説明

可変速揚水発電制御システム

【課題】装置の破損を招く恐れを解消して可変速揚水発電制御システムの信頼性をより高める
【解決手段】交流電力系統に接続されポンプ水車が結合された発電電動機の電力と電力指令値との偏差に応じてインバータが供給する励磁電流を制御して励磁電力制御を行い、前記発電電動機の回転速度と最適回転速度との偏差に応じてインバータが供給する励磁電流を制御して励磁速度制御を行う可変速揚水発電制御システムにおいて、すべり周波数が0付近であることを判定すると共に前記すべり周波数が0付近を離れたことを判定する判定機能部を備え、前記判定機能部がすべり周波数が0付近であることを判定すると前記励磁電力制御から前記励磁速度制御に切り替え、前記判定機能部が前記すべり周波数が0付近を離れたことを判定すると前記励磁速度制御から前記励磁電力制御に戻すものである。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、交流電力系統に接続されポンプ水車が結合された発電電動機の電力と電力指令値との偏差に応じてインバータが供給する励磁電流を制御して励磁電力制御を行い、前記発電電動機の回転速度と最適回転速度との偏差に応じてインバータが供給する励磁電流を制御して励磁速度制御を行う可変速揚水発電制御システムに関するものである。
【背景技術】
【0002】
従来のランナベーンを可動とする可変速揚水発電システムの制御装置は例えば特許文献1に示されている。交流電力系統に接続された発電電動機の回転子軸には、ガイドベーン開度とランナベーン開度を調節可能なポンプ水車が結合されている。
発電電動機の回転子巻線には交流励磁するインバータが接続され、インバータの直流回路には交流電力系統の電力を直流に変換するコンバータが接続されて、回転子巻線に電力を供給する。
電力指令値と落差に応じて最適ガイドベーン開度、最適ランナベーン開度、回転速度を演算し、最適ガイドベーン開度または最適回転速度に応じてガイドベーン制御器がガイドベーンを制御し、最適ランナベーン開度に応じてランナベーン制御器がランナベーンを制御する。
電力指令値と電力との偏差に応じてインバータが供給する回転子巻線電流制御することで、発電電動機の電力を制御する。
または、最適回転速度と回転速度との偏差に応じてインバータが供給する回転子巻線電流を制御することで、発電電動機及びポンプ水車の回転速度を制御する。
回転速度は、さらにその偏差を最適ガイドベーン開度に加算して補正することで制御する。
【0003】
さらに、従来の可変速揚水発電システムの制御装置では、同期速度付近の速度での運転を防止するように、回転速度指令値を制限しガイドベーン開度を制御することで、インバータが長時間運転できない回転速度を回避する方法が示されている(特許文献2)。
同期速度付近の回転速度では、回転子巻線電流が直流となることで、インバータの電力半導体素子や回転子巻線の一部に電流が集中することでこれらの熱的な耐量を超過する場合がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平4−4799号公報(図及びその説明)
【特許文献2】特許第3853426号公報(図及びその説明)
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来のガイドベーン開度とランナベーン開度でポンプ水車の回転速度を調整する可変速揚水発電システムの制御装置では、同期速度付近に長時間滞在することで、装置の破損を招く恐れがあった。
また、ガイドベーン開度でポンプ水車の回転速度を調節する可変速揚水発電システムでは、回転速度指令値を固定することにより、電力の追従性が劣化する可能性があった。
【0006】
この発明は、前述のような実情に鑑みてなされたもので、装置の破損を招く恐れを解消して可変速揚水発電制御システムの信頼性をより高めることを目的とするものである。
【課題を解決するための手段】
【0007】
この発明に係る可変速揚水発電制御システムは、交流電力系統に接続されポンプ水車が結合された発電電動機の電力と電力指令値との偏差に応じてインバータが供給する励磁電流を制御して励磁電力制御を行い、前記発電電動機の回転速度と最適回転速度との偏差に応じてインバータが供給する励磁電流を制御して励磁速度制御を行う可変速揚水発電制御システムにおいて、すべり周波数が0付近であることを判定すると共に前記すべり周波数が0付近を離れたことを判定する判定機能部を備え、前記判定機能部がすべり周波数が0付近であることを判定すると前記励磁電力制御から前記励磁速度制御に切り替え、前記判定機能部が前記すべり周波数が0付近を離れたことを判定すると前記励磁速度制御から前記励磁電力制御に戻すものである。
【発明の効果】
【0008】
この発明は、交流電力系統に接続されポンプ水車が結合された発電電動機の電力と電力指令値との偏差に応じてインバータが供給する励磁電流を制御して励磁電力制御を行い、前記発電電動機の回転速度と最適回転速度との偏差に応じてインバータが供給する励磁電流を制御して励磁速度制御を行う可変速揚水発電制御システムにおいて、すべり周波数が0付近であることを判定すると共に前記すべり周波数が0付近を離れたことを判定する判定機能部を備え、前記判定機能部がすべり周波数が0付近であることを判定すると前記励磁電力制御から前記励磁速度制御に切り替え、前記判定機能部が前記すべり周波数が0付近を離れたことを判定すると前記励磁速度制御から前記励磁電力制御に戻すので、装置の破損を招く恐れを解消して可変速揚水発電制御システムの信頼性をより高めることができる効果がある。
【図面の簡単な説明】
【0009】
【図1】本発明の実施の形態1を例示する図で、可変速揚水発電制御システムの構成を示すブロック図である。
【図2】本発明の実施の形態2を例示する図で、可変速揚水発電制御システムの構成を示すブロック図である。
【図3】本発明の実施の形態3を例示する図で、図1および図2における禁止帯通過制御器(判定機能部)の構成を示すブロック図である。
【発明を実施するための形態】
【0010】
実施の形態1.
