説明

反転変性多接合太陽電池の代替基板

【課題】太陽電池を製造する新規な方法を提供すること。
【解決手段】第一基板を準備し、該第一基板上に半導体物質の順に重ねられた層を堆積して太陽電池を形成し、順に重ねられた層の上部の半導体層と実質的に類似する熱膨張係数を有する物質から構成される代替第二基板を取り付けて、接着し、第一基板を取り除くことにより太陽電池を製造する方法。

【発明の詳細な説明】
【背景技術】
【0001】
本発明は、半導体装置の分野、及び変性層を含むIII−V族半導体化合物ベースの多接合太陽電池などの製造方法及び装置に関する。このような装置は、反転変性多接合太陽電池として知られている。
【先行技術文献】
【特許文献】
【0002】
【特許文献1】米国特許出願一連番号12/047,944
【特許文献2】米国特許出願一連番号12/258,190
【特許文献3】米国特許出願一連番号12/023,772
【特許文献4】米国特許出願一連番号11/860,183
【特許文献5】米国特許出願一連番号12/265,113
【特許文献6】米国特許出願一連番号12/218,582
【特許文献7】米国特許出願一連番号12/190,449
【特許文献8】米国特許出願一連番号11/956,069
【特許文献9】米国特許出願一連番号12/267,812
【特許文献10】米国特許出願一連番号12/253,051
【非特許文献】
【0003】
【非特許文献1】M.W.Wanlass他、「Lattice Mismatched Approaches for High Performance,III−V Photovoltaic Energy Converters」(2005年IEEE出版、2005年1月3−7、第31回IEEE Photovoltaic Specialists Conferenceの会議議事録)
【発明の概要】
【0004】
[従来の技術]
太陽電池とも呼ばれる光電池から得られる太陽エネルギー発電電力は、主としてシリコン半導体技術により提供されてきた。しかしながら過去数年間においては、宇宙用装置のためのIII−V族化合物半導体多接合太陽電池の大量生産により、宇宙用での使用だけでなく地上設置式太陽エネルギー発電装置の技術が加速度的に発達してきた。シリコンと比較して、III−V族化合物半導体多接合装置は、製造は複雑になるが、高いエネルギー変換効率及び全体的に高い放射線耐性を有する。典型的な商業用III−V族化合物半導体多接合太陽電池は、1つの太陽、空気質量0(AM0)、照度の下で、27%を越えるエネルギー効率を有するが、シリコン技術は、最も効率的なものでも、一般的には同様の条件の下で約18%の効率しか得られない。強い太陽照射の下で(例えば、500倍)、商業的に入手可能な地上設置式装置におけるIII−V族化合物半導体多接合太陽電池は(AM1.5で)、37%を越えるエネルギー効率を有する。シリコン太陽電池と比較して、III−V族化合物半導体太陽電池により高い変換効率が得られる理由の一つは、異なるバンドギャップエネルギーを有する複数の光起電性領域を使用することにより、入射放射線のスペクトル分光を行うことができ、各々の領域からの電流を蓄積することができるからである。
【0005】
典型的なIII−V族化合物半導体太陽電池は、垂直な多接合構造をもった半導体ウエハとして形成される。次に、個々の太陽電池、すなわちウエハは、水平アレイに配置され、該個々の太陽電池は電気回路で互いに接続される。アレイの形状及び構造、並びに含まれる電池の数は、部分的には、望まれる出力電圧及び電流により定められる。
【発明が解決しようとする課題】
【0006】
非特許文献1として挙げたM.W.Wanlass他の「Lattice Mismatched Approaches for High Performance,III−V Photovoltaic Energy Converters」(2005年IEEE出版、2005年1月3−7、第31回IEEE Photovoltaic Specialists Conferenceの会議議事録)に示されているように、III−V族化合物半導体層に基づく反転変性太陽電池構造は、将来の商業的に高い効率の太陽電池の発展のために、重要な概念の出発点を示している。しかしながら、このような参照文献で提案されて述べられている、電池の多くの異なる層の物質及び構造は、特に物質及び製造段階の最も適切な選択に関して、多くの実質的な問題点を示している。
【課題を解決するための手段】
【0007】
簡潔にかつ一般的に言うと、本発明は、第一基板を準備し、半導体物質の次の層を第一基板上に堆積して太陽電池を形成し、重ねられた層の上部の半導体層の熱膨張係数と実質的に類似する係数を有する物質から構成される代替第二基板を取り付け、かつ接着し、該第一基板を取り除くことにより太陽電池を製造する方法を提供する。
【図面の簡単な説明】
【0008】
【図1】ある種の二元物質のバンドギャップ及びその格子定数を示すグラフである。
【図2】成長基板上に半導体層を堆積した後の、本発明の太陽電池の断面図である。
