから入力される光を第1受光素子6aに供給する。このとき、偏波無依存型サーキュレータを分光素子4として使用することにより、光の偏波状態と強度を変化させることなく各ポートから入力された光を所定のポートに出力することができる。
【0020】
よって、この光CT1によれば、光源5から出射した光を光サーキュレータからなる分光素子4に与えると、その光は第1光ファイバ伝送路3aへ供給される。第1光ファイバ伝送路3a内を伝播されてきた光は、センサ部2に入射される。
【0021】
センサ部2は、ファラデー効果を利用することで、入射した光を検査対象の地中送電線9に流れる電流により発生する磁界の大きさに依存した光の偏波方位の回転角度を2つの光強度に変換して出射する。一方の光信号は、上記の第1光ファイバ伝送路3aに入射され、その第1光ファイバ伝送路3a内を伝播され、分光素子4を介して第1受光素子6aに入射される。他方の光信号は、第2光ファイバ伝送路3bに入射され、その第2光ファイバ伝送路3b内を伝播され、第2受光素子6bに入射される。これにより、センサ部2から出射された2つの出力光(検出電流値に応じた光)は、2つの受光素子6a,6bにて光の強度に応じた電圧に変換され、それらの平均値を最終的な出力電圧とすることで、高精度な測定を行えるようにしている。
【0022】
なお、センサ部2の具体的な構造は、たとえば特許文献1の実施形態や従来例として示された構成を適用することができるし、それ以外の構成を採ることももちろんできる。同様に、光CTも、図1に示す構成や、特許文献1に開示されたものの他、各種の構成を採ることができるのはもちろんである。
【0023】
事故判定装置10は、光CT1の出力(検出した電流に応じた電圧)に対して、基本波抽出フィルタ11と、系統事故判定処理部12を直列に配置する。基本波抽出フィルタ11は、基本波成分である50Hz付近の周波数成分を抽出するフィルタである。
【0024】
系統事故判定処理部12は、基本波抽出フィルタ11を通過した出力信号に基づき、系統事故の有無を判断するもので、基本的には、系統事故時に発生する50Hz成分の信号の有無に基づき、判定する。よって、簡単な判定アルゴリズムとしては、閾値を設定し、基本波抽出フィルタ11の出力がその設定した閾値と比較し、閾値以上であれば系統事故が発生と判定し、閾値未満の場合には系統事故が未発生と判定するようにすることができる。もちろん、基本波抽出フィルタ11の出力波形に対して、特徴量抽出をし、抽出した特徴量に基づいて判定するなど、各種の判定アルゴリズムにより実現できる。
【0025】
本実施形態の事故判定装置10は、低周波抽出フィルタ13を設け、光CT1の出力を、基本波抽出フィルタ11のみでなく、低周波抽出フィルタ13にも与えるようにする。この低周波抽出フィルタ13は、例えば20Hz程度、或いは20Hz程度以下の周波数成分を抽出するフィルタである。光ファイバ伝送路3a,3bに振動や許容曲げ半径以下となる極度の曲げ等のストレスが加わると、光CT1からは、20Hz程度(例えば、5〜30Hz)の信号が検出電流の信号に重畳されて出力される。そこで、低周波抽出フィルタ13は、この光ファイバ伝送路にストレスが加わったときに発生する20Hz程度の周波数成分を抽出し、基本波である50Hzの周波成分は抽出しないようなフィルタ特性を備えたものとした。なお、この低周波抽出フィルタ13は、50Hzの周波成分を遮断するようなフィルタ特性が好ましいが、フィルタの性能等から50Hzの周波成分が通過してしまっても良いし、また、基本波が50Hzとしても、定常状態のときの光CT1の出力は、50Hzちょうどではなく、一定のばらつきの範囲内となることがあり、その場合には仮に低周波抽出フィルタ13が50Hzを遮断するとしても、上記のばらつきの範囲内の周波数成分が低周波抽出フィルタ13で抽出されることがある。但しいずれの場合も、フィルタ特性(ゲイン)の関係から、50Hzの周波成分は、基本波抽出フィルタ11の出力が大きく(低周波抽出フィルタ13の出力は小さく)なる。
【0026】
また、この20Hz程度の周波数成分は、基本波抽出フィルタ11を通過するが、20Hz程度の低周波成分については、低周波抽出フィルタ13の出力が大きく(基本波抽出フィルタ11の出力は小さく)なる。
【0027】
また、低周波抽出フィルタ13は、アナログフィルタとデジタルフィルタのいずれでも構成することはできる。但し、今回検出対象となる光ファイバ伝送路へのストレスは、一時的に加わるもので、その後は正常状態に戻ることから、応答性が良く、対となる基本波抽出フィルタと同等の過渡応答であるのが好ましい。
【0028】
更に、本実施形態では、低周波抽出フィルタ13の後段に、含有率判定部14を設けた。この含有率判定部14は、低周波抽出フィルタ13の出力と、基本波抽出フィルタ11の出力を受け付け、基本波抽出フィルタ11の出力中に占める低周波抽出フィルタ13の出力の割合(低周波抽出フィルタ出力/基本波抽出フィルタ出力)を求め、求めた値が閾値を超えたか否かを判断し、閾値を超える場合(低周波抽出フィルタ13の出力(低周波成分)が多い)には、異常検出信号(High)を出力する。
【0029】
含有率判定部14の出力は、NOT素子15を介して反転され、AND素子16の一方の入力端子に入力される。また、AND素子16の他方の入力端子には、系統事故判定処理部12の出力(事故時:High)が入力される。
【0030】
これにより、光ファイバ伝送路に振動・極度の曲げ等のストレスが加わっていない定常状態では、低周波抽出フィルタ13の出力は小さくなるので、含有率判定部14の出力はLowとなり、AND素子16の一方の入力端子はHighとなる。よって、AND素子16の出力は、系統事故判定処理部12の出力、つまり、系統事故がない場合にはLowで系統事故発生時はHighとなる。よって、このAND素子16の出力に基づいて、図外の保護システムは系統事故時の所定の処理を実行することになる。
【0031】
一方、光ファイバ伝送路に振動・極度の曲げ等のストレスが加わった場合には、低周波抽出フィルタ13の出力が大きくなり、その量が一定量を超えると、含有率判定部14の出力がHigh(異常検出)となり、AND素子16の一方の入力端子はLowとなる。よって、通常、このようにストレス学割った場合には、基本波抽出フィルタ11の出力も一定量を超え、系統事故判定処理部12は系統事故有りとの誤判定をする(AND素子16の他方の入力がHigh)となるが、AND素子16の出力はLowを保持し、誤判定に基づいて図外の保護システムが系統事故時の所定の処理を実行することを抑制することができる。
【0032】
図2は、本発明の別の実施形態を示している。本実施形態では、各抽出フィルタをデジタルフィルタで実現した例を示している。この図2では、光CT1は、センサ部2と、2本の光ファイバ伝送路3a,3bと、光電変換器8と、を概略で図示しているが、図1と同様に、他の光学素子・部品も実装される。
【0033】
事故判定装置10は、図1に示す実施形態の基本波抽出フィルタ11が、50Hz抽出デジタルフィルタ11aと90°積演算部11bと、から構成され、系統事故判定処理部12は、電流差動リレー(87Gリレー)により実現される。よく知られているように電流差動リレーは、入力される2つの値の差が、基準値以上の場合にONになるものである。従って、図示省略するが、少なくとも1つの別の光CTの出力を受ける系統(基本波抽出フィルタ11)が存在し、その系統の基本波抽出フィルタ11の出力も87Gリレーの別の入力端子から供給される。
【0034】
50Hz抽出フィルタ11aのフィルタ特性は、例えば図3に示す“50Hz DF”のようになり、50Hz付近でピークとなり、0Hz(直流成分)のゲインは0,つまり、遮断されることになる。また、90°積演算部11bにおける演算処理は、電気角90゜ごとのデータを二乗して2点加算する処理を行なうもので、これにより振幅値が求まる。なお、電流差動リレーを用いた系統事故判定処理については、後述する。
【0035】
一方、光CT1の出力波形に含まれる低周波成分を抽出し、その抽出した成分が所定含有率以上になった際に系統事故判定処理部12(87Gリレー)の出力をロックするための低周波ロック部20は、加算フィルタ21と、積分フィルタ22と、積演算処理部23と、低周波含有率検出部24と、ロック判定タイマ25と、を直列接続して構成される。両フィルタ21,22は、ともにデジタルフィルタにより実現される。また、光CT1の出力は、図示省略するA/D変換器によって所定のサンプリング周期でA/D変換され、そのデジタル値がサンプリング順にデータメモリに格納される。そこで、各フィルタは、そのデータメモリに格納された所定のデータを読み出し、演算処理することでフィルタリング処理をすることになる。また、各処理部で算出された算出結果も、時系列順に別途メモリに格納される。
【0036】
加算フィルタ21は、K=6のフィルタ、すなわち、現在の値と6個前の値を加算する処理を実行する。これにより、光CT1の現在(n番目)の出力値がAnとすると、加算フィルタ21の出力Bnは、
Bn=An+A(n−6)
により求められる。
【0037】
積分フィルタ22は、K=5のフィルタ、すなわち、現在の値と、過去5回分のデータを加算する処理を実行する。これにより、積分フィルタ22の出力Cnは、
Cn=Bn+B(n−1)+B(n−2)+B(n−3)+B(n−4)+B(n−5)
により求められる。
【0038】
この直列接続した2つのフィルタ21,22により、図1に示す低周波抽出フィルタ13のように、低周波成分(直流成分を含む)を抽出し、50Hz程度の周波成分を遮断(抑制)するフィルタを構成することができる。そして、この2つのフィルタ全体でのフィルタ特性“DC DF”は、図3に示すように、0Hz(直流成分)付近でピークとなり、50Hzのゲインは0,つまり、遮断されることになる。
【0039】
さらに、この積分フィルタ22の後段に接続する積演算処理部23は、積分フィルタ22の出力Cnを、下記式に代入してDnを算出するものである。
【0040】
Dn=ルート(Cn*Cn−C(n−3)*C(n−3))
つまり、この積演算は、90°積演算処理であり、積分フィルタ22から出力される信号の振幅が求められる。このように、積演算処理部23を50Hz成分検出用の積演算と同じアルゴリズムを用いて構成したのは、次段の低周波含有率検出部24にて、過渡応答中の50Hz成分と低周波成分との比を求めるため、同じアルゴリズムで用いた振幅を用いて演算することでその比を、精度良く求めることができるようにしたためである。
【0041】
低周波含有率検出部24と、ロック判定タイマ25とが、図1に示す含有率判定部14に対応する。低周囲含有率検出部24は、90°積演算処理部11bから与えられる50Hz成分と、積演算処理部23から与えられる低周波成分との比を求め、その求めた比に対して閾値処理をするものである。ここで、本実施形態では、図3に示すように、50Hz抽出デジタルフィルタ11aのフィルタ特性“50Hz DF”と、低周波抽出デジタルフィルタ(加算フィルタ21+積分フィルタ22)のフィルタ特性“DC DF”とは、それぞれのピークのゲインが“6.6921”と“12”というように異なるため、そのまま単純に比を求めることはできない。そこで、本実施形態では、ピークの低い50Hz抽出デジタルフィルタのフィルタ特性に対して、ピークの比の逆数である“12/6.6921”を掛けて補正をし、その補正した値と、低周波抽出フィルタの出力との比を求めるようにした。
【0042】
具体的には、
“DC DFゲイン”/“50Hz DF×(12/6.6921)”
を求める。すると、この比の周波数特性は、図4に示すようになる。つまり、50Hzの場合、図3に示すフィルタ特性“DC DF”から低周波抽出フィルタの出力(DC DFゲイン)は“0”となので、上記の比も“0”となる。そして、50Hz周辺では0に近い値をとり、周波数が低くなると、低周波抽出フィルタの出力(DC DFゲイン)が大きくなるとともに、“50Hz DF×(12/6.6921)”が小さくなることから指数関数的に増加する。
【0043】
そして、本実施形態では、低周波成分の含有率である“DC DFゲイン”/“50Hz DF×(12/6.6921)”の比較基準となる閾値を0.5とした。これにより、
低周波成分/50Hz成分(補正後)>0.5
となると、低周波成分である30Hz以下の信号が含まれる(含有率が高くなる)といえる。よって、低周波含有率検出部24は、求めた比が0.5を超えると、異常信号を出力する(LowからHighに切り替わる)。
【0044】
ロック判定タイマ25は、低周波含有率検出部24の出力を監視し、一定時間(たとえば、20ms)異常信号が継続して出力されている場合に、検出すべき光ファイバ伝送路への振動・曲げなどが発生していると判断してロック(出力をHigh)する。これにより、AND素子18の一方の入力端子がLowとなり、電流差動リレー(87Gリレー)12の出力の如何に関わらずAND素子18の出力はLowのままとする。そして、一旦ロックがかかると、その状態を一定時間(たとえば1秒)保持した後、ロックを解除する(出力をLowにする)。これより、たとえば、算出した含有率が閾値付近の場合でも、頻繁にON/OFFが切り替わるのを防止し、安定して動作するようにする。
【0045】
図5、図6は、上述した図2に示す実施形態の装置における実験結果を示すグラフである。各グラフでは、光CT(光電流センサ)の出力と、50Hz成分検出量(50Hz抽出デジタルフィルタの出力)と、低周波抑制検出量(低周波抽出デジタルフィルタの出力)と、をそれぞれ測定した。図5は、通常の系統事故発生時の検出波形である。光CTの出力は、一定の振幅できれいな波形となり、それに重畳された50Hz成分は多く重畳され、低周波成分は少ない結果となる。この図から判断すると、たとえば、50Hz成分の出力に対し、4V程度に閾値を設定することで、系統事故の発生の有無を判別できる。
【0046】
図6は、系統事故は発生せず、光ファイバ伝送路に対して振動や曲げなどのストレスが加わった場合の検出波形である。縦軸の電圧のレンジが図5と異なるため、光CTの出力が大きく振動しているのみにも見えるが、実際には、図5と同様に適当な振幅の振動波形の状態で大きく脈動する。また、50Hz成分検出量もその絶対量は大きいので、そのままでは、系統事故判定処理部12の判定結果は、事故発生となる。図6に示すように、50Hz成分検出量に比べて、低周波抑制検出量が非常に大きな値をとり、低周波成分の含有率も大きくなると言う現象が確認できる。そして、図5の例では、低周波成分の含有率は小さくなる。よって、上述したように、低周波成分の含有率に基づいて、異常の有無を判定できることが確認できた。
【0047】
そして、図5のケースでは、系統事故判定処理部12の判定結果は、事故あり(High)となり、低周波ロック部20の出力はLowであるので、AND素子18の出力は、Highとなり、系統事故発生時の処理が実行された。これに対し、図6のケースでは、系統事故判定処理部12の判定結果は、事故あり(High)と誤判定をしてしまうが、低周波ロック部20の出力はHighとなるので、最終的なAND素子18の出力はLowとなるので、誤って系統事故発生時の処理は実行されるのを抑制できた。
【0048】
図7は、本発明の別の実施形態を示している。この例では、複数(図では2個)の光CT1の出力に基づいてリレー要素12にて判定処理を行なう装置を示している。このリレー要素12は、判定する処理の内容によって適宜のものが選択される。また、図7では、図2と同様に光CT1を、センサ部2と、2つの光ファイバ伝送路3a,3bと、光電変換器8のみ図示しているが、図1等に示すように、他の光学素子・部品を備えている。また、複数の光CT1の出力に基づいて判定処理を行なう装置側では、リレー要素12を代表して記載しているが、その判定内容に応じて、他の部品(フィルタ等)を適宜位置に配置することもある。
【0049】
図示するように、低周波ロック部20は、光CT1の数だけ用意し、それぞれに接続する。そして、複数の低周波ロック部20の出力をOR素子26の入力端子に接続し、そのOR素子26の出力をAND素子18の一方の入力端子に反転入力させる。これにより、少なくとも1つの光CT1の光ファイバ伝送路に対して振動や極端な曲げ等のストレスが加わった場合、対応する低周波ロック部20の質力がHighになるので、OR素子26の主力もHighとなり、反転されてAND素子18へLowが入力される。よって、係るストレスが原因でリレー要素12が誤動作しても、AND素子18の出力はLowとなるので、外部への影響を抑止できる。
【0050】
図8は、さらに別の実施形態を示している。本実施形態では、系統事故の発生箇所(故障区間)を検出するもので、図2に示す実施形態を基本とするものである。つまり、地中線などの監視対象の適宜位置に、一定の距離をおいて2つの光CT1のセンサ部2をそれぞれ装着する。地中線が地絡事故等を発生していない場合には、地中線を流れる電流の大きさにさほど差はないが、2つのセンサ部の間で地絡事故を発生している場合には、事故点より上流側は電流が流れるが、事故点より下流側は電流が流れないこともあり、両光CTの出力は大きく異なる。そこで、光CTの出力が大きく相違しているか、否かにより、事故の発生の有無を判定することができ、そのため、電流差動リレー要素(87Gリレー)12cを用いる。
【0051】
より具体的には、2つの光CT1の出力を、差動電流算出部12aに与え、両者の差分を算出し、その算出結果を電流差動リレー要素12cに与える。電流差動リレー要素12cは、差動電流算出部12aの出力が設定値より大きい場合に、ON(地絡事故等が発生したと判断)する。そして、この比較基準の設定値は、固定値としても良いが、本実施形態では、抑制電流算出部12bの出力により変動するようにしている。抑制電流算出部12bは、2つの光CT1の出力(スカラ量)を加算するもので、その加算した出力のX%を設定値とする。このように抑制電流算出部12bを設けると、電流値が大きくなるほど許容誤差の範囲内は大きくなる。これらの基本的な構成、動作原理は、従来と同様である。
【0052】
そして、低周波ロック部20に入力端子には差動電流検出部12aの出力から分岐して接続している。この構成によれば、少なくとも1つの光CTの光ファイバ伝送路に対して振動や極度の曲げ等のストレスが加わった場合、その影響(低周波成分の信号への重畳)は差動電流検出部12aの出力に現れるので、低周波ロック部20は一つですむので好ましい。
【図面の簡単な説明】
【0053】
【図1】光CT及び光CT応用装置を含むシステムの一例を示す図である。
【図2】光CT及び光CT応用装置を含むシステムの別の例を示す図である。
【図3】デジタルフィルタのフィルタ特性を示すグラフである。
【図4】基本波成分に対する低周波成分の含有率の周波数特性を示すグラフである。
【図5】実験結果(通常の事故時)を示すグラフである。
【図6】実験結果(光ファイバ伝送路に対して振動・極度の曲げ等を加えたとき)を示すグラフである。
【図7】複数の光CT及び光CT応用装置を含むシステムの一例を示す図である。
【図8】複数の光CT及び光CT応用装置を含むシステムの他の例を示す図である。
【符号の説明】
【0054】
1 光CT
2 センサ部
3a 第1光ファイバ伝送路
3b 第2光ファイバ伝送路
10 事故判定装置
11 基本波抽出フィルタ
11a 50Hz抽出デジタルフィルタ
11b 90°積演算部
12 系統事故判定処理部
13 低周波抽出フィルタ
14 含有率判定部
16,18 AND素子
20 低周波ロック部
21 加算フィルタ
22 積分フィルタ
23 積演算処理部
24 低周波含有率検出部
25 ロック判定タイマ

【特許請求の範囲】
【請求項1】
光CTの出力に基づき、所定の判定処理を実行する光CT応用装置であって、
前記所定の判定処理を実行する判定手段と、
その処理手段と並列に配置され、前記光CTの出力から低周波成分を抽出する低周波抽出手段と、
その低周波抽出手段の出力が定常状態よりも大きいか否かを判断する判断手段と、
その判断手段の結果が、定常状態よりも大きい場合に前記判定手段の判定結果を無効とする手段と、を備えた光CT応用装置。
【請求項2】
前記判定手段は、前記光CTの出力から抽出される基本波成分に基づき系統事故判定を行なうものであり、
前記判断手段は、基本波成分に対する低周波成分の含有率を求め、その含有率に基づいて判断を行なうように構成したことを特徴とする請求項1に記載の光CT応用装置。
【請求項3】
前記判定手段は、複数の光CTの出力に基づいて判定処理を行なうものであり、
前記低周波抽出手段と前記判断手段は、各光CTの出力に対してそれぞれ接続され、少なくとも1つの光CTの出力に接続された判断手段の出力が定常状態よりも大きいと判断した場合には、前記判定手段の判定結果を無効にするように構成したことを特徴とする請求項1または2に記載の光CT応用装置。
【請求項4】
前記判定手段は、複数の光CTの出力の差に基づいて判定処理を行なう電流差動リレーを含み、
前記低周波抽出手段は、その複数の光CTの出力の差分出力から低周波成分を抽出するものであることを特徴とする請求項1または2に記載の光CT応用装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−128208(P2009−128208A)
【公開日】平成21年6月11日(2009.6.11)
【国際特許分類】
【出願番号】特願2007−304132(P2007−304132)
【出願日】平成19年11月26日(2007.11.26)
【出願人】(000002842)株式会社高岳製作所 (72)
【Fターム(参考)】