図1は本発明の実施の形態1による可変速揚水発電制御システムのシステム構成の一例を示すブロック図である。
電力系統1には発電電動機2の固定子巻線と交流励磁装置4の入力が接続され、発電電動機2の回転子巻線には交流励磁装置4の出力が接続されている。
発電電動機2の回転子軸には、ポンプ水車3と回転速度検出器8が結合されている。
電力系統1には、電圧検出器6と電流検出器5が設置されて、それら検出器の出力が電力及び周波数検出器7に入力されている。
さらに、落差検出器9と電力指令値設定器10の出力が、最適値設定器11に入力される。
【0011】
判定機能部である禁止帯制御器12には、最適値設定器11の出力の最適回転速度Nopt、回転速度検出器8が出力する回転速度N、電力指令値設定器が出力する電力指令値P*、電力及び周波数検出器7が出力する電力Pと周波数fが入力される。
励磁速度制御器14は禁止帯通過制御器が出力する回転速度指令値N*、励磁速度制御許可信号ExANRonと回転速度検出器8が出力する回転速度N、交流励磁装置4の電流指令値Iq*が入力され、制御信号Iqn*を出力する。
【0012】
励磁電力制御器13は電力指令値設定器10が出力する電力指令値P*、禁止帯通過制御器が出力する励磁電力制御許可信号ExAPRon、電力及び周波数検出器7が出力する有効電
力P、交流励磁装置4の電流指令値Iq*が入力され、制御信号Iqp*を出力する。
切替器15には励磁電力制御13が出力する制御信号Iqp*と励磁速度制御が出力する制御信号Iqn*と禁止帯通過制御器12が出力する励磁電力制御許可信号ExAPRonが入力され
て、交流励磁装置4の電流指令値Iq*が出力されて、交流励磁装置4に送られる。
【0013】
回転速度制御器16は禁止帯通過制御器12が出力する回転速度指令値N*と回転速度制御ホールド信号ANRhold、回転速度検出器8が出力する回転速度N、最適値設定器が出力する最適ランナベーン開度RVoptが入力されて、ランナベーン開度指令値RV*を出力して、ランナベーン開度制御器17に送られ、ランナベーン開度制御器17がポンプ水車のランナベーン開度RVOを与える。
ガイドベーン開度制御器は最適値設定器11が出力する最適ガイドベーン開度GVoptを
その指令値GV*として入力し、ポンプ水車3のガイドベーン開度GVOを与える。
【0014】
次に動作について説明する。
発電電動機2は、電力系統1の周波数fと発電電動機2の回転速度Nと発電電動機の極対数に比例した回転周波数frとの差周波数fs=f−frの交流電流で励磁される。その差周波数fsはすべり周波数とも呼ばれ、交流励磁装置4はその出力周波数をすべり周波数fsに制御して、発電電動機2の回転子巻線に電流を供給する。
交流励磁装置4が発電電動機2に供給する電流は、電流指令値Iq*に応じてその大きさ
と位相を制御されるが、その結果Iq*は発電電動機2の固定子巻線に発生する電力に比例
した値となる。
【0015】
発電電動機2の固定子巻線は、電力系統1に接続されて、電力系統1から電力を受電する。
交流励磁装置4の入力は電力系統1が接続されて電力変換される。電力変換には直流回路を介して周波数変換を行うインバータ回路とコンバータ回路で構成されるものや、直接周波数を変換するサイクロコンバータが適用され、すべり周波数の出力電流を高速に制御することで、発電電動機2の固定子電力が高速に制御される。
【0016】
発電電動機2に結合されているポンプ水車3は、ガイドベーンとランナベーンを調節することで、ポンプとして入力を制御して、ポンプ水車3の最適な動作点で運転される。
【0017】
電力系統1から受電する電力は、電圧検出器6と電流検出器5とから電力及び周波数検出器7で有効電力を検出することで検出される。
さらに、電力系統1の周波数は、電圧検出器6により電力及び周波数検出器7で検出されるが、例えばPLLで容易に検出することができる。
【0018】
落差検出器9では、図1には示していないがポンプ水車3が汲み上げる水をためている下部調整池と、汲み上げる先の上部調整池の水位に応じて落差Hを求める。
電力指令値設定器10は、電力系統1から受電する電力を設定し電力指令値P*として出力する。
最適値設定値11は、落差Hと電力指令値P*と、ポンプ水車3の特性とに応じて、最適な回転速度Nopt、最適なガイドベーン開度GVopt、最適なランナベーン開度RVoptを発生する。これらの最適値は、落差Hと電力指令値P*の関数や数値テーブルとしてメモリに格納することで容易に発生することが可能である。
【0019】
禁止帯通過制御器12は、回転速度Nと電力系統の周波数fとからすべり周波数frを求め、それが0Hz付近でないと判定すると、励磁速度制御許可信号ExANRonと回転速度制御ホールド信号を0、励磁電力制御許可信号ExAPRonを1にそれぞれ設定する。そして、回転速度指令値N*は最適回転速度Noptに設定して出力する。
励磁電力制御器13は、励磁電力制御許可信号ExAPRonが1のとき電力指令値P*と電力P
との偏差を増幅した信号を制御信号Iqp*として出力する。なお、励磁電力制御許可信号ExAPRonが0のときは、電流指令値Iq*をIqp*として出力する。
【0020】
励磁速度制御器14は、励磁速度制御許可信号ExANRonが0を受けると、電流指令値Iq*
を制御信号Iqn*として出力する。なお、励磁速度制御許可信号ExANRonが1の場合は、回転速度指令値N*と回転速度Nの偏差を増幅した信号を制御信号Iqn*として出力することで、
発電電動機2の発生する電力を高速に調整して回転速度を制御する。
切替器15では、制御信号cに応じて、二つの入力を切り替えるが、制御信号cに1が入力されると、励磁電力制御器13が出力する制御信号Iqp*をIq*として、制御信号cに0が
入力されると、励磁速度制御器14が出力する制御信号Iqn*をIq*として出力する。これ
により、励磁電力制御許可信号ExAPRonが1のときには励磁電力制御器13の出力に応じて交流励磁装置4の電流が制御され、発電電動機2の固定子に発生する電力が調節されて、その結果電力指令値P*と電力Pの値がほぼ一致し交流電力1からの受電電力が制御される

【0021】
回転速度制御器16は、回転速度指令値N*と回転速度Nの偏差を増幅した信号で、最適
ランナベーン開度RVoptを補正するように加算し、ランナベーン開度指令値RV*を出力するが、回転速度制御ホールド信号ANRholdが1のときにはランナベーン開度指令値RV*の値が
、回転速度制御ホールド信号ANRholdが1になる前の値に保持される。
回転速度制御ホールド信号ANRholdが0のときは、回転速度偏差に応じた信号がランナベーン開度制御器17に送られ、ランナベーン開度制御器がポンプ水車3のランナベーン開度RVOがその指令値RV*となるように制御する。これにより、ポンプ水車の入力が調整されて、回転速度が制御される。一方ガイドベーン開度制御器18は最適ガイドベーン開度GVoptを指令値GV*として、ポンプ水車3のガイドベーン開度GVOがその指令値GV*となるように制御して、最適な運転動作点を得る。
【0022】
禁止帯通過制御器12がすべり周波数frが0Hz付近であることを判定すると、励磁電力
制御許可信号ExAPRonを0に、励磁速度制御許可信号ExANRonと回転速度制御ホールド信号ANRholdを1に設定する。そして、回転速度指令値N*はすべり周波数が0付近とならない予め決めた固定値に設定する。これにより、ランナベーン開度が固定されて、回転速度Nは励磁速度制御器14により制御され、高速に回転速度指令値N*に制御されて、すべり周波数が0付近から離れるように制御される。
【0023】
励磁速度制御器14により、交流励磁装置4の出力電流を調整し、その結果発電電動機2の発生する電力が調整され、入力電力がポンプ水車3の出力よりも大きくなると加速し、小さくなると減速するように動作し回転速度が制御される。そして、すべり周波数が0Hz付近から離れたことを判定して、励磁電力制御許可信号ExAPRonを1に、励磁速度制御許可信号ExANRonと回転速度制御ホールド信号を0に設定する。
この動作により、すべり周波数が0付近から離れた動作点で、回転速度Nがランナベーン開度を調節することで制御され、同時に電力Pは励磁電力制御器13により制御されて電
力指令値P*にほぼ一致するように運転される。そして、最適回転速度Noptが固定したN*にほぼ一致したことを判定し、かつ電力Pが電力指令値P*にほぼ一致したことを判定して回
転速度指令値N*を最適回転速度Noptに戻す。
【0024】
このように動作し、すべり周波数が0Hz付近になると、ランナベーン開度の調整による
回転速度制御に比較して高速な制御が可能な励磁速度制御に切り替わって最小限の電力変動で0Hz付近から直ちに離れて、長時間運転することができない動作点から離脱すること
ができるとともに、離脱後は高速な励磁電力制御に切り替わって所望の電力に制御することができる。
さらに、最適回転速度Noptが0Hzとならない回転速度に変化すると最適回転速度での運
転に復帰することができて、可変速揚水発電システムを効率よく運転することができる。
なお、ガイドベーンだけでポンプ水車の入力を調節するシステムにおいては、回転速度を設定すると有効電力がほぼ決定されて電力指令値に追従することが困難であり、本発明による可変速揚水発電システムでは電力指令値への追従特性が有利となる効果を呈する。
【0025】
前述の実施の形態1は、総じて、固定子巻線が電力系統に接続され、前記電力系統を入力とし回転子巻線に電流を供給する交流励磁装置が接続された発電電動機と、発電電動機の回転軸に結合されてガイドベーン開度とランナベーン開度を調節可能なポンプ水車と、発電電動機の回転軸の回転速度を検出する回転速度検出手段と、前記電力系統の電力と周波数を検出する電力及び周波数検出手段と、前記電力系統の電力指令値を与える電力指令値設定手段と、落差を検出する落差検出手段と、前記電力指令値と前記落差に応じて最適回転速度、最適ガイドベーン開度、最適ランナベーン開度を設定する最適値設定手段と、前記電力指令値と前記電力系統の電力とに応じて前記交流励磁装置の電流指令値を生成する励磁電力制御手段と、回転速度指令値と前記回転速度から前記交流励磁装置の電流指令を生成する励磁速度制御手段と、前記回転速度指令値と前記回転速度及び前記最適ガイドベーン開度または前記最適ランナベーン開度とからガイドベーン開度指令値またはランナベーン開度指令値を生成する回転速度制御手段と、前記ガイドベーン開度指令値に応じてガイドベーンを制御するガイドベーン制御手段と、前記ランナベーン開度指令値に応じてランナベーンを制御するランナベーン制御手段とを備えた可変速揚水発電システムにおいて、前記回転速度指令値を最適回転速度とし、前期交流励磁装置の電流指令値は前記励磁電力制御が与えるよう運転し、前記電力系統の周波数と前記回転速度とからすべり周波数を演算し、前記すべり周波数が0付近であることを判定して、前記回転速度制御手段の出
力を固定とし、前記交流励磁装置の電流指令値を前記励磁速度制御手段の出力に切り替えるとともに、前記すべり周波数が0付近を離れるように前記回転速度指令値を固定値とし
、前記すべり周波数が0付近を離れたことを判定して、前記回転速度制御手段を動作させ
、前記電流指令値は前記励磁電力制御手段の出力に戻す可変速揚水発電制御システムであり、ポンプ水車の入出力をガイドベーンとランナベーンで調節される可変速揚水発電システムにおいて、交流励磁装置及び発電電動機が長時間運転することができないすべり周波数0付近に滞在することなく運転できるとともに、極力電力が電力指令値に追従すること
ができる。また、前記すべり周波数が0付近ではなく、前記電力が前記電力指令値に追従
し、かつ最適回転速度が前記回転速度指令の固定値に近いことを判定して、前記回転速度指令値を最適回転速度に戻すものであり、可変速揚水発電システムを極力効率よく運転することができる。
【0026】
実施の形態2.
図1のポンプ運転時の構成では、回転速度制御器8の出力はランナベーン開度指令RV*
であるが、図2に示すように発電運転時には回転速度制御器8の出力はガイドベーン開度指令GV*とする。また、その入力は回転速度指令N*と回転速度N及び最適ガイドベーン開度GVoptが接続されている。
【0027】
禁止帯通過制御がすべり周波数0Hz付近でないことを判定している場合、励磁電力制御
器13の動作は図1と同様であるが、電力系統1へ発電する電力が制御される。そして、回転速度は、回転速度制御器8により回転速度指令値N*と回転速度Nの偏差を増幅した信
号を、最適ガイドベーン開度GVoptに加算して、ガイドベーン開度指令値GV*出力され、ガイドベーン開度制御器17により所望のガイドベーン開度に制御されて、回転速度Nが制
御される。ランナーベーン開度制御器18には最適ランナベーン開度RVoptがランナベー
ン開度指令値RV*として入力され、ランナベーン開度を最適な位置に制御する。
【0028】
禁止帯通過制御がすべり周波数0Hz付近を判定すると、励磁電力制御器13から励磁速
度制御器14に切り替わり、交流励磁装置4の電流指令を調節して回転速度をすみやかに0Hz付近から離脱させる動作は図1と同様であるが、回転速度制御器8はガイドベーン開
度指令値GV*を固定する。そして、すべり周波数が0Hz付近から離れたことを判定して、励磁電力制御器13の動作を復帰させ、回転速度制御器16の出力も回転速度の偏差と最適ガイドベーン開度に応じて制御される。そして、最適回転速度Noptが回転速度指令N*にほぼ一致したことを判定し、かつ電力Pが電力指令値P*にほぼ一致したことを判定して回転
速度指令N*を最適回転速度Noptに復帰する動作も図1と同様である。
【0029】
このように動作して、発電運転時においてもすべり周波数が0Hz付近になると、ガイド
ベーン開度の調整による回転速度制御に比較して高速な制御が可能な励磁速度制御に切り替わって最小限の電力変動で0Hz付近から直ちに離れて、長時間運転することができない
動作点から離脱することができるとともに、離脱後は高速な励磁電力制御に切り替わって所望の電力に制御することができる。さらに、最適回転速度Noptが0Hzとならない速度に
変化すると最適回転速度での運転に復帰することができて、可変速揚水発電システムを効率よく運転することができる。
【0030】
実施の形態3.
図3は本発明の可変速揚水発電制御システムの禁止帯通過制御器(判定機能部)12の内部構成の一例を示すブロック図である。禁止帯通過制御12以外の構成は図1の構成図で示されている実施の形態1または図2の構成図で示されている実施の形態2と同様の構成である。
【0031】
回転速度Nにゲイン101aを乗算し、系統周波数fから加減算器102aで減算する。加減算器102aの出力は絶対値演算器104aと極性判別器105に入力され、絶対値演算器104aの出力は比較器106aに入力され、その出力はフリップフロップ111aと1
11bのセット側に入力される。フリップフロップ111aの出力と極性判別器105の出力が出力保持器107aに入力されて、その出力と極性判別器105の出力が乗算器10
3aで乗算されて、比較器106bに入力される。
【0032】
比較器106aの出力の論理反転と比較器106bの出力が論理積演算器108aに入力
され、その出力がオンディレイタイマ110aを介してフリップフロップ111bのリセット側に入力される。フリップフロップ111aの出力とフリップフロップ111bの出力の論理反転が論理積演算器108hに入力されて、その出力がフリップフロップ111cのセット側に入力される。フリップフロップ111aと111bの出力が論理積演算器108iに入力され、その出力が回転速度制御ホールド信号ANRholdとなると同時に、励磁速度制御許可信号ExANRonとして出力される。論理演算器108iの出力は、さらに論理反転器113を介して励磁電力制御許可信号ExAPRonとして出力される。
【0033】
極性判別器105の出力は乗算器103bで設定値Smin+ΔSと乗算されて、加減算器102dで系統周波数fと加算される。加減算器102dの出力は出力保持器に入力され、その出力がゲイン101bを介して切替器112の一方の入力となる。切替器112のもう一方の入力には最適回転速度Noptが入力され、フリップフロップ111aの出力が切替器112の切替信号となり、その出力が回転速度指令値N*として出力される。
【0034】
電力指令値P*と電力Pは加減算器102eで差を演算して、絶対値演算器104bを介し
て比較器106cに入力される。出力保持器107aの出力は比較器106dに入力される。系統周波数fと設定値Sminは加減算器102bで加算、加減算器102cで減算されてそれぞれの出力が、比較器106e、106g、と比較器106f、106hに入力される。これらの比較器106e、106f、106g、106hのもう一方の入力にはゲイン101cを介した最適回転速度Noptが入力される。
【0035】
比較器106dの出力と比較器106eの出力は論理積演算器108bに、比較器106dの出力の論理反転と比較器106fの出力が論理積演算器108cに入力され、さらにそれら論理積演算器の出力が論理和演算器109aに入力される。
比較器106dの出力の論理反転と比較器106gの出力が論理積演算器108dに、比
較器106dの出力と比較器106hの出力が論理積演算器108eに入力され、それら論
理積演算器の出力が論理和演算器109bに入力される。
【0036】
フリップフロップ111cの出力と比較器106aの出力の論理反転と比較器106cの
出力と論理和演算器109aの出力が論理積演算器に入力され、オンディレイタイマ11
0bを介して論理和演算器109cに入力される。論理和演算器109bの出力とフリップ
フロップ111aの出力が論理積演算器108fに入力され、オンディレイタイマ110c
を介して論理和演算器109cに入力され、その出力がフリップフロップ111aと111cのリセット側の入力となる。
【0037】
次に動作について説明する。
回転速度Nにゲイン101aを乗算して、回転周波数frを演算する、そして系統周波数fから加減算器102aで差を演算してすべり周波数fsを求める。すべり周波数は、回転速
度が同期速度以下では正、それ以上では負となる。
【0038】
絶対値演算器104aではすべり周波数の絶対値を演算して、予め設定した設定値Smin
と比較する。比較器106aではすべり周波数の絶対値が設定値Sminより小さい場合に1を、それ以外では0を出力し、すべり周波数が0付近にあることを判定する。そして、その判定結果をフリップフロップ111aのセット側に入力して、フリップフロップ111aの出力を0から1に変化させる。同時に、フリップフロップ111bのセット側に入力して出力を0から1に変化させ、論理積演算器108iの出力が0から1に変化する。
【0039】
論理積演算器108iの出力は、回転速度制御ホールド信号ANRholdと励磁速度制御許可信号ExANRon信号となり、さらに、論理反転器113では論理積演算器108iを論理反転して1から0に変化することで、励磁電力制御許可信号を1から0として励磁電力制御を停止する。フリップフロップ111aの出力は切替器112の制御信号cに入力されて、これが0の場合には最適回転速度Noptを出力するが、1に変化するとゲイン101bの出力に切り
替わる。
【0040】
極性判別器ではすべり周波数が正のときは1、負のときは-1を(0のときはどちらかを出力することで機能する)を出力し、乗算器103bで設定値Smin+ΔSを乗算して系統周波
数fに加算することで、すべり周波数が正のときは系統周波数よりもSmin+ΔSだけ高い値
が、すべり周波数が負のときは系統周波数よりもSmin+ΔSだけ低い値が加減算器102dで演算される。
【0041】
出力保持器107bはフリップフロップ111aの出力が0から1に変化したときの入力値を、フリップフロップ111aの値が0になるまで出力として保持する。そして、周波数から回転速度に変換するゲインをゲイン101bで乗算する。したがって、すべり周波数が0付近であることが判定されると、フリップフロップ111aの出力が0から1に変化して、
回転速度指令値N*が最適回転速度Noptから系統周波数fに相当する同期速度から±(Smin+ΔS)の回転速度指令値に切り替わり、フリップフロップ111aの出力が1から0に変化するまで回転速度指令値N*が保持される。Sminはすべり周波数が0付近であることを判定する判定値であり、それに対してマージンΔSだけ離れたすべり周波数で運転されることとなる。
【0042】
次にフリップフロップ111bのリセット動作について説明する。
極性判別器105の出力を出力保持器107aでフリップフロップ111aの出力が1の
期間保持する。その値はフリップフロップ111aが0から1に変化したときの極性判別器
105の出力値となる。これは、比較器106aですべり周波数が0Hz付近を判定した時点のすべり周波数の極性に相当する。
【0043】
そして、出力保持器107aの出力と極性判別器105の出力を乗算器103aで乗算して、比較器106bにより0以下のときは1を、それ以外は0を比較器106bが出力する。この動作により、すべり周波数の極性がすべり周波数0付近を判定した時点の極性に対し
て逆極性になったことが比較器106bで判定される。
【0044】
さらに、すべり0付近を判定している比較器106aの出力の論理反転と、比較器106bの出力の論理積を論理積演算器108aで演算することで、すべり周波数が0付近ではなく、かつ事前のすべり周波数と極性が判定してことで、0を超えたことが判定される。
【0045】
さらに、オンディレイタイマ110aでは、所定時間1が継続するとその出力が0から1に変化し、入力が0になると直ちに0になるように動作するので、すべり周波数が0を越えて0付近から離脱したことを所定期間確認することで、確実にすべり周波数が0を超えたこと
が判定できる。このオンディレイタイマ110aの出力で、フリップフロップ111bがリセットされ、論理積演算器108iはその出力を1から0に変化する。
この動作により、回転速度制御ホールド信号ANRholdと励磁速度制御許可信号ExANRonは1から0に、励磁電力制御許可信号ExAPRonは0から1に変化して、制御動作が切り替わる。
【0046】
フリップフロップ111bの出力が1から0に変化すると、フリップフロップ111aは1
のままであるので、論理積演算器108hはその出力を0から1に変化させる。これにより
、フリップフロップ111cがセットされて、その出力が0から1に変化する。
【0047】
フリップフロップ111cの出力は論理積演算器108gに入力されているが、この出力はオンディレイタイマ110bと論理和演算器109cを介してフリップフロップ111a
と111cをリセットするので、すべてのフリップフロップがリセットされて、禁止帯通
過制御12がリセットされ、回転速度指令値N*も最適回転速度Noptの通常制御に戻る。
【0048】
通常制御に戻る判定は、論理積演算器108gのそのほかの入力によるものであり、ま
ずすべり周波数が0付近でないことが比較器106aの出力の論理反転として入力される。そして、電力指令値P*と電力Pの差を加減算器102eで演算し、その絶対値を絶対値演算器104bで演算する。これは電力偏差の大きさであり、その大きさが設定値ΔPよりも小さい場合に比較器106cが0から1に変化し、論理積演算器108gに入力される。
【0049】
さらに、系統周波数fに設定値Sminを加減算器102bで加算、102cで減算すること
で、すべり周波数の0付近を判定する回転周波数を演算する。そして、最適回転速度Nopt
をゲイン101cを介して最適回転周波数に変換し、比較器106eでは最適回転周波数がすべり0付近を判定する回転周波数f+Sminよりも大きい場合を判定し、比較器106fでは最適回転周波数が0付近を判定する回転周波数f-Sminよりも小さい場合を判定する。
【0050】
そして、すべり周波数が0付近になったことを判定したときのすべり周波数の極性が正
であることを半定する比較器106dの出力と、比較器106eの出力を論理積演算器108bで論理積を演算し、事前のすべり周波数が正であること、すなわち事前の回転周波数がf-Sminであり、かつ現在の回転周波数がf+Sminよりも大きいことを判定する。
【0051】
また、比較器106fの出力と比較器106dの出力の論理反転を論理積演算器108c
で演算し、事前の回転周波数がf+Sminであり、現在の回転周波数がf-Sminであることを判定する。
【0052】
これら2つの論理積演算器108b、108cの出力を論理和演算器109aに入力して論理和を演算する。事前の回転周波数がf-Sminの場合、すべり周波数が正であり、回転速度指令値はf+Smin+ΔSに相当する値設定されている。
逆に、事前の回転周波数がf+Sminの場合にはすべり周波数が負であり、回転速度指令値はf-(Smin+ΔS)に相当する値に設定されている。
【0053】
したがって、論理和109aでは、最適回転速度が切替器112で固定された回転速度
指令値付近に近づいたか、同じすべり周波数極性で離れていることを判定するものである。すなわち、論理積演算器108gでは、すべり周波数が0付近ではなく、電力がその指令値に追従し、最適回転速度が固定した回転速度指令値に近づいたか同じすべり周波数極性で離れていることを判定している。そして、その条件が所定時間継続したことをオンディレイタイマ110bで確認する。
【0054】
フリップフロップ111aと111cをリセットする論理和演算器109cにはもう一つ
の信号が入力されている。
比較器106gでは最適回転周波数がf+Sminよりも大きいことを判定する。
また、比較器106hでは最適回転周波数がf-Sminよりも小さいことを判定する。
【0055】
そして、事前のすべり周波数が負、すなわち事前の回転周波数がf+Sminでかつ最適回転周波数がf+Sminよりも大きいときに論理積演算器108dが0から1に変化し、事前のすべ
り周波数が正、すなわち事前の回転周波数がf-Sminで最適回転周波数がf-Sminよりも小さいときに論理積演算器108eが0から1に変化する。
【0056】
そして、それら2つの論理積演算器108dと108eの出力を論理和演算器109bで
論理和を演算する。この論理和演算器109bの出力は最適回転周波数が事前のすべり周
波数と同じ方向に名なれていることを判定する。
そして、フリップフロップ111aの出力と論理積演算器108fで論理積を演算して、禁止帯通過制御中にもかかわらず、最適回転速度が禁止帯を超えずに逆に戻っていることを判定する。
そして、オンディレイタイマ110cによりその状態が所定期間継続したことをもって
、確認信号を出力し論理和演算器109cの入力とする。
【0057】
この動作により、すべり周波数が一度0付近となり、禁止帯通過制御が動作して回転速
度指令値N*を最適回転速度Noptと異なる固定値に設定しているにもかかわらず、最適回転速度Noptがその固定値から離れていることが判定されて、禁止帯通過制御を一度リセットすることができる。
これにより、電力指令値P*が急に変化することで生じる最適回転速度Noptの急変に対しても、追従することができる。なお、オンディレイタイマ110cが動作して、禁止帯通
過制御がリセットされた場合、再度すべり周波数0付近を通過することとなり、もう一度
フリップフロップ111aがセットされて所定の動作となるが、その場合最適回転速度Noptは固定した回転速度指令値から離れているため、比較器106eか106fが動作して、禁止帯通過制御が終了し、回転速度指令値N*が最適回転速度Noptに復帰することができる。
【0058】
以上のように動作して、すべり周波数が0Hz付近になると、ランナベーン開度またはガ
イドベーン開度の調整による回転速度制御に比較して高速な制御が可能な励磁速度制御に切り替わって最小限の電力変動で0Hz付近から直ちに離れて、長時間運転することができ
ない動作点から離脱することができるとともに、離脱後は高速な励磁電力制御に切り替わって所望の電力に制御することができる。
さらに、最適回転速度Noptが急変しても最適回転速度での運転に復帰することができて、可変速揚水発電システムを効率よく運転することができる。
【0059】
実施の形態3は、総じて、前記すべり周波数が0付近ではなく、かつ最適回転速度が前
記回転速度指令の固定値から離れていることを判定して、前記電流指令値を前記励磁電力制御手段の出力とし、前記回転速度指令値を前記最適回転速度に戻すものであり、最適回転速度が急に変化した場合でも可変速揚水発電システムを効率よく運転することができる。
【0060】
なお、本発明は、その発明の範囲内において、各実施の形態を適宜、変形、省略することができる。
なお、各図中、同一符号は同一または相当部分を示す。
【符号の説明】
【0061】
1 電力系統、 2 発電電動機、 3 ポンプ水車、 4 交流励磁装置、
5 電流検出器、 6 電圧検出器、 7 電力及び周波数検出器、
8 回転速度検出器、 9 落差検出器、 10 電力指令値設定器、
11 最適値設定器、 12 禁止帯通過制御器(判定機能部)、
13 励磁電力制御器、 14 励磁速度制御器、 15 切替器、
16 回転速度制御器、 17 ランナベーン開度制御器、
18 ガイドベーン開度制御器。

【特許請求の範囲】
【請求項1】
交流電力系統に接続されポンプ水車が結合された発電電動機の電力と電力指令値との偏差に応じてインバータが供給する励磁電流を制御して励磁電力制御を行い、前記発電電動機の回転速度と最適回転速度との偏差に応じてインバータが供給する励磁電流を制御して励磁速度制御を行う可変速揚水発電制御システムにおいて、すべり周波数が0付近であることを判定すると共に前記すべり周波数が0付近を離れたことを判定する判定機能部を備え、前記判定機能部がすべり周波数が0付近であることを判定すると前記励磁電力制御から前記励磁速度制御に切り替え、前記判定機能部が前記すべり周波数が0付近を離れたことを判定すると前記励磁速度制御から前記励磁電力制御に戻すことを特徴とする可変速揚水発電制御システム。
【請求項2】
請求項1に記載の可変速揚水発電制御システムにおいて、前記ポンプ水車のガイドベーンおよびランナベ−ンの双方の開度が可制御であることを特徴とする可変速揚水発電制御システム。
【請求項3】
請求項1または請求項2に記載の可変速揚水発電制御システムにおいて、電力指令値と前記電力系統の電力とに応じて交流励磁装置の電流指令値を生成し前記励磁電力制御を行う励磁電力制御手段、および回転速度指令値と前記回転速度から前記交流励磁装置の電流指令を生成し前記励磁速度制御を行う励磁速度制御手段を備え、前記判定機能部がすべり周波数が0付近であることを判定すると前記励磁電力制御から前記励磁速度制御に切り替えると共に前記すべり周波数が0付近を離れるように前記回転速度指令値を固定値とし、前記判定機能部が前記すべり周波数が0付近を離れたことを判定すると前記励磁速度制御から前記励磁電力制御に戻すことを特徴とする可変速揚水発電制御システム。
【請求項4】
請求項3に記載の可変速揚水発電制御システムにおいて、前記すべり周波数が0付近ではなく、かつ最適回転速度が前記回転速度指令の固定値から離れていることを判定し、前記すべり周波数が0付近ではなく、かつ最適回転速度が前記回転速度指令の固定値から離れている場合は前記励磁電力制御に戻し、前記回転速度指令値を前記最適回転速度に戻すことを特徴とする可変速揚水発電制御システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate