説明

共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子

【課題】光電変換効率の高い光起電力素子を提供すること。
【解決手段】特定の構造を有する共役系重合体を含む光起電力素子用材料。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子に関する。
【背景技術】
【0002】
太陽電池は環境に優しい電気エネルギー源として、現在深刻さを増すエネルギー問題に対して有力なエネルギー源と注目されている。現在、太陽電池の光起電力素子の半導体素材としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。しかし、無機半導体を用いて製造される太陽電池は、火力発電や原子力発電などの発電方式と比べてコストが高いために、一般家庭に広く普及するには至っていない。コスト高の要因は主として、真空かつ高温下で半導体薄膜を製造するプロセスにある。そこで、製造プロセスの簡略化が期待される半導体素材として、共役系重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。
【0003】
しかし、共役系重合体などを用いた有機太陽電池は、従来の無機半導体を用いた太陽電池と比べて光電変換効率が低いことが最大の課題であり、まだ実用化には至っていない。従来の共役系重合体を用いた有機太陽電池の光電変換効率が低いのは、主として、太陽光の吸収効率が低いことや、太陽光によって生成された電子と正孔が分離しにくいエキシトンという束縛状態が形成されることと、キャリア(電子、正孔)を捕獲するトラップが形成されやすいため生成したキャリアがトラップに捕獲されやすく、キャリアの移動度が遅いことなどによる。
【0004】
これまでの有機半導体による光電変換素子は、現在のところ一般的に次のような素子構成に分類することができる。電子供与性有機材料(p型有機半導体)と仕事関数の小さい金属を接合させるショットキー型、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を接合させるヘテロ接合型などである。これらの素子は、接合部の有機層(数分子層程度)のみが光電流生成に寄与するため光電変換効率が低く、その向上が課題となっている。
【0005】
光電変換効率向上の一つの方法として、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を混合し、光電変換に寄与する接合面を増加させたバルクヘテロ接合型(例えば、非特許文献1参照)がある。なかでも、電子供与性有機材料(p型有機半導体)として共役系重合体を用い、電子受容性有機材料としてn型の半導体特性をもつ導電性高分子のほかPCBMなどのC60誘導体を用いた光電変換材料が報告されている(例えば、非特許文献2参照)。
【0006】
また、太陽光スペクトルの広い範囲にわたる放射エネルギーを効率よく吸収させるために、主鎖に電子供与性基と電子吸引性基を導入し、バンドギャップを小さくした有機半導体による光電変換材料が報告されている(例えば、非特許文献3参照)。この電子供与性基としてはチオフェン骨格が、電子吸引性基としてはベンゾチアジアゾール骨格やキノキサリン骨格などが精力的に研究されている(例えば、非特許文献3〜14、特許文献1〜2参照)。しかしながら、十分な光電変換効率は得られていなかった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特表2004−534863号公報(請求項1)
【特許文献2】特表2004−500464号公報(請求項1)
【非特許文献】
【0008】
【非特許文献1】J.J.M.Halls、C.A.Walsh、N.C.Greenham、E.A.Marseglla、R.H.Frirnd、S.C.Moratti、A.B.Homes著、「ネイチャー(Nature)」、1995年、376号、498頁
【非特許文献2】G.Yu、J.Gao、J.C.Hummelen、F.Wudl、A.J.Heeger著、「サイエンス(Science)」、1995年、270巻、1789頁
【非特許文献3】E.Bundgaard、F.C.Krebs著、「ソーラー エナジー マテリアルズ アンド ソーラー セル(Solar Energy Materials & Solar Cells)」、2007年、91巻、954頁
【非特許文献4】A.Gadisa、W.Mammo、L.M.Andersson、S.Admassie、F.Zhang、M.R.Andersson、O.Inganas著、「アドバンスト ファンクショナル マテリアルズ(Advanced Functional Materials)」、2007年、17巻、3836−3842頁
【非特許文献5】W.Mammo、S.Admassie、A.Gadisa、F.Zhang、O.Inganas、M.R.Andersson著、「ソーラー エナジー マテリアルズ アンド ソーラー セル(Solar Energy Materials & Solar Cells)」、2007年、91巻、1010−1018頁
【非特許文献6】R.S.Ashraf、H.Hoppe、M.Shahid、G.Gobsch、S.Sensfuss、E.Klemm著、「ジャーナル オブ ポリマー サイエンス パートA ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry)」、2006年、44巻、6952−6961頁
【非特許文献7】C−L.Liu、J−H.Tsai、W−Y.Lee、W−C.Chen、S.A.Jenekhe著、「マクロモレキュルズ(Macromolecules)」、2008年、41巻、6952−6959頁
【非特許文献8】N.Blouin、A.Michaud、D.Gendron、S.Wakim、E.Blair、R.Neagu−Plesu、M.Belletete、G.Durocher、Y.Tao、M.Leclerc著、「ジャーナル オブ アメリカン ケミカル ソサイェティー(Journal of American Chemical Society)」、2008年、130巻、732−742頁
【非特許文献9】M.Sun、Q.Niu、B.Du、J.Peng、W.Yang、Y.Cao著、「マクロモレキュラー ケミストリー アンド フィジクス(Macromolecular Chemistry and Physics)」、2007年、208巻、988−993頁
【非特許文献10】W−Y.Lee、K−F.Chang、T−F.Wang、C−C.Chueh、W−C.Chen、C−S.Tuan、J−L.Lin著、「マクロモレキュラー ケミストリー アンド フィジクス(Macromolecular Chemistry and Physics)」、2007年、208巻、1919−1927頁
【非特許文献11】A.Tsami、T.W.Bunnagel、T.Farrell、M.Scharber、S.A.Choulis、C.J.Brabec、U.Scherf著、「ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)」、2007年、17巻、1353−1355頁
【非特許文献12】M.Lai、C.Chueh、W.Chen、J.Wu、F.Chen著、「ジャーナル オブ ポリマー サイエンス パートA ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry)」、2009年、47巻、973−985頁
【非特許文献13】J.Lee、W.Shin、J.Haw、D.Moon著「ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)」、2009年、19巻、4938−4945頁
【非特許文献14】L.J.Lindgren、F.Zhang、M.Andersson、S.Barrau、S.Hellstrom、W.Mammo、E.Perzon、O.Inganas、M.R.Andersson著「ケミストリー オブ マテリアルズ(Chemistry of Materials)」、2009年、21巻、3491−3502頁
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述のように、従来の有機太陽電池はいずれも光電変換効率が低いことが課題であった。本発明は光電変換効率の高い光起電力素子を提供することを目的とする。
【課題を解決するための手段】
【0010】
すなわち本発明は、下記一般式(1)で表される構造を有する共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子である。
【0011】
【化1】

【0012】
上記一般式(1)中、R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは同じでも異なっていてもよく、単結合、アリーレン基、チエノチエニレン基を除くヘテロアリーレン基の中から選ばれる。nは10以上1000以下の範囲を表す。
【発明の効果】
【0013】
本発明によれば、光電変換効率の高い光起電力素子を提供することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の光起電力素子の一態様を示した模式図。
【図2】本発明の光起電力素子の別の態様を示した模式図。
【発明を実施するための形態】
【0015】
本発明の共役系重合体は、下記一般式(1)で表される構造を有することを特徴とする。
【0016】
【化2】

【0017】
上記一般式(1)中、R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは同じでも異なっていてもよく、単結合、アリーレン基、チエノチエニレン基を除くヘテロアリーレン基の中から選ばれる。nは10以上1000以下の範囲を表す。
【0018】
ここでアルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基のような飽和脂肪族炭化水素基であり、直鎖状であっても分岐状であっても環状であってもよく、無置換でも置換されていてもかまわない。耐熱性の観点から、アルキル基の炭素数は30個以下が好ましく、20個以下がさらに好ましい。置換される場合の置換基の例としては、下記アルコキシ基、アリール基、ヘテロアリール基、ハロゲンが挙げられる。また、アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。耐熱性の観点から、アルコキシ基の炭素数は30個以下が好ましく、20個以下がさらに好ましい。置換される場合の置換基の例としては、下記アリール基、ヘテロアリール基、ハロゲンが挙げられる。また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ターフェニル基、ピレニル基、フルオレニル基、ペリレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アリール基の炭素数は、加工性の観点から6個以上30個以下が好ましい。置換される場合の置換基の例としては、上記アルキル基、アルコキシ基、下記ヘテロアリール基、ハロゲンが挙げられる。また、ヘテロアリール基とは、例えば、チエニル基、チエノチエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリニル基、イソキノリル基、キノキサリル基、アクリジニル基、インドリル基、カルバゾリル基、ベンゾフラン基、ジベンゾフラン基、ベンゾチオフェン基、ジベンゾチオフェン基、ベンゾジチオフェン基、シロール基、ベンゾシロール基、ジベンゾシロール基などの炭素以外の原子を有する複素芳香環基を示し、これは無置換でも置換されていてもかまわない。置換される場合の置換基の例としては、上記アルキル基、アルコキシ基、アリール基、下記ハロゲンが挙げられる。また、ハロゲンはフッ素、塩素、臭素、ヨウ素のいずれかである。
【0019】
また、アリーレン基とは上記アリール基(芳香族炭化水素基)の2価の基であり、ヘテロアリーレン基とは上記ヘテロアリール基(炭素以外の原子を有する複素芳香環基)の2価の基である。ただし、W、X、YまたはZがヘテロアリーレン基である場合、チエノチエニレン基は除く。
【0020】
また、nは重合度を示し、10以上1000以下の範囲である。重合度は重量平均分子量から求めることができる。重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定し、ポリスチレンの標準試料に換算して求めることができる。
【0021】
一般式(1)で表される共役系重合体は、光吸収特性やキャリア(特にホール)輸送能に優れるため、光起電力素子における電子供与性有機材料として好ましく用いることができる。
【0022】
光起電力素子の光電変換効率は、電子供与性有機材料の分子量と相関する場合が多い。高い光電変換効率を得るためには、電子供与性有機材料として重量平均分子量10000以上の共役系重合体を用いることが好ましく、重量平均分子量20000以上がさらに好ましい。しかしながら、一般的に共役系重合体は主鎖が剛直であるために溶解性が低く、このような高分子量で溶解性の高い重合体を得るためには、通常炭素数6個以上のアルキル基や、炭素数6個以上のアルコキシ基を可溶化基として導入することが必要であるとされている(例えば、ポリ(3−ヘキシルチオフェン)や、前記非特許文献13に記載されているPQTT、PQPDTT、PQTPDTTなど)。一方、素子構成の点から光電変換効率を高める手法として、電子受容性有機材料と電子供与性有機材料を混合することにより光電変換に寄与する接合面を増加させる、バルクヘテロ接合型光起電力素子が知られている。バルクヘテロ接合型光起電力素子では、電子とホールの通り道(キャリアパス)を形成するために、電子供与性有機材料と電子受容性有機材料は、完全には相溶せずにナノレベルで相分離することが好ましい。しかしながら、上述のように電子供与性有機材料の溶解性を上げるために導入した可溶化基は電子受容性有機材料との相溶性を高めて相分離構造の形成を阻害したり、逆に電子受容性有機材料との相溶性を低めてマイクロメートルスケールの相分離を引き起こしたりする場合が多く、バルクヘテロ接合型光起電力素子における光電変換効率効果を十分発揮することができない。
【0023】
このように、溶解性を確保しつつ高分子量化することと、バルクヘテロ接合型光起電力素子に適した相分離構造形成能を付与することの両立は困難であったが、本発明における一般式(1)で表される構造を有する共役系重合体は、この両立を可能にするものである。
【0024】
一般式(1)で表される構造を有する共役系重合体の主鎖構造は、RとRを有するキノキサリン骨格と、このキノキサリン骨格の両側に配置される2つのチエノチオフェン骨格と、これらチエノチオフェン−キノキサリン−チエノチオフェンのトライアッドを連結する2価の連結基(フルオレン、シラフルオレンまたはカルバゾール)を有する。
【0025】
1つ目の構成要素であるキノキサリン骨格は、平面性が高いためπ−πスタッキングによる凝集を起こしやすく、上述のバルクヘテロ接合に適した相分離構造を形成しやすいと考えられる。さらに、RおよびRの位置に、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアリール基または置換されていてもよいヘテロアリール基を有する場合、容易に高分子量化することができるため好ましい。また、置換されていてもよいアルキル基および置換されていてもよいアルコキシ基の炭素数が5個以下である場合、前述の電子受容性有機材料との相溶性をより適度な範囲に調整することができるため好ましい。このような観点から、RとRは、置換されていてもよい炭素数1個以上5個以下のアルキル基、置換されていてもよい炭素数1個以上5個以下のアルコキシ基、置換されていてもよいアリール基または置換されていてもよいヘテロアリール基であることが好ましい。ここで、アルキル基およびアルコキシ基の炭素数には、置換される場合の置換基に含まれる炭素は含まない。
【0026】
2つ目の構成要素であるチエノチオフェン骨格は、キノキサリン骨格と組み合わされてチエノチオフェン−キノキサリン−チエノチオフェンのトライアッドを形成することにより、主鎖骨格のバンドギャップを低下させて、光起電力素子の短絡電流(Jsc)の増大に寄与する。この効果はチエノチオフェンとキノキサリンが直接結合している場合に最も高くなる。このため、上記X、Yは単結合であることが好ましい。
【0027】
3つ目の構成要素である2価の連結基(フルオレン、シラフルオレンまたはカルバゾール)は、高分子量化と、適度なナノレベル相分離構造の形成に有効な骨格である。これらの連結基は、高分子量化のために必要とされる可溶化基を導入することが合成的に容易であるという特徴を有する。そのような溶解性確保の観点から、R15とR16は炭素数6個以上のアルキル基であることが好ましい。
【0028】
上記のような高分子量化と相分離構造形成能との両立や溶解性の確保といった観点に加え、合成の容易さや合成収率といった観点から、上述の置換基のうち、RおよびRは置換されていてもよいアリール基であることがより好ましく、R〜R14は水素またはアルキル基であることがより好ましく、WとZは単結合であることが好ましく、Aは炭素であることが好ましい。RおよびRが置換されているアリール基である場合、その置換基は炭素数1個以上5個以下のアルキル基または炭素数1個以上5個以下のアルコキシ基であることが好ましく、炭素数1個以上3個以下のアルキル基または炭素数1個以上3個以下のアルコキシ基であることがさらに好ましい。
【0029】
上記の一般式(1)で表される構造を有する共役系重合体として、下記のような構造が挙げられる。なお、下記構造において、nは10以上1000以下の範囲である。
【0030】
【化3】

【0031】
【化4】

【0032】
【化5】

【0033】
【化6】

【0034】
【化7】

【0035】
【化8】

【0036】
【化9】

【0037】
【化10】

【0038】
【化11】

【0039】
【化12】

【0040】
【化13】

【0041】
【化14】

【0042】
なお、一般式(1)で表される構造を有する電子供与性有機材料は、例えば、前記非特許文献4に記載されている方法に類似した手法や、前記非特許文献13に記載されている方法に類似した手法により合成することができる。
【0043】
本発明の電子供与性有機材料は、一般式(1)で表される構造を有する共役系重合体のみからなるものでもよいし、他の電子供与性有機材料を含んでもよい。他の電子供与性有機材料としては、例えばポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられる。
【0044】
一般式(1)で表される構造を有する共役系重合体はp型半導体特性を示すため、光起電力素子用材料としてより高い光電変換効率を得るためには電子受容性有機材料(n型有機半導体)と組み合わせることが好ましい。
【0045】
本発明で用いる電子受容性有機材料とは、n型半導体特性を示す有機材料であり、例えば1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10−ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド(PTCDI−C8H)、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール(BND)等のオキサゾール誘導体、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール(TAZ)等のトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル([6,6]−PCBM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル([5,6]−PCBM)、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル([6,6]−PCBH)、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル([6,6]−PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。中でも、フラーレン化合物は電荷分離速度と電子移動速度が速いため、好ましく用いられる。フラーレン化合物の中でも、C70誘導体(上記PC70BMなど)は光吸収特性に優れ、より高い光電変換効率を得られるため、より好ましい。
【0046】
本発明の光起電力素子用材料において、電子供与性有機材料と電子受容性有機材料の含有比率(重量分率)は特に限定されないが、電子供与性有機材料:電子受容性有機材料の重量分率が、1〜99:99〜1の範囲であることが好ましく、より好ましくは10〜90:90〜10の範囲であり、さらに好ましくは20〜60:80〜40の範囲である。電子供与性有機材料と電子受容性有機材料は混合して用いることが好ましい。混合方法としては特に限定されるものではないが、所望の比率で溶媒に添加した後、加熱、撹拌、超音波照射などの方法を1種または複数種組み合わせて溶媒中に溶解させる方法が挙げられる。なお、後述するように、光起電力素子用材料が一層の有機半導体層を形成する場合は、上述の含有比率はその一層に含まれる電子供与性有機材料と電子受容性有機材料の含有比率となり、有機半導体層が二層以上の積層構造である場合は、有機半導体層全体における電子供与性有機材料と電子受容性有機材料の含有比率を意味する。
【0047】
光電変換効率をより向上させるためには、キャリアのトラップとなるような不純物は極力除去することが好ましい。本発明では、前述の一般式(1)で表される構造を有する共役系重合体や、電子受容性有機材料の不純物を除去する方法は特に限定されないが、カラムクロマトグラフィー法、再結晶法、昇華法、再沈殿法、ソクスレー抽出法、GPC(ゲルパーミエーションクロマトグラフィー)による分子量分画法、濾過法、イオン交換法、キレート法等を用いることができる。一般的に低分子有機材料の精製にはカラムクロマトグラフィー法、再結晶法、昇華法が好ましく用いられる。他方、高分子量体の精製には、低分子量成分を除去する場合には再沈殿法やソクスレー抽出法、GPCによる分子量分画法が好ましく用いられ、金属成分を除去する場合には再沈殿法やキレート法、イオン交換法、カラムクロマトグラフィー法が好ましく用いられる。これらの方法のうち、複数を組み合わせてもよい。
【0048】
次に、本発明の光起電力素子について説明する。本発明の光起電力素子は、少なくとも正極と負極を有し、これらの間に本発明の光起電力素子用材料を含む。図1は本発明の光起電力素子の一例を示す模式図である。図1において符号1は基板、符号2は正極、符号3は本発明の光起電力素子用材料を含む有機半導体層、符号4は負極である。
【0049】
有機半導体層3は本発明の光起電力素子用材料を含む。すなわち、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と、電子受容性有機材料を含む。これらの材料は混合されていても積層されていてもよいが、混合されていることが好ましい。上述の「バルクヘテロ接合型」とは、この混合されているタイプを示す。混合されている場合は、電子供与性有機材料と電子受容性有機材料は分子レベルで相溶しているか、相分離しているが、ナノレベルで相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが通常1nm以上50nm以下のサイズである。積層されている場合は、p型半導体特性を示す電子供与性有機材料を有する層が正極側、n型半導体特性を示す電子受容性有機材料を有する層が負極側であることが好ましい。有機半導体層3が積層されている場合の光起電力素子の一例を図2に示す。符号5は一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層、符号6は電子受容性有機材料を有する層である。有機半導体層は5nm〜500nmの厚さが好ましく、より好ましくは30nm〜300nmである。積層されている場合は、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層は上記厚さのうち1nm〜400nmの厚さを有していることが好ましく、より好ましくは15nm〜150nmである。
【0050】
また、有機半導体層3には一般式(1)で表される構造を有する共役系重合体、および電子受容性有機材料以外の電子供与性有機材料(p型有機半導体)を含んでいてもよい。ここで用いる電子供与性有機材料(p型有機半導体)としては、先に例示したものが挙げられる。
【0051】
本発明の光起電力素子においては、正極2もしくは負極4のいずれかに光透過性を有することが好ましい。電極の光透過性は、有機半導体層3に入射光が到達して起電力が発生する程度であれば、特に限定されるものではない。ここで、本発明における光透過性は、[透過光強度(W/m)/入射光強度(W/m)]×100(%)で求められる値である。電極の厚さは光透過性と導電性とを有する範囲であればよく、電極素材によって異なるが20nm〜300nmが好ましい。なお、もう一方の電極は導電性があれば必ずしも光透過性は必要ではなく、厚さも特に限定されない。
【0052】
電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズ、モリブデンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極2に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極2に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。
【0053】
仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムなどが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極4と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物や炭酸セシウムなどの金属炭酸塩を導入することで、取り出し電流を向上させることも可能である。ここで、負極4に用いられる導電性素材は、有機半導体層3とオーミック接合するものであることが好ましい。さらに、後述する電子輸送層を用いた場合においては、負極4に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。
【0054】
基板1は、光電変換材料の種類や用途に応じて、電極材料や有機半導体層が積層できる基板、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。また基板側から光を入射して用いる場合は、上記に示した各基板に80%程度の光透過性を持たせておくことが好ましい。
【0055】
本発明では、正極2と有機半導体層3の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。また、正孔輸送層をフルオラス化合物(分子中にフッ素原子を1個以上有する有機化合物)により処理することが好ましく、光電変換効率をより向上させることができる。フルオラス化合物として、例えばベンゾトリフルオリド、ヘキサフルオロベンゼン、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、ペルフルオロトルエン、ペルフルオロデカリン、ペルフルオロヘキサン、1H,1H,2H,2H−ヘプタデカフルオロ−1−デカノール(F−デカノール)などが挙げられる。より好ましくはベンゾトリフルオリド、ペルフルオロヘキサン、F−デカノールが用いられる。処理方法としては、正孔輸送層を形成する材料に上述のフルオラス化合物をあらかじめ混合してから正孔輸送層を形成する方法や、正孔輸送層を形成してから上述のフルオラス化合物を接触させる方法(スピンコート、ディップコート、ブレードコート、蒸着、蒸気処理など)が挙げられる。
【0056】
また、本発明の光起電力素子は、有機半導体層3と負極4の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、上述の電子受容性有機材料(NTCDA、PTCDA、PTCDI−C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN−PPVなど)や酸化チタンのようにn型半導体特性を示す化合物が好ましく用いられる。電子輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。
【0057】
また、本発明の光起電力素子は、1つ以上の中間電極を介して2層以上の有機半導体層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1の有機半導体層/中間電極/第2の有機半導体層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧を向上させることができる。なお、正極と第1の有機半導体層の間、および、中間電極と第2の有機半導体層の間に上述の正孔輸送層を設けてもよく、第1の有機半導体層と中間電極の間、および、第2の有機半導体層と負極の間に上述の正孔輸送層を設けてもよい。
【0058】
このような積層構成の場合、有機半導体層の少なくとも1層が本発明の光起電力素子用材料を含み、他の層には、短絡電流を低下させないために、一般式(1)で表される構造を有する共役系重合体とはバンドギャップの異なる電子供与性有機材料を含むことが好ましい。このような電子供与性有機材料としては、例えば上述のポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体、ベンゾチアジアゾール系重合体(例えば、PCPDTBT(poly[2,6−(4,4−bis−(2−ethylhexyl)−4H−cyclopenta[2,1−b;3,4−b’]dithiophene)−alt−4,7−(2,1,3−benzothiadiazole)])や、PSBTBT(poly[(4,4−bis−(2−ethylhexyl)dithieno[3,2−b:2’,3’−d]silole)−2,6−diyl−alt−(2,1,3−benzothiadiazole)−4,7−diyl]))などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられる。また、ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズ、モリブデン、チタンなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものなどが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。
【0059】
次に、本発明の光起電力素子の製造方法について例を挙げて説明する。基板上にITOなどの透明電極(この場合正極に相当)をスパッタリング法などにより形成する。次に、一般式(1)で表される構造を有する共役系重合体、および必要によりその他の電子供与性有機材料や電子受容性有機材料を含む光起電力素子用材料を溶媒に溶解させて溶液を作り、透明電極上に塗布し有機半導体層を形成する。このとき用いられる溶媒は有機溶媒が好ましく、例えば、メタノール、エタノール、ブタノール、トルエン、キシレン、o−クロロフェノール、アセトン、酢酸エチル、エチレングリコール、テトラヒドロフラン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、クロロナフタレン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、γ−ブチロラクトンなどが挙げられる。これらを2種以上用いてもよい。また、上述のフルオラス化合物を含有することで光電変換効率をより向上させることができる。常温常圧で液体であるフルオラス化合物(フルオラス溶媒)が好ましく、より好ましくは上述のベンゾトリフルオリド、ペルフルオロヘキサン、F−デカノールが用いられる。フルオラス化合物の含有量は全溶媒量に対して0.01〜20体積%が好ましく、より好ましくは0.1〜2体積%である。また、フルオラス溶媒の含有量は全溶媒中0.01〜30重量%が好ましく、より好ましくは0.1〜4重量%である。
【0060】
一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料および電子受容性有機材料を混合して有機半導体層を形成する場合は、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料を所望の比率で溶媒に添加し、加熱、撹拌、超音波照射などの方法を用いて溶解させ溶液を作り、透明電極上に塗布する。この場合、2種以上の溶媒を混合して用いることで光起電力素子の光電変換効率を向上させることもできる。これは、電子供与性有機材料と電子受容性有機材料がナノレベルで相分離を起こし、電子と正孔の通り道となるキャリアパスが形成されるためと推測される。組み合わせる溶媒は、用いる電子供与性有機材料と電子受容性有機材料の種類によって最適な組み合わせの種類を選択することができる。一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を用いる場合、組み合わせる好ましい溶媒として上述の中でもクロロホルムとクロロベンゼンが挙げられる。この場合、各溶媒の混合体積比率は、クロロホルム:クロロベンゼン=5:95〜95:5の範囲であることが好ましく、さらに好ましくはクロロホルム:クロロベンゼン=10:90〜90:10の範囲である。また、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料および電子受容性有機材料を積層して有機半導体層を形成する場合は、例えば電子供与性有機材料の溶液を塗布して電子供与性有機材料を有する層を形成した後に、電子受容性有機材料の溶液を塗布して層を形成する。ここで、電子供与性有機材料および電子受容性有機材料は、分子量が1000以下程度の低分子量体である場合には、蒸着法を用いて層を形成することも可能である。
【0061】
有機半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。例えばスピンコート塗布を行う場合には、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料、および電子受容性有機材料が1〜20g/lの濃度(一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料と溶媒を含む溶液の体積に対する、一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料と電子受容性有機材料の重量)であることが好ましく、この濃度にすることで厚さ5〜200nmの均質な有機半導体層を得ることができる。形成した有機半導体層に対して、溶媒を除去するために、減圧下または不活性雰囲気下(窒素やアルゴン雰囲気下)などでアニーリング処理を行ってもよい。アニーリング処理の好ましい温度は40℃〜300℃、より好ましくは50℃〜200℃である。また、アニーリング処理を行うことで、積層した層が界面で互いに浸透して接触する実効面積が増加し、短絡電流を増大させることができる。このアニーリング処理は、負極の形成後に行ってもよい。
【0062】
次に、有機半導体層上にAlなどの金属電極(この場合負極に相当)を真空蒸着法やスパッタ法により形成する。金属電極は、電子輸送層に低分子有機材料を用いて真空蒸着した場合は、引き続き、真空を保持したまま続けて形成することが好ましい。
【0063】
正極と有機半導体層の間に正孔輸送層を設ける場合には、所望のp型有機半導体材料(PEDOTなど)を正極上にスピンコート法、バーコーティング法、ブレードによるキャスト法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、正孔輸送層を形成する。フタロシアニン誘導体やポルフィリン誘導体などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。
【0064】
有機半導体層と負極の間に電子輸送層を設ける場合には、所望のn型有機半導体材料(フラーレン誘導体など)n型無機半導体材料(酸化チタンゲルなど)を有機半導体層上にスピンコート法、バーコーティング法、ブレードによるキャスト法、スプレー法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、電子輸送層を形成する。フェナントロリン誘導体やC60などの低分子有機材料を使用する場合には、真空蒸着機を用いた真空蒸着法を適用することも可能である。
【0065】
本発明の光起電力素子は、光電変換機能、光整流機能などを利用した種々の光電変換デバイスへの応用が可能である。例えば光電池(太陽電池など)、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などに有用である。
【実施例】
【0066】
以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。また実施例等で用いた化合物のうち、略語を使用しているものについて、以下に示す。
ITO:インジウム錫酸化物
PEDOT:ポリエチレンジオキシチオフェン
PSS:ポリスチレンスルホネート
PC70BM:フェニル C71 ブチリックアシッドメチルエステル
Eg:バンドギャップ
HOMO:最高被占分子軌道
Isc:短絡電流密度
Voc:開放電圧
FF:フィルファクター
PCE:光電変換効率 。
【0067】
なお、H−NMR測定にはFT−NMR装置((株)日本電子製JEOL JNM−EX270)を用いた。また、平均分子量(数平均分子量、重量平均分子量)はGPC装置(クロロホルムを送液したTOSOH社製、高速GPC装置HLC−8220GPC)を用い、絶対検量線法によって算出した。重合度nは以下の式で算出した。
重合度n=[(重量平均分子量)/(繰り返しユニットの分子量)]
また、光吸収端波長は、ガラス上に約60nmの厚さに形成した薄膜について、日立製作所(株)製のU−3010型分光光度計を用いて測定した薄膜の紫外可視吸収スペクトル(測定波長範囲:300〜900nm)から得た。バンドギャップ(Eg)は以下の式により、光吸収端波長から算出した。なお、薄膜はクロロホルムを溶媒に用いてスピンコート法により形成した。
Eg(eV)=1240/光吸収端波長(nm)
また、最高被占分子軌道(HOMO)準位は、ITOガラス上に約60nmの厚さに形成した薄膜について、表面分析装置(大気中紫外線光電子分光装置AC−2型、理研機器(株)製)を用いて測定した。なお、薄膜はクロロホルムを溶媒に用いてスピンコート法により形成した。
【0068】
合成例1
化合物A−1を式1に示す方法で合成した。
【0069】
【化15】

【0070】
化合物(1−a)((株)東京化成工業製)4.3gと臭素((株)和光純薬工業製)10gを48%臭化水素酸((株)和光純薬工業製)150mlに加え、120℃で3時間撹拌した。室温に冷却し、析出した固体をグラスフィルターで濾過し、水1000mlとアセトン100mlで洗浄した。得られた固体を60℃で真空乾燥し、化合物(1−b)6.72gを得た。
【0071】
上記の化合物(1−b)5.56gをエタノール((株)和光純薬工業製)180mlに加え、窒素雰囲気下5℃でNaBH((株)和光純薬工業製)13.2gを加えた後、室温で2日間撹拌した。溶媒を留去したのち水500mlを加え、固体を濾取し、水1000mlで洗浄した。得られた固体をジエチルエーテル200mlに溶解し、水300mlで洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去し、化合物(1−c)を2.37g得た。
【0072】
上記の化合物(1−c)2.37gとベンジル((株)和光純薬工業製)1.87gをクロロホルム80mlに加え、窒素雰囲気下でメタンスルホン酸((株)和光純薬工業製)3滴を加えた後、11時間加熱還流した。得られた溶液を炭酸水素ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:クロロホルム)で精製し、メタノールで洗浄して化合物(1−d)を3.72g得た。
【0073】
化合物(1−e)((株)東京化成工業製)1.26gをテトラヒドロフラン((株)和光純薬工業製)60mlに溶解し、−80℃に冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬工業製)6.2mlを加えた後、室温まで昇温し、−90℃に冷却した。2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)和光純薬工業製)2.4mlを加え、室温まで昇温し、窒素雰囲気下で4時間撹拌した。得られた溶液に1N塩化アンモニウム水溶液100mlと酢酸エチル200mlを加え、有機層を分取し、水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を減圧留去し、化合物(1−f)1.9gを得た。
【0074】
上記の化合物(1−d)1.42gと、上記の化合物(1−f)1.9gをジメチルホルムアミド50mlに加え、窒素雰囲気下でリン酸カリウム((株)和光純薬工業製)8.15g、[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)0.26gを加え、100℃で4時間撹拌した。得られた溶液に水200mlを加え、析出した沈澱を濾取し、水、メタノールの順に洗浄した。得られた固体をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:クロロホルム)で精製し、化合物(1−g)を1.56g得た。
【0075】
上記の化合物(1−g)1.56gをジメチルホルムアミド((株)和光純薬工業製)200mlに溶解し、N−ブロモスクシンイミド((株)和光純薬工業製)1.04gを加え、室温で3時間撹拌した。析出した沈澱を濾取し、ジメチルホルムアミド、メタノール、水、メタノールの順に洗浄した。得られた固体を60℃で真空乾燥して化合物(1−h)を1.6g得た。化合物(1−h)のH−NMR測定結果を示す。
H−NMR(CDCl,ppm):8.16(s,2H)、8.00(s,2H)、7.73−7.69(m,4H)、7.43−7.41(m,6H)、7.33(s,2H) 。
【0076】
上記の化合物(1−h)220mgと、化合物(1−i)(アルドリッチ社製)154mgをトルエン30mlに溶解した。ここに水3ml、炭酸カリウム850mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)18mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて2時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて2時間撹拌した。得られた溶液にメタノール400mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン400mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム300mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−1を48mg得た(収率18%)。重量平均分子量は119700、数平均分子量は7800、重合度nは127であった。また、光吸収端波長は660nm、バンドギャップ(Eg)は1.88eV、最高被占分子軌道(HOMO)準位は−5.26eVであった。
【0077】
合成例2
化合物B−1を式2に示す方法で合成した。
【0078】
【化16】

【0079】
合成例1の化合物(1−d)93mgと、合成例1の化合物(1−i)118mgをトルエン30mlに溶解した。ここに水3ml、炭酸カリウム580mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)24mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて5時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)100mgを加え、100℃にて4時間撹拌した。得られた溶液にメタノール100mlを加え、生成した固体を濾取し、メタノール、アセトン、水、アセトンの順に洗浄した。得られた固体をクロロホルム100mlに溶解し、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物B−1を110mg得た(収率78%)。重量平均分子量は84800、数平均分子量は32900、重合度nは127であった。また、光吸収端波長は487nm、バンドギャップ(Eg)は2.55eV、最高被占分子軌道(HOMO)準位は−5.79eVであった。
【0080】
合成例3
化合物A−2を式3に示す方法で合成した。
【0081】
【化17】

【0082】
化合物(2−a)((株)和光純薬工業製)50.25g、銅粉末((株)和光純薬工業製)25gをジメチルホルムアミド230mlに加え、窒素雰囲気下、130℃にて7時間撹拌した。溶媒を減圧留去したのちトルエン500mlを加え、セライトでろ過し、水400ml、炭酸水素ナトリウム水溶液200mlの順に洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を留去したのちイソプロパノール300mlで洗浄し、化合物(2−b)を26g得た。
【0083】
上記の化合物(2−b)26gをエタノール320mlに加えたのち36%塩酸180ml、すず粉末((株)和光純薬工業製)31gを加え、窒素雰囲気下、100℃にて4時間撹拌した。得られた溶液を水800mlに投入し、水酸化ナトリウム水溶液を加えpHを約10とした。生成した沈澱をろ取し、クロロホルム1000mlに溶解させ、水1000mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液から溶媒を留去し化合物(2−c)を21.37g得た。
【0084】
上記の化合物(2−c)21.3gを36%塩酸75ml、水85mlに加え、5℃にてNaNO水溶液(NaNO10.7g/水55ml)を滴下した。5℃で30分間撹拌後、KI水溶液(KI104g/水200ml)を滴下し、5℃で1時間、室温で1時間、60℃で3時間撹拌した。得られた固体をろ取し、カラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(2−d)を4.27g得た。
【0085】
上記の化合物(2−d)4.27gをテトラヒドロフラン((株)和光純薬工業製)85mlに溶解し、−80℃に冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬工業製)19mlを1時間かけて加えた後、窒素雰囲気下、−80℃で30分間撹拌した。ジクロロジオクチルシラン((株)和光純薬工業製)5.2mlを加え、室温まで昇温し、窒素雰囲気下で1日間撹拌した。得られた溶液に水50mlを加え、溶媒を留去した。ジエチルエーテル150mlを加えたのち有機層を分取し、水400mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(2−e)を2.49g得た。
【0086】
上記の化合物(2−e)2.49gと、ビス(ピナコラト)ジボロン(BASF社製)2.58gを1,4−ジオキサン21mlに加え、窒素雰囲気下で酢酸カリウム((株)和光純薬工業製)2.6g、[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)648mgを加え、80℃で5.5時間撹拌した。得られた溶液に水200mlとジエチルエーテル200mlを加え、有機層を分取し、水300mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:フロリジル、溶離液:ヘキサン/酢酸エチル)で精製し、化合物(2−f)を2.6g得た。化合物(2−f)のH−NMR測定結果を示す。
H−NMR(CDCl,ppm):8.04(s,2H)、7.90−7.83(m,4H)、1.37(s,24H)、1.35−1.17(m,24H)、0.93(t,4H)、0.84(t,6H) 。
【0087】
上記の化合物(2−f)290mgと、合成例1の化合物(1−h)310mgをトルエン40mlに溶解した。ここに水10ml、炭酸カリウム1.05g、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)25mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて6時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)150mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)150mgを加え、100℃にて6時間撹拌した。得られた溶液にメタノール400mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン400mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム300mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−2を105mg得た(収率25%)。重量平均分子量は88700、数平均分子量は9500、重合度nは92.4であった。また、光吸収端波長は670nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は−5.35eVであった。
【0088】
合成例4
化合物A−3を式4に示す方法で合成した。
【0089】
【化18】

【0090】
ギ酸エチル(3−a)((株)東京化成工業製)6.15gにテトラヒドロフラン125mlを加え−78℃に冷却したところに、濃度1.0Mのオクチルマグネシウムブロミドのテトラヒドロフラン溶液((株)東京化成工業製)250mlを1時間かけて反応溶液を−78℃に保ったまま滴下した。滴下終了後、反応溶液を室温で5時間撹拌した。メタノール50ml加えて過剰のオクチルマグネシウムブロミドを潰した後、テトラヒドロフランを減圧留去した。ジエチルエーテル120mlを加えた後、飽和塩化アンモニウム水溶液100ml、ついで飽和食塩水100mlで洗浄した。有機層を無水硫酸マグネシウムで乾燥させた後に、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=10/1)で精製することで、16.0gの化合物(3−b)を白色固体として得た。
【0091】
上記化合物(3−b)10.0g、トリエチルアミン((株)和光純薬工業製)5.1gおよびピリジン((株)和光純薬工業製)5mlをジクロロメタン80mlに加え、0℃で撹拌しているところにパラトルエンスルホニルクロリド8.92gを加えた。反応溶液を0℃で1時間撹拌した後、室温で12時間撹拌した。水50mlを加え室温で30分間さらに撹拌した後、ジクロロメタン80mlで二回抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=10/1)で精製することで、9.2gの化合物(3−c)をろう状固体として得た。
【0092】
4−4’−ジブロモビフェニル(3−d)((株)東京化成工業製)25.0gに酢酸((株)和光純薬工業製)375mlを加え、100℃で撹拌しているところに発煙硝酸((株)和光純薬工業製)120mlをゆっくりと加え、続いて水10mlを反応溶液に加えた。反応溶液を100℃で1時間撹拌した後、室温まで冷却し、5時間室温で放置した。析出した固体をろ取した後、水、ついでエタノールで洗浄した。粗生成物をエタノールから再結晶することで17.0gの化合物(3−e)を薄黄色固体として得た。
【0093】
上記化合物(3−e)11.0gに亜リン酸トリエチル((株)和光純薬工業製)40mlを加え、150℃で10時間撹拌した。亜リン酸トリエチルを減圧留去した後、残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/酢酸エチル=5/1)で精製することで、2.5gの化合物(3−f)を白色固体として得た。
【0094】
上記化合物(3−f)1.2gにジメチルスルホキシド((株)和光純薬工業製)10mlおよび水酸化カリウム((株)和光純薬工業製)の粉末1.08gを加え、室温で撹拌しているところに、上記化合物(3−c)2.4gのジメチルスルホキシド溶液(6ml)を室温で1時間かけて滴下した。滴下終了後、室温で5時間撹拌した。水50mlを反応混合物に加えた後、ヘキサン40mlで3回抽出し、有機層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製することで、540mgの化合物(3−g)を白色固体として得た。
【0095】
上記化合物(3−g)530mgをテトラヒドロフラン10mlに溶解させ、−78℃に冷却したところに、濃度1.6Mのn−ブチルリチウムヘキサン溶液((株)和光純薬工業製)0.65mlを滴下し、−78℃で1時間撹拌した。反応溶液を30分間0℃で撹拌した後に再びー78℃に冷却し、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)東京化成工業製)440mgを加えた。反応溶液を室温でさらに4時間撹拌した後、水(10ml)ついでジエチルエーテル(50ml)を加えた。有機層を水(30ml)で3回、飽和食塩水(30ml)で1回洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。メタノール/アセトン混合溶媒から再結晶することで390mgの化合物(3−h)を白色固体として得た。化合物(3−h)のH−NMR測定結果を示す。
【0096】
H−NMR(CDCl,ppm):8.12(s,2H)、8.02(s,1H)、7.89(s,1H)、7.66(d,J=7.6Hz,2H)、4.69(m,2H)、2.31(m,2H)、1.95(m,2H)、1.39(s,24H)、1.21−1.12(m,24H)、0.82(t,J=7.0Hz,6H) 。
【0097】
上記の化合物(3−h)100mgと、合成例1の化合物(1−h)109mgをトルエン20mlに溶解した。ここに水5ml、炭酸カリウム500mg、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)9mg、Aliquat336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて6時間撹拌した。次いで、ブロモベンゼン((株)東京化成工業製)100mgを加え、100℃にて1時間撹拌した。次いで、フェニルボロン酸((株)東京化成工業製)100mgを加え、100℃にて6時間撹拌した。得られた溶液にメタノール200mlを加え、生成した固体を濾取し、メタノール、アセトン、熱水、熱アセトンの順に洗浄した。得られた固体をアセトン200mlに加え、30分間加熱還流した。熱時濾過して得られた固体をクロロホルム150mlに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮し、メタノールで再沈澱させて化合物A−3を43mg得た(収率30%)。重量平均分子量は92800、数平均分子量は8500、重合度nは98であった。また、光吸収端波長は670nm、バンドギャップ(Eg)は1.85eV、最高被占分子軌道(HOMO)準位は−5.14eVであった。
【0098】
実施例1
上記A−1の1mgとPC70BM(Solenn社製)4mgをクロロベンゼン0.25mlの入ったサンプル瓶の中に加え、超音波洗浄機((株)井内盛栄堂製US−2(商品名)、出力120W)中で30分間超音波照射することにより溶液Aを得た。
【0099】
スパッタリング法により正極となるITO透明導電層を120nm堆積させたガラス基板を38mm×46mmに切断した後、ITOをフォトリソグラフィー法により38mm×13mmの長方形状にパターニングした。得られた基板をアルカリ洗浄液(フルウチ化学(株)製、“セミコクリーン”EL56(商品名))で10分間超音波洗浄した後、超純水で洗浄した。この基板を30分間UV/オゾン処理した後に、基板上に正孔輸送層となるPEDOT:PSS水溶液(PEDOT0.8重量%、PPS0.5重量%)をスピンコート法により60nmの厚さに成膜した。ホットプレートにより200℃で5分間加熱乾燥した後、上記の溶液AをPEDOT:PSS層上に滴下し、スピンコート法により膜厚100nmの有機半導体層を形成した。その後、有機半導体層が形成された基板と陰極用マスクを真空蒸着装置内に設置して、装置内の真空度が1×10−3Pa以下になるまで再び排気し、抵抗加熱法によって、負極となるアルミニウム層を80nmの厚さに蒸着した。以上のように、ストライプ状のITO層とアルミニウム層が交差する部分の面積が5mm×5mmである光起電力素子を作製した。
【0100】
このようにして作製された光起電力素子の正極と負極をヒューレット・パッカード社製ピコアンメーター/ボルテージソース4140Bに接続して、大気中でITO層側から擬似太陽光(山下電装株式会社製 簡易型ソーラシミュレータ YSS−E40、スペクトル形状:AM1.5、強度:100mW/cm)を照射し、印加電圧を−1Vから+2Vまで変化させたときの電流値を測定した。この時の短絡電流密度(印加電圧が0Vのときの電流密度の値)は8.28mA/cm、開放電圧(電流密度が0になるときの印加電圧の値)は0.840V、フィルファクター(FF)は0.460であり、これらの値から算出した光電変換効率は3.20%であった。なお、フィルファクターと光電変換効率は次式により算出した。
フィルファクター=IVmax(mW/cm)/(短絡電流密度(mA/cm)×開放電圧(V))
(ここで、IVmaxは、印加電圧が0Vから開放電圧値の間で電流密度と印加電圧の積が最大となる点における電流密度と印加電圧の積の値である。)
光電変換効率=[(短絡電流密度(mA/cm)×開放電圧(V)×フィルファクター)/擬似太陽光強度(100mW/cm)]×100(%)
以下の比較例におけるフィルファクターと光電変換効率も全て上式により算出した。
【0101】
実施例2
A−1の代わりに上記A−2を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は8.12mA/cm、開放電圧は0.830V、フィルファクター(FF)は0.480であり、これらの値から算出した光電変換効率は3.24%であった。
【0102】
実施例3
A−1の代わりに上記A−3を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は8.30mA/cm、開放電圧は0.790V、フィルファクター(FF)は0.490であり、これらの値から算出した光電変換効率は3.21%であった。
【0103】
比較例1
A−1の代わりに上記B−1を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は0.13mA/cm、開放電圧は0.680V、フィルファクター(FF)は0.281であり、これらの値から算出した光電変換効率は0.02%であった。
【0104】
比較例2
A−1の代わりに下記B−2(ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)、2009年、19巻、4942−4943頁に記載の方法で合成。重量平均分子量は58200、数平均分子量は23900、重合度nは94であった。)を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は5.81mA/cm、開放電圧は0.710V、フィルファクター(FF)は0.390であり、これらの値から算出した光電変換効率は1.61%であった。
【0105】
【化19】

【0106】
比較例3
A−1の代わりに下記B−3(マクロモレキュルズ(Macromolecules)、2003年、36巻、4289頁に記載の方法で合成。重量平均分子量は39700、数平均分子量は20200、重合度nは75.4であった。)を用いた他は実施例1と全く同様にして光起電力素子を作製し、電流−電圧特性を測定した。この時の短絡電流密度は2.74mA/cm、開放電圧は0.880V、フィルファクター(FF)は0.410であり、これらの値から算出した光電変換効率は0.99%であった。
【0107】
【化20】

【符号の説明】
【0108】
1 基板
2 正極
3 有機半導体層
4 負極
5 一般式(1)で表される構造を有する共役系重合体を含む電子供与性有機材料を有する層
6 電子受容性有機材料を有する層

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される構造を有する共役系重合体。
【化1】

(R〜R16は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲンの中から選ばれる。Aは炭素、窒素またはケイ素を表す。Aが窒素の場合、上記R16は存在しない。W、X、YおよびZは同じでも異なっていてもよく、単結合、アリーレン基、チエノチエニレン基を除くヘテロアリーレン基の中から選ばれる。nは10以上1000以下の範囲を表す。)
【請求項2】
請求項1記載の共役系重合体を含む電子供与性有機材料。
【請求項3】
電子受容性有機材料および請求項2記載の電子供与性有機材料を含む光起電力素子用材料。
【請求項4】
前記電子受容性有機材料がフラーレン化合物である請求項3記載の光起電力素子用材料。
【請求項5】
前記フラーレン化合物がC70誘導体である請求項4記載の光起電力素子用材料。
【請求項6】
少なくとも正極と負極を有する光起電力素子であって、負極と正極の間に請求項3〜5いずれか記載の光起電力素子用材料を含む光起電力素子。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−144367(P2011−144367A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−279071(P2010−279071)
【出願日】平成22年12月15日(2010.12.15)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成20年度独立行政法人新エネルギー・産業技術総合開発機構「新エネルギー技術研究開発 太陽光発電システム未来技術研究開発 タンデム型高効率・高耐久性有機薄膜太陽電池の研究開発」委託研究、産業技術力強化法第19条の適用をうける特許出願)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】