【図3】次の製造段階の後の図2の太陽電池の断面図である。
【図4】次の製造段階の後の図3の太陽電池の断面図である。
【図5A】図4に次の製造段階の代替基板が取り付けられた後の太陽電池の断面図である。
【図5B】図5Aに次の製造段階の本来の基板が取り除かれた後の太陽電池の断面図である。
【図5C】図5Bの図面の底部に代替基板を備えた太陽電池の断面図である。
【図6】次の製造段階の後の図5Cの太陽電池の簡略化した断面図である。
【図7】次の製造段階の後の図6の太陽電池の断面図である。
【図8】次の製造段階の後の図7の太陽電池の断面図である。
【図9】次の製造段階の後の図8の太陽電池の断面図である。
【図10A】4つの太陽電池が形成されたウエハの平面図である。
【図10B】太陽電池が形成されたウエハの底部平面図である。
【図11】次の製造段階の後の図9の太陽電池の断面図である。
【図12A】次の製造段階の後の図11の太陽電池の断面図である。
【図12B】次の製造段階の後の図12Aの太陽電池の断面図である。
【図13】次の製造段階の後の電池周囲のエッチングによる溝の表面図を描いた、図12Bのウエハの平面図である。
【図14】本発明の第一実施形態における次の製造段階の後の図12Bの太陽電池の断面図である。
【図15】本発明の第二実施形態における次の製造段階の後の図12Bの太陽電池の断面図である。
【図16】本発明による変性太陽電池のベース層のドーピング形状のグラフである。
【図17】本発明による反転変性多接合太陽電池の電流と電圧の特性を示したグラフである。
【発明を実施するための形態】
【0009】
本発明の詳細が、以下に、例示的側面及びその実施形態を含めて説明される。図面及び以下の説明においては、同じ参照番号が同様の又は機能的に類似した要素を識別すために使用され、高度に単純化した図式で例示的実施形態の主な特徴を表している。更に、図面は、実際の実施形態のあらゆる特徴、更に示した要素の相対寸法を示すようには意図されておらず、縮尺により描かれていない。
【0010】
反転変性多接合(IMM)太陽電池を製造する基本概念は、基板上の太陽電池の補助電池を「逆」順に成長させることである。すなわち、通常は太陽放射線に面する「上部」補助電池である高バンドギャップ補助電池(すなわち、1.8eVから2.1eVの範囲のバンドギャップを有する補助電池)が、例えば、ヒ化ガリウム又はゲルマニウムなどの半導体成長基板上に、該基板と格子整合した状態となるようにエピタキシャル状に成長させられる。1又はそれ以上の下方のバンドギャップ中間太陽電池(すなわち、1.2eVから1.8eVの範囲のバンドギャップを有する)を、高バンドギャップ補助電池上に成長させることができる。
【0011】
少なくとも1つの下方の補助電池が、成長基板に対して実質的に格子非整合状態で、第三の低いバンドギャップ(すなわち、0.7eVから1.2eVの範囲のバンドギャップ)を持つように、中間補助電池上に形成される。代替基板すなわち支持構造が、「底部」又は実質的に格子非整合状態の下方の補助電池に取り付けられるか又は形成され、成長用の半導体基板は、その後取り除かれる。(成長用基板は、その後第二及びそれ以降の太陽電池の成長のために順次再使用することができる。)
【0012】
反転変性多接合太陽電池の種々異なる特徴及び態様は、上記した関連出願に示されている。これらの特徴の幾つか又はすべては、本発明の太陽電池に関連する構造及び製造に含むことができる。
【0013】
図1は、ある種の二元物質のバンドギャップ及びその格子定数を示したグラフである。三元物質のバンドギャップ及び格子定数は、組み合わされた典型的な二元物質を示した線の間に位置する。(三元物質GaA1Asは、個々の成分の相対量に応じて、グラフのGaAsとA1Asとの間に位置し、三元物質のバンドギャップは、GaAsの1.42eVとA1Asの2.16eVとの間に位置する。)このように、望まれるバンドギャップに応じて、三元物質の物質成分は、成長に対して正確に選択することができる。
【0014】
半導体構造における層の格子定数及び電気特性は、好ましくは、適切な成長温度及び時間についての反応器仕様、及び適切な化学化合物及びドーピング剤の使用により制御される。有機的金属気相エピタクシー(OMVPE)、有機化学的金属蒸着(MOCVD)、分子ビームエピタクシー(MBE)などの蒸着法、又は他の逆成長のための蒸着法の使用によって、電池を形成するモノリシック半導体構造における層を、必要とされる厚さ、元素化合物、ドーピング剤濃度と粒度、及び導電型で成長させることができる。
【0015】
図2は、本発明により、GaAs成長基板上に3つの補助電池A、B及びCを順次形成した後の多接合太陽電池を示している。より特定的には、基板101が示されており、これは、ヒ化ガリウム(GaAs)が好ましいが、ゲルマニウム(Ge)又は他の適当な物質とすることができる。GaAsにおいては、基板は好ましくは、15°切り出し基板、すなわち、その表面が(100)平面から(111)平面方向に15°ずらして方向付けられたものであり、これは2008年3月13日付けの米国特許出願一連番号12/047,944に詳細に述べられている。
