説明

共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法

【課題】 標本に刺激を加えるレーザ光と画像取得のための光との標本面上での深さ方向の励起光強度分布をそれぞれ独立に変化させることができる共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法を提供すること。
【解決手段】 第1のレーザ光源からのレーザ光で標本の走査画像を得るための第1の走査光学系(100、100′)と、前記第1のレーザ光源とは異なる第2のレーザ光源からのレーザ光で前記標本の特定部位を走査して、特異現象を発現させるための第2の走査光学系(200)と、前記第1の走査光学系と前記第2の走査光学系の少なくとも一方のレーザ光のビーム径を変化させることができるビーム径可変機構(102、202)とを備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光色素や蛍光タンパクで標識された試料を、励起波長を用いて励起して、前記試料から放出された蛍光を検出する共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法に関する。
【背景技術】
【0002】
標本の走査画像を得るための第1の走査光学系と、標本の特定の部位に特異現象を発現させるための第2の走査光学系とを備えた走査型レーザ顕微鏡が提案されている(特開2000−275529号公報参照)。この走査型レーザ顕微鏡では、第1の走査光学系におけるレーザ光源及び光路で標本面上の特定部位を照射して標本又は標本に注入された化学物質に刺激を加え、第2の走査光学系におけるレーザ光源及び光路で標本面上の上記とは異なる特定部位を励起して蛍光を検出し画像化する。なお、本明細書では、特に明記しない限り、標本の画像取得するための走査光学系を「第1の走査光学系」と称し、標本の特定の部位に特異現象を発現させるための走査光学系を「第2の走査光学系」と称する。
【0003】
一般的に、共焦点顕微鏡では、標本上の焦点と共役な焦点を検出器前に設けて、そこにピンホールを設置することにより、標本の深さ方向の分解能を1.22λ/NAとして、通常の顕微鏡観察よりも小さくする共焦点効果を利用している。この共焦点効果により、分解能があがるので、標本上を走査している断面の切れの良い画像(すなわち、深さ方向に対して薄いスライス像を得られる画像)が得られる。
【0004】
なお、高速に画像を取るときや暗い標本では、ピンホールを開いて共焦点効果を弱め、蛍光の分解能を犠牲にして画像を明るくすることが可能である。
【発明の概要】
【発明が解決しようとする課題】
【0005】
この様に、共焦点顕微鏡は、ピンホールを開いて深さ方向の分解能を落とすことにより、深さ方向の情報を得ることができる。しかし、標本上での焦点深度は対物レンズに入射するコヒーレント光の光束径で決定されるので、ピンホールで、焦点深度を変えることは不可能である。
【0006】
一方、顕微鏡による標本への照明としてケーラー照明がよく用いられている。このケーラー照明による標本断面の厚さ方向の照明は、一様に近い励起をしている。
【0007】
上記のような従来の共焦点顕微鏡において、2つのレーザ走査光路と一つの対物レンズを用いて装置を実現した場合に、標本に刺激を加えるレーザ光と画像取得のためのレーザ光の標本面上での深さ方向の励起光強度分布が、波長の差しか生じず、ほぼ同一となってしまう。
【0008】
本発明は、標本に刺激を加えるレーザ光と画像取得のためのレーザ光(インコヒーレント光でも良い)との標本面上での深さ方向の励起光強度分布を変化させることができる共焦点顕微鏡装置及び共焦点顕微鏡装置を用いた観察方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の第1局面に係る共焦点顕微鏡装置は、第1のレーザ光源からのレーザ光で標本の走査画像を得るための第1の走査光学系と、前記第1のレーザ光源とは異なる第2のレーザ光源からのレーザ光で前記標本の特定部位を走査して、特異現象を発現させるための第2の走査光学系と、前記第1の走査光学系と前記第2の走査光学系の少なくとも一方のレーザ光のビーム径を変化させることができるビーム径可変機構とを具備することを特徴とする。
【0010】
本発明の第2局面に係る共焦点顕微鏡装置は、コヒーレントではない光源から出力された光によって対物レンズを介して標本を走査し、前記標本からの蛍光を前記対物レンズを介して検出する第1の走査光学系と、レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系とを具備し、前記第1の走査光学系は、共焦点効果を得るための回転ディスクを更に具備し、前記インコヒーレントな光は、前記回転ディスクを介して標本を走査し、前記蛍光は、前記回転ディスクを介して検出されることを特徴とする。
【0011】
本発明の第3局面に係る共焦点顕微鏡装置は、コヒーレントではない光源から出力された光によって対物レンズを介して標本を照明し、前記標本からの蛍光を前記対物レンズを介して検出する第1の光学系と、レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系と、を具備することを特徴とする。
【発明の効果】
【0012】
本発明によれば、刺激を与える光学系と画像を取得する励起光の標本面での深さ方向の強度分布を変えることにより、異なる3次元空間の動的解析が可能になる。
【図面の簡単な説明】
【0013】
【図1】本発明の第1の実施形態に係る共焦点顕微鏡装置の概略構成図。
【図2】第1のビーム径可変機構と第2のビーム径可変機構の構成例を示す図。
【図3】本発明の第2の実施形態に係る共焦点顕微鏡装置の概略構成図。
【図4】本発明に適用される回転ディスクの一例を示す図。
【図5】神経組織の観察を模式的に示した図。
【発明を実施するための形態】
【0014】
図面を参照して本発明の実施の形態を説明する。
【0015】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る共焦点顕微鏡装置の概略構成図である。
図1において、共焦点顕微鏡装置は、第1のレーザ光源101からのレーザ光で標本134の焦点面上を走査する観察用(又は、画像取得用)の第1の走査光学系100と、第2のレーザ光源201から出力されるレーザ光を標本134の任意の位置に照射してケージド試薬を開裂させるため(すなわち、標本刺激用)の第2の走査光学系200とを備えている。第1の走査光学系100の光路と第2の走査光学系200の光路とはダイクロイックミラー120で一致している。これにより、第1の走査光学系100と第2の走査光学系200とが、1つの対物レンズ132を共用している。
【0016】
第1の走査光学系100と第2の走査光学系200において、第1のレーザ光源101から出力されたコヒーレント光は第1のビーム径可変機構102及び第1の走査光学ユニット104を介してダイクロイックミラー120に至る。また、第2のレーザ光源201出力されたコヒーレント光は第2のビーム径可変機構202及び第2の走査光学ユニット203を介してダイクロイックミラー120に至る。
【0017】
また、第1のビーム径可変機構102と第2のビーム径可変機構202は、励起光強度分布算出手段160に電気的又は間接的に接続されている。これにより、励起光強度分布算出手段160が第1のビーム径可変機構102と第2のビーム径可変機構202から出力されるビーム径の情報を得ることができる。
【0018】
第1のビーム径可変機構102と第2のビーム径可変機構202は、例えば、図2に示すように、ビームエクスパンダーなどのように光束径を変化できるものが、回転するターレツトに複数個(本)装着されているもので良い。又は、第1のビーム径可変機構102と第2のビーム径可変機構202として、複数のレンズ等の光学素子を組み合わせて、レーザのコヒーレントを保ったまま光束径を変化させるような機構(例えば、ズーム機構)を採用しても良い。
【0019】
上記のように構成された第1の実施形態に係る共焦点顕微鏡装置の動作について説明する。
【0020】
第1の走査光学系100と第2の走査光学系200は、標本134の任意の(所望の)位置にコヒーレント光を照射するために用いる。具体的には、以下の通りである。
【0021】
すなわち、第1のレーザ光源101と第2のレーザ光源201から発せられたコヒーレント光は、それぞれ、第1のビーム径可変機構102と第2のビーム径可変機構202で光束径が可変(調整)される。
【0022】
第1のビーム径可変機構102からの出力光は、ダイクロイックミラー150を通過して、第1の走査光学ユニット104の各走査ミラー104a、104bによってXY方向に任意に偏向される。偏向された光は、リレーレンズ105を透過した後に、ミラー106で反射されて、ダイクロイックミラー120に入射する。一方、第2のビーム径可変機構202からの出力光は、第2の走査光学ユニット203の各走査ミラー203a、203bによってXY方向に任意に偏向される。偏向された光は、リレーレンズ204を透過してダイクロイックミラー120に入射し、ダイクロイックミラー120で光路が偏向される。
【0023】
そして、ダイクロイックミラー120からのコヒーレント光は、結像レンズ130に入射する。なお、第1のビーム径可変機構102と第2のビーム径可変機構202で第1のレーザ光源からのレーザビームと第2のレーザ光源からのレーザビームの光束径を対物レンズ132の瞳径に対して変化させることにより、各走査光学系に対応する標本134面における深さ方向の励起光分布(そして/又は強度分布)の幅を変化させることができる。
【0024】
結像レンズ130を透過した光は、対物レンズ132に至り、この対物レンズ132を透過して、ステージ136上に載置された標本134の任意の断面138に集光される。なお、ステージ136は、XY平面方向と高さ方向(Z軸方向:図1における矢印方向)に移動可能である。
【0025】
上記のように、標本134を走査する場合において、用途に応じて、各走査ミラー203a、203bによってある範囲を走査してもよく、又静止させてスポット的に照射させてもよい。更に、各走査ミラー203a、203bを瞬間的にスキップ作動させることで瞬時に複数の任意の位置にスポット的に照射させてもよい。一方、第1のレーザ光源101から発せられたコヒーレント光は、上記のように、ダイクロイックミラー150を透過し、第1の走査光学ユニット104の各走査ミラー104a、104bによって偏向される。
【0026】
第1の走査光学系100によって標本134に光が照射されると、この光により蛍光指示薬が励起され、蛍光が発せられる。
【0027】
この標本134からの蛍光は、標本134への入射光路とは逆方向に、対物レンズ132から結像レンズ130、ダイクロイックミラー120、第1の走査光学ユニット104、リレーレンズ103、各走査ミラー104b、104aを通ってダイクロイックミラー150に到達し、このダイクロイックミラー150で反射して測光フィルタ140に入射する。
【0028】
この測光フィルタ140に入射した光は、標本134からの蛍光波長のみが選択され、標本134からの蛍光波長のみを有する光がレンズ142によってピンホール144面に結像される。このピンホール144を通過した蛍光は、光電変換素子146によって計測される。
【0029】
励起光強度分布算出手段160は、第1のビーム径可変機構102と第2のビーム径可変機構202より出力されるビーム径及び現在使用されている対物レンズの性能(仕様)の情報を入力して標本面上での励起光強度分布を算出したり、既に記憶されている値を図では示されていないコンピュータ又はディスプレイなどのインターフェースに出力したりするなどの機能を有する。
【0030】
上記のような、本発明の第1の実施形態に係る共焦点顕微鏡装置によれば、第1の走査光学系100により標本画像を観察・記録している最中に、第2の走査光学系200によりコヒーレント光を標本134に照射することによって、第2の走査光学系200によるコヒーレント光照射によって引き起こされる標本134の動的特性(化学反応)などを第1の走査光学系100で調査できる。
【0031】
この場合において、第1の実施形態では、第1の走査光学系100と第2の走査光学系200による標本面上での深さ方向の励起光分布を、第1のビーム径可変機構102と第2のビーム径可変機構202によって独立に設定できる。従って、例えば、第2の走査光学系によって標本を刺激している範囲の励起光分布の幅が狭い場合であって、その刺激によって標本の厚み方向に対して広い領域に影響があった場合でも、第1の走査光学系の励起光分布の幅を広くすることによって、その様子を観察することが可能である。
【0032】
また、上記とは逆に、第2の走査光学系で標本の厚み方向に対して広範囲な部分を刺激して、第1の走査光学系では深さ方向の励起光分布の幅を狭くすることにより、標本の断面138を高分解能で観察することもできる。
【0033】
第1の実施形態において、第1のレーザ光源101として、IRパルスレーザを用いて、2光子吸収により蛍光画像を取得する構成としても良い。この場合において、2光子吸収現象は結像位置でのみ発生するので、ピンホール144は理論的には不要になる。また、ダイクロイックミラー150は、IRレーザを透過し、可視蛍光を反射して光電変換素子146に導くために、短波長反射の特性を持つものとなる。また、第1のビーム径可変機構102は使用しない構成とする。
【0034】
上記のように、第1のレーザ光源101として、IRパルスレーザを用いることにより、第1の走査光学系の構成を簡略化することができる。加えて、第1のビーム径可変機構102を使用しない場合であっても、走査光学系100の標本面上での深さ方向の励起光分布の幅は、2光子吸収現象により第2の走査光学系200の深さ方向の励起光分布の幅よりも狭くなる。また、標本を刺激する標本の厚みを変化させたい場合は、第2のビーム径可変機構202によって第2の走査光学系200の励起光分布の幅を狭くすることができる。
【0035】
(第2の実施形態)
図3を参照して、本発明の第2の実施形態に係る共焦点顕微鏡装置を説明する。図3は、本発明の第2の実施形態に係る共焦点顕微鏡装置の概略構成図である。図3において、第2の走査光学系200は、第1の実施形態と同じであるので、同じ符号を付し、詳細な説明は省略する。
【0036】
第2の実施形態において、第1の走査光学系100′は、光源301として水銀光源やハロゲン光源(これらの光源を「ランプ」とも称する)やLED光源等のコヒーレントではない光源を有している。光源301から出射される光の光路上には、光学レンズ302や、偏光板303や、偏光ビームスプリッター(PBS)304が配置されている。
【0037】
PBS304の反射光路上には、回転ディスク305と、第1結像レンズ307と、1/4波長板308と、対物レンズ309とが配置されており、これらを介して光源からの光が標本310に入射する。
【0038】
回転ディスク305は、回転軸306を介して図示しないモータの軸に連結されており、一定の回転速度で回転するようになっている。なお、回転ディスク305は、例えば、直線状の光が通過する通過部分と光を遮蔽する遮蔽部分が交互に並んで配置されている。そして、遮蔽部分のラインの幅は、通過部分より広く、例えば、遮蔽部分と通過部分のラインの幅の比は、1:9になっている(図4参照)。
【0039】
また、光が透過する部分の幅をWとすれば、ピンホールの場合と同じく、試料像がディスクに投影される倍率をM、光の波長をλ、対物レンズの開口率をNAとして、
W=kλM/NA
となる。ここで、kは係数であり、k=0.5〜1程度の値がよく使われる。
【0040】
また、PBS304の透過光路上には、第2の結像レンズ311を介してCCDカメラ312が配置されている。CCDカメラ312には、CCDカメラ312で撮像した画像を観察するモニタ313が接続されている。
【0041】
上記のように構成された第2の実施形態に係る共焦点顕微鏡装置の動作を説明する。
【0042】
光源301から出射された光は、光学レンズ302を通って、偏光板303で、所定の偏光のみの直線偏光となって、PBS304に入射する。PBS304は、偏光板を透過してきた方向の偏光は反射し、それに垂直な方向の偏光は透過する。
【0043】
PBS304で反射された光は、一定の速度で回転する回転ディスク305に入射する。回転ディスク305の透過部分を透過した光は第1の結像レンズ307を通り、1/4波長板308で円偏光となって、対物レンズ309によって結像され、標本310に入射される。
【0044】
標本310で反射された光は、対物レンズ309を通り、1/4波長板308で、入射時と直交した直線偏光となり、第2の結像レンズ311を介して回転ディスク305上に標本310の像を結像する。
【0045】
回転ディスク305上に結像された像のうち、焦点の合っている成分は、回転ディスク305上の透過部分を通過する。回転ディスク305を通過した成分は、PBS304を透過して、第2結像レンズ311を介してCCDカメラ312に到達し、その結像面(撮像面)に試料像が結像される。
【0046】
標本310を観察しているときのある瞬間を考えれば、標本310上には図4のように、ある方向にラインが投影されている。
【0047】
このような状態で、標本310から反射した光が回転ディスク305上に結像された場合には、標本310について、その焦点が合っている部分は回転ディスク上にラインが投影される。しかし、非合焦部分は回転ディスク305に投影された像がボケているので、非合焦像の大部分はディスクを透過できないことになる。従って、合焦した像のみが回転ディスク305を透過することになる。
【0048】
なお、回転ディスク305が回転しない場合には、このままの状態であって、単にサンプルとラインが重なった像である。しかし、回転ディスク305を回転させることによって、透過部分と遮蔽部分からなるラインが標本310上を方向を変えながら移動して行くことになるので、平均化されてライン像は消えて、焦点のあった画像が観察される。従って、CCDカメラ312の露出時間に対して、回転ディスク305の回転が十分速ければ、合焦画像をCCDカメラ312で撮像しモニタ313で観察できることになる。例えば、CCDカメラ312が通常でTVレートならば、露出時間は1/60秒か1/30秒であるから露出時間中に回転ディスク305の回転数を、半回転する程度の1800rpmくらいにすれば良い。
【0049】
この時における第1の走査光学系100′の標本310面上での深さ方向の励起光分布は、スリットの長手方向では、顕微鏡のケーラー照明の照射分布と同じである。スリットの幅方向では、第2の走査光学系と同じ分布である。
【0050】
従って、第1の走査光学系の標本面上での探さ方向の励起光分布は、長手方向と幅方向のものとが合成されたものになる。なお、励起光の深さ方向の強度分布を変更させるには、回転ディスク305のスリット幅及びスリット間隔を変えることで可変可能である。
【0051】
第2の実施形態では、第1の実施形態で示した第2の走査光学系により照射された光の反応を受けた動的変化を第1の走査光学系100′で検出することで、第1と第2の標本面上での深さ方向の励起光分布が違って出来る。従って、第2の走査光学系200が励起している範囲よりもより広範囲な測定が第1の走査光学系100′で可能である。
【0052】
特に神経系の測定では、標本の厚み方向に伸びている神経の動きを捉えるには、高速に画像を取得する必要がある。通常、共焦点顕微鏡装置では、標本面上での深さ方向の励起光分布の幅が狭いため、標本の厚み方向に伸びていると一度の測定では、画像を捉えることが出来ない。よって、第2の実施の形態のように、標本面上での探さ方向の励起光分布の幅を広くして測定することにより広範囲の画像測定が出来る効果がある。このため、第2の実施形態において、回転ディスク305を省略した構成としても良い。また、回転ディスクは、図4に示したものに限られず、共焦点効果が得られるようなものであれば、どのような形状或いは、構成のものを用いてもよい。例えば、回転ディスクにピンホールが形成されているものであっても良いし、上記の実施の形態のような透過型ではなく、反射型のものとしても良い。
【0053】
また、第2の実施形態では、第2のビーム径可変機構202は必ずしも必要ではないが、第2のビーム径可変機構202があれば、第1の断面と第2の断面の比を変えることが可能であり、画像を取得する範囲と刺激を与える部分の微調整により、実験(そして/又は観察)の自由度が広がる。また、第2のビーム径可変機構202を設ける場合には、第1の実施形態と同様に励起光強度分布算出手段160を設けることが好ましい。
【0054】
また、上記の構成において、第1の走査光学系100′をケーラー照明による顕微鏡光学系で構成することにより、より広い励起範囲での画像取得が可能である。なお、この場合には、回転ディスク305は不要になる。
【0055】
上記の第2の実施形態において、PBS304をダイクロイックミラーに変更しても良い。このようにした場合には、ダイクロイックミラーで光源からの光を反射させ、標本からの蛍光を通過させることによって、励起光学系と測定光学系の光路を分離できるので、偏光板303は不要になる。
【0056】
上記の各実施形態における共焦点顕微鏡装置の用途としては、例えば、細胞における研究分野では、局所的に励起し、励起した部位からの反応を観察する用途がある。
【0057】
アンケージド(Uncaged)という手法では、局所的に励起することで活性物質の濃度が変化する。その濃度変化を計測する場合に、局所的に励起した部位以外の周辺部分を同時に計測することで、細胞内の機能解析が行なうことが可能である。
【0058】
フォトブリーチという手法では、細胞を局所的に励起することによって、当該部位の退色を施す。その部位は、周辺のタンパク質の移動により時間とともに退色した部位が復帰する現象が見られる。従って、局所的に励起した部位と周辺部分との両者での計測が必要になる。
【0059】
図5を参照してその一例を示す。図5は神経組織の観察を模式的に示した図である。
【0060】
例えば細胞体1から細胞体2に軸索3を伝わるイオンを細胞体1に注入されたケージド蛍光色素をプローブとして観察しようとする場合には、まず、細胞体1上の焦点面4に標本を刺激するためのレーザ光を照射する。そして、その後の変化を標本観察用のレーザ光で観察する。しかし、観察用のレーザ光の深さ方向の励起光強度分布は、通常は刺激用のレーザ光と同じ深さの励起光強度分布5となるので、従来では、その分布の範囲内に入っていない軸索3を伝わる蛍光色素は励起光が当たらないため観察できないことがある。これに対して、本発明の各実施形態においては、標本に刺激を加えるレーザ光と画像取得のためのレーザ光との標本面上での深さ方向の励起光強度分布をそれぞれ独立に変化させることができるので、従来の問題を解決できる。
【0061】
上記の各実施形態から下記の発明が抽出される。なお、本発明は、上記の発明の実施の形態に限定されるものではない。本発明の要旨を変更しない範囲で種々変形して実施できるのは勿論である。
【0062】
本発明の第1局面に係る共焦点顕微鏡装置は、第1のレーザ光源からのレーザ光で標本の走査画像を得るための第1の走査光学系と、前記第1のレーザ光源とは異なる第2のレーザ光源からのレーザ光で前記標本の特定部位を走査して、特異現象を発現させるための第2の走査光学系と、前記第1の走査光学系と前記第2の走査光学系の少なくとも一方のレーザ光のビーム径を変化させることができるビーム径可変機構とを具備することを特徴とする。レーザ光学系とレーザ走査型顕微鏡の組合せによる、標本面上での深さ方向の励起強度分布の違いによる測定の幅を変えることが可能である。具体的には、以下の通りである。
【0063】
従来においては、標本の動的解析をする場合は、刺激を加える範囲と画像を取得する範囲が異なることはもとより、刺激を加えるレーザ光の標本面上での深さ方向の励起光強度分布と画像を取得するレーザ光の深さ方向の励起光強度分布を互いに異なるようにしたいことがある。その上で、深さ方向の励起光強度分布の幅を意図的に狭くしたいこともある。
【0064】
本発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。
【0065】
すなわち、例えば、上記の各実施形態から下記の発明が抽出できる。なお、下記の各発明は単独で適用しても良いし、適宜組み合わせて適用しても良い。
【0066】
本発明の第1局面に係る共焦点顕微鏡装置は、各走査光学系のレーザ光の射出口に、レーザ光の光束径を変化させるビーム径可変機構を備えている。このビーム径可変機構によってレーザ光の光束径を小さくした場合、対物レンズの開口数は光束径が大きい場合に比べて小さくなる。その結果、対物レンズを交換しなくても標本面上で探さ方向の励起光強度分布の幅が狭くなる。更に、ビーム径可変機構を各光学系に備えることで、各光学系の標本面上での探さ方向の励起光強度分布を独立に変化させることができる。更にその標本面上での深さ方向の励起光分布の幅を意図的に変えることが可能である。
【0067】
本発明の第2局面に係る共焦点顕微鏡装置は、コヒーレントではない光源から出力された光によって対物レンズを介して標本を走査し、前記標本からの蛍光を前記対物レンズを介して検出する第1の走査光学系と、レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系とを具備し、前記第1の走査光学系は、共焦点効果を得るための回転ディスクを更に具備し、前記インコヒーレントな光は、前記回転ディスクを介して標本を走査し、前記蛍光は、前記回転ディスクを介して検出されることを特徴とする。レーザ光学系とディスクタイプの共焦点顕微鏡装置の組合せによる標本面上での探さ方向の励起強度分布の違いによる測定の幅を変えることが可能である。
【0068】
本発明の第3局面に係る共焦点顕微鏡装置は、コヒーレントではない光源から出力された光によって対物レンズを介して標本を照明し、前記標本からの蛍光を前記対物レンズを介して検出する第1の光学系と、レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系とを具備することを特徴とする。レーザ光学系とケーラー照明における顕微鏡の組合せによる標本面上での深さ方向の励起強度分布の違いによる測定の幅を変えることが可能である。
【0069】
上記の共焦点顕微鏡装置の好ましい実施態様は以下のとおりである。なお、以下の各実施態様は、単独で適用しても良いし、適宜組み合わせて適用しても良い。
(1) 前記第2の走査光学系が前記レーザ光源のレーザ光のビーム径を変化させるビーム径可変機構を更に備えること。
(2) 前記ビーム径可変機構より出力されるレーザ光のビーム径から標本面上での深さ方向の励起光強度分布を算出し、又は記憶する励起光強度分布算出手段を更に具備すること。
(3) 前記第1のレーザ光源はIRパルスレーザであり、前記ビーム可変機構は、前記第2の走査光学系に設けられていること。
(4) 前記ビーム径可変機構から出力されたレーザ光の標本面上での深さ方向の強度分布を算出する深さ方向強度分布算出手段を更に備えること。
(5) 前記コヒーレントではない光源は、ランプもしくはLED光源であること。
【0070】
なお、本発明は、上記の共焦点顕微鏡装置を用いた観察方法としても成立する。
また、例えば各実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
【符号の説明】
【0071】
100、100′…第1の走査光学系、101…第1のレーザ光源、102…第1のビーム径可変機構、103…リレーレンズ、104…第1の走査光学ユニット、104a、104b…走査ミラー、105…リレーレンズ、106…ミラー、120…ダイクロイックミラー、130…結像レンズ、132…対物レンズ、134…標本、136…ステージ、140…測光フィルタ、142…レンズ、144…ピンホール、146…光電変換素子、150…ダイクロイックミラー、160…励起光強度分布算出手段、200…第2の走査光学系、201…第2のレーザ光源、202…第2のビーム径可変機構、203…第2の走査光学ユニット、203a、203b…走査ミラー、204…リレーレンズ、301…光源、302…光学レンズ、303…偏光板、304…偏光ビームスプリッター(PBS)、305…回転ディスク、306…回転軸、307…第1の結像レンズ、308…波長板、309…対物レンズ、310…標本、311…第2の結像レンズ、312…CCDカメラ、313…モニタ。

【特許請求の範囲】
【請求項1】
第1のレーザ光源からのレーザ光で標本の走査画像を得るための第1の走査光学系と、
前記第1のレーザ光源とは異なる第2のレーザ光源からのレーザ光で前記標本の特定部位を走査して、特異現象を発現させるための第2の走査光学系と、
前記第1の走査光学系と前記第2の走査光学系の少なくとも一方のレーザ光のビーム径を変化させることができるビーム径可変機構とを具備することを特徴とする共焦点顕微鏡装置。
【請求項2】
コヒーレントではない光源から出力された光によって対物レンズを介して標本を走査し、前記標本からの蛍光を前記対物レンズを介して検出する第1の走査光学系と、
レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系とを具備し、
前記第1の走査光学系は、共焦点効果を得るための回転ディスクを更に具備し、
前記インコヒーレントな光は、前記回転ディスクを介して標本を走査し、
前記蛍光は、前記回転ディスクを介して検出されることを特徴とする共焦点顕微鏡装置。
【請求項3】
コヒーレントではない光源から出力された光によって対物レンズを介して標本を照明し、前記標本からの蛍光を前記対物レンズを介して検出する第1の光学系と、
レーザ光源から出力されたレーザ光を標本の特定の部位に照射し、特異現象を発現させるための第2の走査光学系とを具備することを特徴とする共焦点顕微鏡装置。
【請求項4】
請求項2又は請求項3記載の共焦点顕微鏡装置において、前記コヒーレントではない光源は、ランプもしくはLED光源であることを特徴とする共焦点顕微鏡装置。
【請求項5】
請求項2又は請求項3記載の共焦点顕微鏡装置において、前記第2の走査光学系が前記レーザ光源のレーザ光のビーム径を変化させるビーム径可変機構を更に備えることを特徴とする共焦点顕微鏡装置。
【請求項6】
請求項1又は請求項5記載の共焦点顕微鏡装置において、前記ビーム径可変機構より出力されるレーザ光のビーム径から標本面上での深さ方向の励起光強度分布を算出し、又は記憶する励起光強度分布算出手段を更に具備することを特徴とする共焦点顕微鏡装置。
【請求項7】
請求項1記載の共焦点顕微鏡において、前記第1のレーザ光源はIRパルスレーザであり、前記ビーム可変機構は、前記第2の走査光学系に設けられていることを特徴とする共焦点顕微鏡装置。
【請求項8】
請求項7記載の共焦点顕微鏡において、前記ビーム径可変機構から出力されたレーザ光の標本面上での深さ方向の強度分布を算出する深さ方向強度分布算出手段を更に備えることを特徴とする共焦点顕微鏡装置。
【請求項9】
共焦点顕微鏡装置を用いた観察方法であって、
蛍光を励起するために標本に励起光を照射する第1のステップと、
特異現象を発現させるための光を所望の位置に照射する第2のステップと、
励起された標本を検出して画像化する第3のステップとを具備し、
前記第1のステップは、前記励起光の標本面における深さ方向の強度分布を調整するステップを更に含むことを特徴とする観察方法。
【請求項10】
共焦点顕微鏡装置を用いた観察方法であって、
蛍光を励起するために標本に励起光を照射する第1のステップと、
特異現象を発現させるための光を所望の位置に照射する第2のステップと、
励起された標本を検出して画像化する第3のステップとを具備し、
前記第2のステップは、前記特異現象を発現させるための光の標本面における深さ方向の強度分布を調整するステップを含むことを特徴とする観察方法。
【請求項11】
共焦点顕微鏡装置を用いた観察方法であって、
回転ディスクを介して標本に励起光を照射し、ディスク走査により標本の蛍光像を取得する第1のステップと、
特異現象を発現させるための光を標本の所望の位置に照射する第2のステップとを具備することを特徴とする観察方法。
【請求項12】
請求項11記載の観察方法において、前記第2のステップは、前記特異現象を発現させるための光の標本面における深さ方向の強度分布を調整するステップを更に含むことを特徴とする観察方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−277103(P2010−277103A)
【公開日】平成22年12月9日(2010.12.9)
【国際特許分類】
【出願番号】特願2010−158854(P2010−158854)
【出願日】平成22年7月13日(2010.7.13)
【分割の表示】特願2003−86212(P2003−86212)の分割
【原出願日】平成15年3月26日(2003.3.26)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】