【0016】
ゲルマニウム基板の場合には、核形成層(図示されず)が基板101上に直接堆積される。基板上又は核形成層の上に(ゲルマニウム基板の場合)、バッファー層102及びエッチストップ層103が(111)更に堆積される。GaAs基板の場合には、バッファー層102は、GaAsであることが好ましい。ゲルマニウム基板の場合には、バッファー層102は、InGaAsであることが好ましい。次にGaAsの接触層104が(111)層103上に堆積され、A1InPのウインドウ層105が接触層上に堆積される。次にn+エミッター層106及びp型ベース層107から成る補助電池Aが、ウインドウ層105上にエピタキシャル状に堆積される。補助電池Aは、成長基板101と全体的に格子整合している。
【0017】
多接合太陽電池構造は、格子定数及びバンドギャップの必要条件によって、周期表に挙げられたIII族からV族までの要素のあらゆる適当な組み合わせにより形成することができ、ここで、III族は、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、及びタリウム(T)を含むことを理解するべきである。IV族は、炭素(C)、シリコン(Si)、ゲルマニウム(Ge)、及びスズ(Sn)を含む。V族は、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、及びビスマス(Bi)を含む。
【0018】
好ましい実施形態においては、エミッター層106は、InGa(Al)Pから構成され、ベース層107は、InGa(Al)Pから構成される。上式で括弧内のアルミニウムすなわちAl項は任意の成分であり、この場合には、0%から30%の範囲の量で使用することができる。本発明によるエミッター及びベース層106及び107のドーピング形状は、図16と関連して述べる。
【0019】
補助電池Aは、後に述べる本発明による製造段階の終了後、最終的には、反転変性構造の「上部」補助電池となる。
【0020】
ベース層107の上部に、好ましくはp+AlGaInPである後部表面フィールド層(「BSF」)が堆積され、これは、再結合損失を減少するために使用される。
【0021】
BSF層108は、再結合損失の影響を最小にするために、ベース/BSFインターフェース表面に近い領域から少数キャリアを駆逐する。言い換えれば、BSF層108は、太陽補助電池Aの後側で再結合損失を減少し、したがってベースでの再結合を減少する。
【0022】
BSF層108の上部に、高いドーピング濃度のp型層109a及びn型層109bがこの順で堆積され、補助電池Aを補助電池Bに接続するトンネルダイオード、すなわちオーム回路要素を形成する。層109aは、p++AlGaAsから構成されることが好ましく、層109bは、n++InGaPから構成されることが好ましい。
【0023】
トンネルダイオード層109の上部に、ウインドウ層110、好ましくはn+InGaPが堆積される。ウインドウ層110の物質成分としてInGaPを利用する利点は、2008年10月24日付けの米国特許出願一連番号12/258,190に十分に述べられているように、ウインドウ層が隣接するエミッター層111と緊密に整合する屈折率を有することである。より一般的には、補助電池Bで使用されるウインドウ層110は、インターフェースの再結合損失を減少するように働く。本発明の範囲から外れることなく、付加層を電池構造に付加するか又は除去することができることが、当業者には明らかである。
【0024】
ウインドウ層110の上部に、補助電池Bの層、すなわちn型エミッター層111及びp型ベース層112が堆積される。これらの層は、好ましくは、それぞれInGaP及びIn0.015GaAs(ゲルマニウム基板又は成長用テンプレートの場合)から、又はそれぞれInGaP及びGaAs(GaAs基板の場合)から構成されるが、必要条件の格子定数及びバンドギャップを備えたあらゆる他の適当な物質成分も同様に使用することができる。したがって、補助電池Bは、GaAs、GaInP、GaInAs、GaAsSb、又はGaInAsNエミッター領域及びGaAs、GaInAs、GaAsSb、又はGaInAsNベース領域から構成することができる。本発明による層111及び112のドーピング形状は、図16との関連で述べる。
【0025】
従前の反転変性太陽電池においては、中間電池は均一構造であった。本発明においては、米国特許出願一連番号12/023,772に示された構造に類似して、中間補助電池はInGaPを有するヘテロ構造となり、そのウインドウはInAlPからInGaPに変えられる。この変更は、中間補助電池のウインドウ/エミッターインターフェースで、不連続な屈折率を除去したものである。更に、ウインドウ層110は、フェルミ・レベルを導電バンド近くまで上げるために、エミッター層111の3倍ドーピングされることが好ましく、これによりウインドウ/エミッターインターフェースでバンド曲がりを形成し、エミッター層への少数キャリアを抑制することとなる。
【0026】
本発明の好ましい実施形態においては、中間補助電池エミッターは、上部補助電池エミッターと等しいバンドギャップを有し、第三補助電池エミッターは、中間補助電池のベースのバンドギャップより大きいバンドギャップを有する。したがって、太陽電池の製造、形成及び作動の後、中間補助電池Bのエミッターも第三補助電池Cのエミッターのいずれも吸収可能な放射線に曝されることはない。実質的には、吸収可能な放射線を表すすべての光子は、エミッターより狭いバンドギャップを有する電池B及びCのベースで吸収される。したがって、ヘテロ接合型補助電池を使用する利点は、(i)両方の補助電池に対応する短い波長が改善され、(ii)放射線の束が、より狭いバンドギャップベースに、一層効率的に吸収されて、集積されることである。それによる効果は、JSCを増加させることである。
【0027】
電池Bの上部に、BSF層109と同じ機能として働くBSF層113が堆積される。p++/n++トンネルダイオード層114a及び114bのそれぞれは、層109a及び109bと同様にBSF層113上に堆積され、補助電池Bを補助電池Cに接続するオーム回路要素を形成する。114a層は、p++AlGaAsから構成されることが好ましく、層114bは、n++InGaPから構成されることが好ましい。
【0028】
好ましくはn型InGa(Al)Pから成るバリア層115が、約1.0ミクロンの厚さまで、トンネルダイオード114a/114b上に堆積される。このようなバリア層は、スレッドの乱れが、中間及び上部補助電池B及びCに成長する方向と反対方向か、又は底部補助電池Aに成長する方向のいずれかに伝播するのを防止するように意図され、より特定的には係属中の2007年9月24日付けの米国特許出願一連番号11/860,183に記載されている。
【0029】
変性層(すなわち勾配中間層)116は、表面活性剤を使用してバリア層115上に堆積される。層116は、スレッドの乱れが起こるのを最小にしながら、半導体構造の中の格子定数が補助電池Bから補助電池Cへと次第に遷移するようにするために、好ましくは格子定数を単調に変化させながら、組成的に段階的勾配を付したシリーズのInGaAlAs層であることが好ましい。層116のバンドギャップは、好ましくはおよそ1.5eVに等しく、その厚さ全体で一定であるか、又は中間補助電池Bのバンドギャップより僅かに大きい値で一定している。勾配中間層の好ましい実施形態は、(InxGa1-xyAl1-yAsから構成されるものとして表すことができ、ここでx及びyは、中間層のバンドギャップがおよそ1.50eVで一定した状態か、又は他の適当なバンドギャップとなるように選択される。
【0030】
表面活性剤の助けによる変性層116の成長においては、層116の成長する間、適当な化学成分が反応器に導入され、層の表面特性が改善される。好ましい実施形態においては、このような成分は、ドーピング剤又はセレニウム(Se)又はテルル(Te)などのドナー原子とすることができる。したがって、少量のSe又はTeが変性層116に組み込まれ、完成した太陽電池に残存する。Se又はTeは、好ましいn型ドーピング剤原子ではあるが、他の非等電性表面活性剤も同様に使用することができる。
【0031】
表面活性剤の補助による成長は、より滑らかな又は平らな表面を形成する。物質が成長して、層が厚くなるにしたがって、表面形態が半導体物質の嵩特性に影響するので、表面活性剤の使用は、活性領域でのスレッドの乱れを最小にし、したがって太陽電池全体の効率を改善することとなる。
【0032】
非等電性表面活性剤の使用に代わるものとして、等電性表面活性剤を使用することができる。「等電性」という用語は、アンチモン(Sb)又はビスマス(Bi)などの表面活性剤を意味するが、それはこのような要素が、変性バッファー層においてInGaPのP原子、又はInGaAlAsのAs原子と同じ数の価電子を有するからである。このようなSb又はBi表面活性剤は、通常は、変性層116に組み込まれることはない。
【0033】
代替的実施形態においては、太陽電池が2つの補助電池しか持たず、かつ「中間」電池Bが完成した太陽電池において最上部又は上部補助電池であり、ここで言う「上部」補助電池Bが、典型的には1.8eVから1.9eVのバンドギャップを有する場合に、中間層のバンドギャップは、一定の1.9eVにとどまる。
【0034】
上記したワンラス他の論文に述べられた反転変性構造においては、変性層は、組成的にInGaPに勾配を付する9段階から成り、各々の段階の層は0.25ミクロンの厚さを有する。その結果、ワンラス他の各々の層は、異なるバンドギャップを有する。本発明の好ましい実施形態においては、層116は、単調に変化する格子定数を有し、各々の層がおよそ1.5eVの同じバンドギャップを有する、複数のInGaAlAsの層から構成される。
【0035】
InGaAlAsなどの一定バンドギャップの物質を利用する利点は、ヒ素ベースの半導体物質が、標準の商業用MOCVD反応器でかなり製造しやすいことであるが、少量のアルミニウムは、変性層の放射線透過性を確実なものとする。
【0036】
本発明の好ましい実施形態は、製造容易性及び放射線透過性の理由から、変性層116に複数のInGaAlAsの層を利用するものであるが、本発明の他の実施形態は、補助電池Bから補助電池Cへと格子定数を変化させるために、異なる物質のシステムを利用することができる。このように、組成的に勾配付けされたInGaPを使用するワンラスのシステムは、本発明の第二実施形態である。本発明の他の実施形態は、段階的勾配付けするのとは反対に、無段階な勾配付けされた物質を利用することができる。より一般的に言うと、勾配付けされた中間層は、As、P、N、SbベースのIII−V族化合物半導体のいずれかにより構成することができるが、該中間層は、平面内格子パラメータが、第二太陽電池のそれより大きいか又はこれと等しく、第三太陽電池の格子のそれより小さいか又はこれと等しいという制約、及び、バンドギャップエネルギーが第二太陽電池のそれよりも大きいという制約を受ける。
【0037】
本発明の別の実施形態においては、任意の第二バリア層117を、InGaAlAs変性層116上に堆積することができる。第二バリア層117は、典型的には、バリア層115の化合物とは異なる化合物を有し、本質的には、スレッドの乱れが伝播するのを防止する機能と同じ機能を実現する。好ましい実施形態においては、バリア層117は、n+型GaInPとする。
【0038】
好ましくはn+型GaInPから構成されるウインドウ層118が、バリア層117上に(又は第二バリア層がない場合は、直接層116上に)堆積される。このウインドウ層は、補助電池「C」内の再結合損失を減少するように作用する。本発明の範囲から外れることなく、付加的層を、電池構造に追加し、又は除去することができることが、当業者には明らかである。
【0039】
ウインドウ層118の上部に、電池Cの層、すなわちn+エミッター層119及びp型ベース層120が堆積される。これらの層は、ヘテロ結合補助電池に対して、それぞれがn+型InGaAsとn+型InGaAsか、又はn+型InGaPとp型InGaAsから構成されることが好ましいが、格子定数及びバンドギャップの必要条件が一致する別の適当な物質も、同様に使用することができる。層119及び120のドーピング形状は図16と関連して述べる。
【0040】
InGaAlAsから構成されることが好ましいBSF層121が、電池Cの上部に堆積され、該BSF層は、BSF層108及び113と同じ機能を達成する。
【0041】
最後に、好ましくはInGaAlAsから構成される高バンドギャップ接触層122が、BSF層121上に堆積される。
【0042】
単一又は多接合光電池における低いバンドギャップ光電池の底部(非照射)側に追加されるこの接触層は、電池を通って通過する光の吸収を減少する組成とすることができ、その結果、(i)その下のオーム金属接触層(非照射側)がミラー層として機能し、(ii)接触層は、吸収を防止するために選択的にエッチング除去する必要がない。
【0043】
本発明の範囲から外れることなく、付加的層を電池構造に追加し、又は除去することができることは、当業者にとって明らかである。
【0044】
図3は、次の製造段階である、金属接触層123がp+半導体接触層122上に堆積された後の図2の太陽電池の断面図である。金属は、金属層Ti/Au/Ag/Au又はTi/Pd/Agの順であることが好ましいが、他の適当な順序及び物質も同様に使用することができる。
【0045】
また、選択される金属接触の構成は、加熱処理後オーム接触を活性化するために、加熱処理後に、半導体に対して平らなインターフェースを有するものとする。これは、(1)金属を半導体から分離する誘電層を堆積する必要がなく、更に金属接触領域で選択的にエッチングする必要がなく、かつ(2)接触層が、問題となる波長範囲にわたり鏡面反射する、ようにするために行われるものである。
【0046】
図4は、接着層124を金属層123上に堆積する次の製造段階を行った後の図3の太陽電池の断面図である。本発明の接着材料は、金−スズ共晶はんだが好ましく、約2.5ミクロンの厚さが好ましい。
【0047】
図5Aは、代替基板125を取り付ける次の製造段階を行った後の図4の太陽電池の断面図である。本発明の好ましい実施形態においては、代替基板は、絶対温度1度につき6から7ppmの範囲の熱膨張係数を有し、およそ80%のシリコンと20%のアルミニウムから成るシリコンアルミニウム合金から構成されることが好ましい。鉄ニッケル(Fe−Ni)などの、製造方法に適合し、適当な熱膨張係数を有する他の物質も、同様に使用することができる。好ましい実施形態においては、合金はスプレー法により堆積され、合金の溶融点である摂氏280度を越える温度では、接着により堆積される。代替基板は、厚さが約500ミクロンであることが好ましく、金属層に永久的に接着される。2008年11月5日付けの係属中の米国特許出願一連番号12/265,113に述べられているような接着法も使用することができる。
【0048】
図5Bは、最初の基板がラッピング、研磨及び/又はエッチング段階の順により取り除く段階、すなわち基板101及びバッファー層103を取り除く次の製造段階が行われた後の図5Aの太陽電池の断面図である。特定の腐食液の選択は、成長用基板に依存する。
【0049】
図5Cは、代替基板125が図面の底部にある状態で描かれた図5Bの太陽電池の断面図である。本出願におけるこれ以降の図面は、この方向で描かれている。
【0050】
図6は、代替基板125における幾つかの上部層及び下方の層を示した、図5Bの太陽電池を簡略化した断面図である。
【0051】
図7は、次の製造段階としてエッチストップ層103がHCl/H2O溶液により取り除かれる段階を行った後の図6の太陽電池の断面図である。
【0052】
図8は、図7に示す太陽電池に次の製造段階を行って、フォトレジストマスク(図示されず)が接触層104上に設置され、グリッド線501が形成された後の太陽電池の断面図である。以下に詳細に述べられるように、グリッド線501は、蒸着により堆積され、接触層104上にリトグラフ法によりパターン化されて堆積される。マスクは、図面に示しているように、最終の金属グリッド線501を形成するために順次取り除かれる。
【0053】
引用によりここに組み入れられる2008年7月18日付けの米国特許出願一連番号12/218,582に詳細に述べられているように、グリッド線501は、Pd/Ge/Ti/Pd/Auの層の順序から構成されることが好ましいが、他の適当な順序及び物質も同様に使用することができる。
【0054】
図9は、図8の太陽電池に次の製造段階を行い、グリッド線をマスクとして使用し、クエン酸/過酸化水素水エッチング混合物を使用して、ウインドウ層105の表面にエッチング処理した後の太陽電池の断面図である。
【0055】
図10Aは、4つの太陽電池が実装されているウエハの平面図である。4つの電池の図は説明のためだけのものであり、本発明は、1つのウエハに対して何らかの特定の数の電池の使用に限定されるものではない。
【0056】
各々の電池には、グリッド線501(より特定的には図9に断面図が示されている)、相互結合したバス線502、及び接触用パッド503がある。グリッド線、バス線、及び接触用パッドの形状及び数は、説明のためのものであり、本発明は示した実施形態に限定するものではない。
【0057】
図10Bは、図10Aで示した4つの太陽電池を有するウエハの底面図である。
【0058】
図11は、図9の太陽電池に次の製造段階を行うことにより、反射防止用(ARC)誘電体被膜層130が、グリッド線501を有するウエハの「底部」側の表面全体に付与された後の太陽電池の断面図である。
【0059】
図12A及び12Bは、図11の太陽電池に本発明による次の製造段階を行うことにより、第一及び第二環状チャンネル510及び511、すなわち半導体構造の部分が、リン化腐食液及びヒ化腐食液を使用して、金属層123にエッチング処理された後の太陽電池の断面図である。これらのチャンネルは、2008年8月12日付けの米国特許出願一連番号12/190,449により具体的に述べられているように、電池とウエハの残りの部分との間に周辺境界を定め、太陽電池を構成するメサ構造を残す。図12A及び12Bに示された断面図は、図13に示されたA−A面から見たものである。好ましい実施形態においては、チャンネル510は、実質的にチャンネル511より幅が広い。
【0060】
図13は、図12Bのウエハにおいて、各々の電池の周辺にエッチングされたチャネル510及び511を示した平面図である。
【0061】
図14は、図12A又は12Bの太陽電池に、個々の太陽電池(図13で示している電池1、電池2など)がチャネル511を通して、代替基板125を通って延びる垂直縁512を残したまま、ウエハから切断又は刻み目を入れられた後の断面図である。本発明のこの第一実施形態においては、代替基板125は、本申請書の太陽電池の支持材を形成し、カバーガラス(以下に述べられる第二実施形態で示されているような)は必要ではない。このような実施形態においては、金属接触層123への電気接触は、チャネル510を通して行うことができる。
【0062】
図15は、図12の太陽電池において、本発明の第二実施形態による次の製造段階を行うことにより、カバーガラス514が接着剤513を解して電池の上部に取り付けられた後の太陽電池の断面図である。カバーガラス514は、典型的には約4ミルの厚さであり、チャンネル510全体を覆うことが好ましいが、チャンネル511までは延びない。カバーガラスの使用は好ましい実施形態ではあるが、すべての実装に必要なものではなく、付加的層又は構造を使用して、太陽電池の付加的支持又は周囲環境の保護を達成することができる。
【0063】
図19は、図18Bの太陽電池に本発明による次の製造段階を行うことにより、接着剤層131、代替理基板132、及びウエハの周囲部分512が、チャンネル510の領域を除いてすべて取り除かれて、太陽電池には上部のカバーガラス514(又は他の層或いは構造)及び太陽電池の後側の接触部を形成する底部の金属接触層130だけが残された状態における太陽電池の断面図である。代替基板は、腐食液EKC922の使用により取り除かれることが好ましい。上記したように、代替基板は、その表面に孔を含み、この孔は、該基板132を通して腐食液を流れさせて該代替基板を取り除くことを可能にする。代替基板は、次のウエハ製造作業において再使用することができる。
【0064】
図17は、本発明による太陽電池の電流及び電圧特性を示すグラフである。太陽電池は、およそ3.074ボルトの開放電圧(VOC)、およそ16.8mA/cm2の短絡電流、およそ85.7%の充填要因、及び32.7%の効率性を有する。
【0065】
上記した各々の要素、又は2又はそれ以上の要素を組み合わせたものは、上記した形式の構造とは異なる他の形式の構造において、有益な用途を見出すことができる。
【0066】
本発明の好ましい実施形態は、4つの補助電池の垂直積層体を利用することであるが、本発明は、2008年11月10日付けの米国特許出願一連番号12/267,812により特定的に述べられているように、より少ないか又はより多い数の補助電池を有する積層体、すなわち2接合電池、3接合電池、5接合電池などにも適用することができる。4又はそれ以上の接合電池の場合は、1つより多い変性勾配中間層の使用を利用することができる。
【0067】
更に、本実施形態は、上部及び底部電気接触を有するものとして形成されているが、補助電池は、代替的には、補助電池間に位置する横方向導電性半導体と金属接触により接触するように構成することができる。このような配列は、3端子、4端子、及び一般的にn端子装置を形成するために使用することができる。補助電池は、これらの付加的端子を使用して、各々の補助電池の最も有効な光電流密度を効率的に使用することができるように回路に相互接続することができ、光電流密度が典型的には様々に補助電池によって異なるにもかかわらず、多接合電池に対し高い効率性をもたらす。
【0068】
上記したように、本発明は、1又はそれ以上の、又はすべての均一接合電池又は補助電池、すなわちp−n接合部が、どちらも同一の化学化合物と同一のバンドギャップを有するが、ドーピング種及び型だけが異なるp型半導体とn型半導体との間に形成される電池又は補助電池、及び1又はそれ以上のヘテロ接合電池又は補助電池の配列を利用することができる。p型及びn型InGaPを有する補助電池Aは、均一接合補助電池の一例である。代替的には、より詳細に2008年1月31日付けの米国特許出願一連番号12/023,772に述べられているように、本発明は、1又はそれ以上の、又はすべてのヘテロ接合電池又は補助電池、すなわちp−n接合部が、n型領域において異なる半導体物質の化学化合物、及び/又はp型領域において異なるバンドギャップエネルギーを有し、更にp−n接合部を形成するp型及びn型領域において異なるドーピング種及び型を利用して、p型半導体とn型半導体との間に形成される電池又は補助電池を利用することができる。
【0069】
幾つかの電池においては、薄い、いわゆる「真性層」を、エミッター層とベース層との間に配置することができ、この真性層は、エミッター層又はベース層のいずれかと同じか又は異なる化合物により形成することができる。真性層は、空間電荷領域で少数キャリアの再結合を抑制するように機能するものとなる。同様に、ベース層又はエミッター層のいずれかは、その厚さの部分又は全体で真性であるか又は意図的なドーピングがなされていない(「NID」)ものとすることができる。幾つかのこのような形態は、2008年10月16日付けの係属中の米国特許出願一連番号12/253,051により特定的に述べられている。
【0070】
ウインドウ層又はBSF層の化合物は、格子定数及びバンドの必要条件によって、他の半導体化合物を利用することができ、AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AIN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe、及び同様の材料を含むことができ、これらも、本発明の思想の範囲内に含まれる。
【0071】
本発明は、反転変性多接合太陽電池を実現したものとして示され、述べられているが、様々な修正及び構造的変更を、種々の方法で本発明の思想から外れることなく達成することができるものであるから、本発明は、示された詳細に限定されるものではない。
【0072】
すなわち、本発明の説明は、主として太陽電池又は光電池装置に焦点を当ててなされているが、当業者は、熱光(TPV)電池、光検出器及び発光ダイオード(LEDS)などの他の光電装置も、ドーピング及び少数キャリアの寿命に何らかの僅かな違いがあるだけで、構造、物理的性質、及び物質が光電池装置と極めて類似していることを知っている。例えば、光検出器は、上記した光電池装置と同じ物質及び構造とすることができるが、電力発生より感度を重視するために、ドーピングの程度は低くされている。一方LEDは、類似した構造及び物質で形成することができるが、再結合の時間を短くするために、すなわち、発電ではなく光を発生するための放射の持続時間のために、ドーピングの程度が高くされる。したがって本発明は、光電池に対して述べたような構造、化合物、製造する物品、及び改善点を有する光検出器及びLEDにも適用できる。
【0073】
更なる分析を必要とすることなく、上述の説明は、本発明の要点を十分に明らかにするものであるから、第3者は、従来技術の観点からみて、本発明の一般的又は特定の態様の本質的な特性を適切に構成する特徴を省略することなく、通常の知識を適用することにより、様々な用途に対して本発明を容易に適合させることができ、したがって、このような適合は、以下の特許請求の範囲に対する均等技術の意味及び範囲内であると理解されるべきであり、かつ、そのように意図されている。
【符号の説明】
【0074】
101 成長基板
102 バッファー層
103 エッチストップ層
104 接触層
105 ウインドウ層
106 エミッター層
107 ベース層
108 BSF層
109 トンネルダイオード層
110 ウインドウ層

【特許請求の範囲】
【請求項1】
第一基板を準備し、
順に重ねられた半導体物質層を第一基板上に堆積して太陽電池を形成し、
順に重ねられた前記層の上部に、上部の前記半導体物質と実質的に類似する熱膨張係数を有する物質から構成される代替第二基板を取り付けて、接着し、
前記第一基板を取り除く、
段階からなる太陽電池の製造方法。
【請求項2】
前記接着段階は、共晶接着であることを特徴とする請求項1に記載の多接合太陽電池の形成方法。
【請求項3】
前記代替第二基板の熱膨張係数は、絶対温度1度につき6から7ppmの範囲であることを特徴とする請求項1に記載の多接合太陽電池の形成方法。
【請求項4】
前記代替第二基板は、およそ80%のシリコンと20%のアルミニウムを有するシリコンアルミニウム合金から構成されることを特徴とする請求項1に記載の多接合太陽電池の形成方法。
【請求項5】
順に重ねられた前記層を形成する前記段階は、
第一バンドギャップと第一格子定数をもった第一半導体物質を含む第一補助電池を形成し、
前記第一バンドギャップより小さい第二バンドギャップと、前記第一格子定数より大きい第二格子定数とを備えた第二半導体物質を含む第二補助電池を形成し、
前記第一補助電池と前記第二補助電池との間に位置するように格子定数遷移物質を形成する、
段階からなり、
前記格子定数遷移物質は、前記第一格子定数から前記第二格子定数に漸次変化する格子定数を有することを特徴とする請求項1に記載の多接合太陽電池の形成方法。
【請求項6】
前記遷移物質は、前記平面内格子パラメータが、前記第一補助電池のそれより大きいか又はこれと等しく、前記第二補助電池のそれより小さいか又はこれと等しいという制約、及びバンドギャップエネルギーが前記第二補助電池のそれより大きいという制約のもとで、As、P、N、SbベースのIII−V族化合物半導体のいずれかにより構成されており、前記遷移物質の前記バンドギャップは、その厚さ全体でおよそ1.50eVで一定していることを特徴とする請求項5に記載の方法。
【請求項7】
前記遷移物質は、(InxGa1-xyAl1-yAsで構成され、ここで、x及びyは各々の中間層の前記バンドギャップが、その厚さ全体で一定となるように選択されていることを特徴とする請求項5に記載の多接合太陽電池。
【請求項8】
前記半導体物質の重ねられた前記層は、
0.8から1.2eVの範囲のバンドギャップを有する底部補助電池と、
1.2から1.6eVの範囲のバンドギャップを有し、前記底部電池の上に配置されて、格子非整合状態である中間補助電池と、
1.8から2.1eVの範囲のバンドギャップを有し、前記中間電池の上に配置されて、格子非整合状態である上部補助電池と、
を形成することを特徴とする請求項1に記載の方法。
【請求項9】
前記上部補助電池は、InGa(Al)Pから構成されることを特徴とする請求項8に記載の方法。
【請求項10】
前記中間補助電池は、GaAs、GaInP、GaInAs、GaAsSb又はGaInAsNエミッター領域、及びGaAs、GaInAs、GaAsSb、又はGaInAsNベース領域から構成されることを特徴とする請求項8に記載の方法。
【請求項11】
前記底部太陽補助電池は、InGaAsベース層とエミッター層、又はInGaAsベース層とInGaPエミッター層から構成されることを特徴とする請求項8に記載の方法。
【請求項12】
前記第一基板は、ヒ化ガリウム又はゲルマニウムから構成されることを特徴とする請求項1に記載の方法。
【請求項13】
前記第一基板は、研磨、ラッピング又はエッチングにより取り除かれることを特徴とする請求項1に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate