説明

回転電機制御装置

【課題】制御装置の演算負荷の増加を抑制しつつ、エイリアシングに起因して検出される周波数成分が、電流フィードバック制御に与える影響を抑制して、回転電機を制御する。
【解決手段】交流周波数成分を含む実電流をサンプリングして検出電流を取得するサンプリング周期STを設定するサンプリング周期設定部と、サンプリング周期STに応じて実電流をサンプリングして検出電流を取得する電流サンプリング部と、所定の周波数領域の周波数成分の入力に応答するように応答領域Rが設定され、検出電流と目標電流とに基づいて電流フィードバック制御を行う電流制御部とを備え、サンプリング周期設定部は、エイリアシングに起因して検出される検出電流の複数のエイリアシング周波数の少なくとも1つが、電流制御部の応答領域R外となるように、回転電機の回転速度に応じてサンプリング周期STを設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機に流れる実電流を検出し、回転電機の目標電流に実電流が近づくように電流フィードバック制御を行って回転電機を制御する回転電機制御装置に関する。
【背景技術】
【0002】
電動機及び発電機として機能する交流の回転電機は、しばしば、マイクロコンピュータなどを中核として構成された制御装置により、目標電流と回転電機に流れる実電流との偏差に応じて電流フィードバック制御される。マイクロコンピュータなどでは、実電流は、所定のサンプリング周期に応じたデジタルサンプリングによって取得されることが多い。デジタルサンプリングにおいては、サンプリング周期の逆数であるサンプリング周波数と、測定対象となる信号の周波数成分との間の標本化定理に注意する必要がある。つまり、正確なデジタルサンプリングのためには、測定対象となる信号の周波数成分の2倍以上のサンプリング周波数を用いる必要がある。測定対象となる信号の周波数成分がサンプリング周波数の1/2を超えると、エイリアシング(aliasing)と称される現象により、低周波の折り返し雑音が出現する場合がある(エリアシングとも称する。)。例えば、特開2011−83068号公報(特許文献1)に記載されているように、回転電機の回転速度が高くなると、実電流に含まれる交流の周波数成分も高くなり、このエイリアシングの問題が生じやすくなる(第6段落等)。
【0003】
ところで、電流フィードバック制御においては、多くの場合、1回のフィードバック演算に対応して実電流が検出される。このため、エイリアシングを抑制するためにサンプリング周期を短くすると、必要以上にフィードバック演算の頻度が高くなり、制御装置の演算負荷が増大することになる。そこで、特許文献1では、基準演算周期ごとに電流を検出する一方で、基準演算周期のN倍(Nは2以上の整数)の周期で、N回分の検出結果を用いて電流フィードバック演算を行うことで制御装置の演算負荷を軽減している(第7〜9段落等)。
【0004】
ところで、測定対象となる回転電機の実電流には、回転速度に応じた基本波の周波数成分の他、この基本波の高調波の周波数成分も含まれる。このような高調波は、基本波の周波数成分の5次、7次、11次、13次など、複数の周波数成分に亘って出現する。そして、これら高次の高調波は、サンプリング周波数の1/2よりも遙かに高い周波数成分を有することも多く、単純にサンプリング周波数を高くする(サンプリング周期を短くする)ことで対応するには限界がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−83068号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記背景に鑑みて、制御装置の演算負荷の増加を抑制しつつ、エイリアシングに起因して出現する周波数成分が、電流フィードバック制御に与える影響を抑制して、回転電機を制御する技術の提供が望まれる。
【課題を解決するための手段】
【0007】
上記課題に鑑みた本発明に係る回転電機制御装置の特徴構成は、
回転電機に流れる実電流を検出し、前記回転電機の目標電流に前記実電流が近づくように電流フィードバック制御を行って前記回転電機を制御する回転電機制御装置であって、
交流周波数成分を含む前記実電流をサンプリングして検出電流を取得するサンプリング周期を設定するサンプリング周期設定部と、
前記サンプリング周期に応じて前記実電流をサンプリングして検出電流を取得する電流サンプリング部と、
所定の周波数領域の周波数成分の入力に応答するように応答領域が設定され、前記検出電流と前記目標電流とに基づいて前記電流フィードバック制御を行う電流制御部と、を備え、
前記サンプリング周期設定部は、エイリアシングに起因して検出される前記検出電流の複数のエイリアシング周波数の少なくとも1つが、前記電流制御部の前記応答領域外となるように、前記回転電機の回転速度に応じて前記サンプリング周期を設定する点にある。
【0008】
エイリアシングに起因して検出電流に重畳される雑音信号の周波数であるエイリアシング周波数は、実電流に含まれる周波数成分と、サンプリング周期の逆数であるサンプリング周波数とによって決まる。つまり、エイリアシング周波数が、電流制御部における応答領域内の周波数となり、電流フィードバック制御に与える影響が大きいか否かは、回転電機の回転速度とサンプリング周波数とによって判定可能である。例えば、電流サンプリング部において取得された検出電流に、エイリアシング周波数が含まれていても、当該エイリアシング周波数が電流制御部の応答領域外であれば、電流フィードバック制御に与える影響は軽微である。
【0009】
交流周波数成分を含む実電流には、基本波成分及び複数の高調波成分の複数の周波数成分が含まれる。このため、検出電流にはエイリアシング周波数が複数出現することが多い。本特徴構成によれば、複数のエイリアシング周波数の少なくとも1つが、電流制御部の応答領域外となるように、回転速度に応じてサンプリング周期が設定される。つまり、サンプリング周期は、エイリアシングを生じないように、回転速度に応じて単純に短くされるものではない。サンプリング周期は、エイリアシングを生じても応答領域外のエイリアシング周波数となって、電流フォードバック制御に与える影響が抑制されるように設定される。つまり、サンプリング周期は、長くなる方向に変更されてもよい。このように、本特徴構成によれば、サンプリング周期が一方的に短くされることもなく、制御装置の演算負荷の増加を抑制しつつ、エイリアシングに起因して出現する周波数成分が、電流フィードバック制御に与える影響を抑制して、回転電機を制御することが可能である。
【0010】
上述したように、サンプリング周期を適切に設定することによって、電流制御部の応答領域内に入るエイリアシング周波数の数を減少させることができる。さらに、この応答領域を変更することによって、応答領域内に入るエイリアシング周波数を応答領域外のエイリアシング周波数とすることが可能である。このような応答領域は、カットオフ周波数によって規定されることが多い。従って、カットオフ周波数を変更することによって、応答領域を変更することが可能である。1つの態様として、本発明に係る回転電機制御装置は、前記電流制御部の前記応答領域を規定するカットオフ周波数を変更可能な応答領域設定部をさらに備えると好適である。
【0011】
サンプリング周期を適切に設定することによって、電流制御部の応答領域内に入るエイリアシング周波数が全て抑制可能な場合には、電流制御部の応答領域を変更することなく、通常通りの応答領域を維持する方が、応答性や追従性を確保することができる。従って、1つの態様として、本発明に係る回転電機制御装置の前記応答領域設定部は、前記サンプリング周期設定部が設定した前記サンプリング周期において前記エイリアシング周波数の内の少なくとも1つが前記応答領域に含まれる場合に、前記カットオフ周波数を低下させて前記応答領域を変更すると好適である。
【0012】
上述したように、実電流には、基本波成分及び複数の高調波成分の複数の周波数成分が含まれるから、検出電流にはエイリアシング周波数が複数出現する可能性がある。それぞれ振幅や周波数が異なるエイリアシング周波数は、それぞれ電流フィードバック制御に与える影響も異なる。但し、1つの観点として、電流制御部の応答領域内の周波数成分を有するエイリアシング周波数の数が少ない方が、電流フィードバック制御に対する影響も小さくなる。このような観点に基づく1つの態様として、本発明に係る回転電機制御装置は、前記サンプリング周期設定部が、前記検出電流の全てのエイリアシング周波数の内の最も多くが前記応答領域外となるように、前記サンプリング周期を設定すると好適である。
【図面の簡単な説明】
【0013】
【図1】マイクロコンピュータを中核とした回転電機制御装置の構成を模式的に示すブロック図
【図2】電流フィードバック制御を用いた回転電機制御の機能構成を模式的に示すブロック図
【図3】電流制御部の応答領域の概念を示す図
【図4】サンプリング周波数に応じたエイリアシングを示すグラフ
【図5】エイリアシング周波数と電流制御部のカットオフ周波数の関係を示すグラフ
【図6】回転速度に応じたサンプリング周波数(サンプリング周期)及び応答領域のカットオフ周波数の一例を示すマップ
【図7】サンプリング周期及び応答領域のカットオフ周波数を設定する手順の一例を示すフローチャート
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を、ハイブリッド自動車や電気自動車などの車両の駆動源及び当該車両の直流電源への回生源となる回転電機を制御する回転電機制御装置を例として、図面に基づいて説明する。説明を容易にするために、本実施形態では、1つの回転電機を制御する場合を例として説明するが、複数の回転電機を制御する回転電機制御装置にも本発明を適用することが可能である。尚、以下、回転電機を、適宜“モータ”と称して説明するが、これは電動機及び発電機として機能する回転電機を指す。
【0015】
図1のブロック図は、そのようなモータ20の制御装置(回転電機制御装置)を含む車両のシステム構成の一例を模式的に示している。図1に示すように、本実施形態では、回転電機制御装置は、交流の回転電機(3相同期モータ)であるモータ20に流れる実電流を検出し、モータ20の目標電流に実電流が近づくように電流フィードバック制御を行ってモータ20を駆動制御する。図1に示すように、モータ20は、インバータ40を介して、直流電源30と電気的に接続されている。この直流電源30は、バッテリであっても良いし、バッテリ及びバッテリの出力電圧を昇圧するコンバータを含むものであってもよい。インバータ40は、直流電源30から出力される直流電力を3相交流電力(多相交流電力)に変換する。変換された3相交流電力によって、電動機として機能するモータ20が駆動される。また、インバータ40は、モータ20が発電機として機能する場合には、発電された3相交流電力を直流電力に変換して直流電源30に回生する。
【0016】
インバータ40は、よく知られているようにスイッチング素子を用いた複数相(ここでは3相)のブリッジ回路により構成される。スイッチング素子には、IGBT(insulated gate bipolar transistor)やMOSFET(metal oxide semiconductor field effect transistor)を適用すると好適である。各スイッチング素子の制御端子は、後述するドライバ回路55を介して、本発明の回転電機制御装置に相当するECU(electronic control unit)50に接続されており、それぞれ個別にスイッチング制御される。
【0017】
ECU50は、マイクロコンピュータやDSP(digital signal processor)などの論理回路を中核として構成される。本実施形態では、ECU50は、マイクロコンピュータ51と、インターフェース回路52と、その他の周辺回路等とを有して構成される。マイクロコンピュータ51は、回転電機制御プログラムを実行するコンピュータであり、本発明の回転電機制御装置の中核をなす。インターフェース回路52は、EMI(electro-magnetic interference)対策部品やバッファ回路などにより構成される。ドライバ回路55は、インバータ40のスイッチング素子を駆動する駆動信号(スイッチング制御信号)の電圧を変換する回路である。高電圧をスイッチングするIGBTやMOSFETの制御端子(ゲート端子など)に入力される駆動信号は、マイクロコンピュータなどの一般的な電子回路の電源電圧よりも高い電圧を必要とする。このため、駆動信号は、ドライバ回路55を介して電圧変換(例えば昇圧)された後、インバータ40に入力される。
【0018】
本実施形態のマイクロコンピュータ51は、図1に示すように、例えば、CPUコア11と、プログラムメモリ12と、パラメータメモリ13と、ワークメモリ14と、通信制御部15と、A/Dコンバータ16と、タイマ17と、ポート18とを有して構成される。CPUコア11は、マイクロコンピュータ51の中核であり、命令レジスタや命令デコーダ、種々の演算の実行主体となるALU(arithmetic logic unit)、フラグレジスタ、汎用レジスタ、割り込みコントローラなどを有して構成される。つまり、CPUコア11を主として、ワークメモリ14やタイマ17なども含むハードウェアと、プログラムメモリ12やパラメータメモリ13に格納されたプログラムやパラメータなどのソフトウェアとの協働により、回転電機制御装置が構成される。
【0019】
プログラムメモリ12は、モータ制御プログラム(回転電機制御プログラム)が格納された不揮発性のメモリである。パラメータメモリ13は、プログラムの実行の際に参照される種々のパラメータが格納された不揮発性のメモリである。尚、パラメータメモリ13は、プログラムメモリ12と区別することなく構築されてもよい。また、プログラムメモリ12やパラメータメモリ13は、例えばフラッシュメモリなどによって構成されると好適である。ワークメモリ14は、プログラム実行中の一時データを一時記憶するメモリである。ワークメモリ14は、揮発性で問題なく、高速にデータの読み書きが可能なDRAM(dynamic RAM)やSRAM(static RAM)により構成される。
【0020】
通信制御部15は、車両内の他のシステムとの通信を制御する。例えば、車両内のCAN(controller area network)などのネットワークを介して、走行制御システム60や、その他のシステム、センサ等との通信を制御する。本実施形態では、マイクロコンピュータ51は、通信制御部15を介して、走行制御システム60から、モータ制御指令(例えば、モータ20に対する要求トルク)を受け取り、これに基づいて、モータ20を制御する。
【0021】
A/Dコンバータ16は、アナログの電気信号をデジタルデータに変換する。本実施形態では、モータ20の各ステータコイルに流れるモータ電流の検出結果を電流センサ91から受け取り、デジタルデータに変換する。本実施形態では、ホール効果を利用してバスバーなどの電流配線に近接して非接触で電流を検出する電流センサ91により3相各相の実電流が検出される例を示している。本実施形態では、3相全ての電流を検出する例を示しているが、3相は平衡しているので、2相のみを検出して残りの1相はマイクロコンピュータ51において演算により求めてもよい。
【0022】
本実施形態において、回転電機制御装置(マイクロコンピュータ51)は、モータ20のロータに配接された永久磁石による磁極の方向に設定されたd軸と当該d軸に直交するq軸とで規定される直交ベクトル空間におけるベクトル制御によってモータ20を駆動制御する。図2に示すように、回転電機制御装置は、ベクトル制御演算の中心となる主制御部10aと、主制御部10aによる演算を管理する管理部10bとを備えて構成される。
【0023】
主制御部10aは、トルク制御部1(電流指令決定部)と、電流指令マップ1aと、電流制御部3(電圧指令決定部)と、フィードバック電流座標変換部4と、電圧制御部5(駆動指令演算部)と、位置検出部93と、速度検出部94と、電流サンプリング部95とを備えている。電圧制御部(駆動指令演算部)5により生成された駆動指令に基づいて、インバータ40が駆動制御される。管理部10bは、制御周期設定部6(サンプリング周期設定部)と、応答領域設定部7と、制御条件マップ6aとを備えて構成される。本実施形態においては、主制御部10aによる演算の周期(制御周期)と、実電流のサンプリング周期とが一致しており、この周期は、制御周期設定部6により変更可能である。また、電流フィードバック制御の際の周波数の応答領域は、応答領域設定部7により変更可能である。管理部10bは、これら制御条件を管理し、設定する機能部である。
【0024】
モータ20を制御する各機能部は、マイクロコンピュータやDSPなどのハードウェアと、当該ハードウェア上で実行されるプログラムなどのソフトウェアとの協働によって実現される。従って、各機能部は、一部又は全てにおいて、同一のハードウェアや、同一のプログラムモジュールが兼用されるものであってよい。以下、各機能部について説明する。
【0025】
トルク制御部(電流指令決定部)1は、目標トルクTに応じてモータ20のステータコイルに流す電流の指令(目標電流)であって、それぞれd軸及びq軸に対応した電流指令id,iqを、電流指令マップ1aに基づいて決定する機能部である。電流指令マップ1aは、例えば、d軸電流とq軸電流とトルクとの関係を表すトルクマップに基づいて予め生成されたマップである。
【0026】
電流制御部(電圧指令決定部)3は、ステータコイルに印加する電圧の指令である電圧指令vd,vqを決定する機能部である。そして、電圧制御部(駆動指令演算部)5は、電圧指令vd及びvqに基づいてインバータ40を構成するIGBTなどのスイッチング素子を駆動する駆動信号を生成する機能部である。
【0027】
電流制御部3は、所定の周波数領域の周波数成分に応答するように応答領域が設定され、検出電流iu,iv,iwと目標電流(電流指令id,iq)とに基づいて電流フィードバック制御を行う。具体的には、電流制御部3は、フィードバック電流id,iqと電流指令id,iqとの偏差に基づいて、比例積分制御(PI制御)や比例積分微分制御(PID制御)を用いた電流制御を行って電圧指令vd,vqを決定する。フィードバック電流id,iqは、ステータコイルを流れる実電流を電流サンプリング部95で検出した検出電流iu,iv,iwが、さらにフィードバック電流座標変換部4を介してフィードバックされたものである。本実施形態では、図3に示すようにPI制御が実施される。図3において、L,Lは、それぞれd軸インダクタンス、q軸インダクタンスを示し、Rは、ステータコイルの抵抗を示し、sは微分演算子を示す。また、ωは、電流制御部3のPI制御器の応答領域を規定するカットオフ周波数(カットオフ角周波数)を示す。ここでは、PI制御器は、カットオフ周波数ω以下の周波数帯域の入力に対して応答するようなローパスフィルタ特性を有して設定されている。
【0028】
フィードバック電流座標変換部4は、検出電流iu,iv,iwを、モータ20のロータの回転角度θに基づいてd−qベクトル空間の2相のフィードバック電流id,iqに座標変換する機能部である。検出電流iu,iv,iwは、交流周波数成分を含む3相の実電流が電流サンプリング部95によってサンプリング周期に応じてサンプリングされたものである。電流サンプリング部95は、例えば、A/Dコンバータ16や、CPUコアの汎用レジスタなどにより実現される機能部である。1つの態様として、所定のサンプリング周期ごとに、A/Dコンバータ16によりデジタル変換された値が、CPUコア11の汎用レジスタなどにラッチされ、検出電流iu,iv,iwが取得される。ロータの回転角度θは、レゾルバなどの回転センサ92の計測結果を利用して位置検出部93において検出される。同様に、ロータの回転速度ωは、回転センサ92の計測結果を利用して速度検出部94において検出される。当然ながら、回転センサ92が直接、回転角度θや回転速度ωを出力するように構成されていてもよい。
【0029】
ところで、このように所定のサンプリング周期に応じたデータの離散的な取得、つまり、デジタルサンプリングにおいては、サンプリング周波数(サンプリング周期の逆数)と測定対象に含まれる周波数成分との間における標本化定理の影響を考える必要がある。測定対象となる信号の周波数成分がサンプリング周波数の1/2を超えると、エイリアシング(aliasing)と称される現象により、サンプリング周波数の1/2以下の低周波の折り返し雑音が出現する。このため、正確なサンプリングのためには、測定対象に含まれる周波数成分の2倍のサンプリング周波数を用いる必要がある。
【0030】
図4は、サンプリング周波数とエイリアシングとの関係を模式的に示している。縦軸は実際に検出される信号の周波数(サンプリング結果)を示しており、横軸は検出対象の信号の実際の周波数を示している。グラフ中の点線は、第1サンプリング周波数fs1でのサンプリング結果、つまり、サンプリング周期STが第1サンプリング周期ST1でのサンプリング結果を示している。実線は、第2サンプリング周波数fs2でのサンプリング結果、つまり、サンプリング周期STが第2サンプリング周期ST2でのサンプリング結果を示している。
【0031】
上述したように、デジタルサンプリングでは、サンプリング周波数の1/2までの分解能しか有しない。図4に示すように、サンプリング周波数の1/2までは、実際の周波数に対するサンプリング結果の周波数は、傾き“1”でリニアに変化する。つまり、実際の周波数に対してサンプリング結果の周波数が一致する。しかし、サンプリング周波数の1/2以降は、傾き“−1”でサンプリング結果の周波数が低下し、サンプリング周波数以降は、再度、傾き“1”でサンプリング結果の周波数が上昇する。このように、サンプリング結果の周波数は、横軸上でサンプリング周波数の1/2ごとに、傾き“1”と“−1”とを繰り返して変化する。横軸上でサンプリング周波数の1/2を超えた後は、実際の周波数とは異なる周波数(エイリアシング周波数)の折り返し雑音を生じることになる。
【0032】
例えば、図4に示す周波数f1は、第1サンプリング周波数fs1(第1サンプリング周期ST1)でサンプリングした場合には、周波数fa2と検出され、第2サンプリング周波数fs2(第2サンプリング周期ST2)でサンプリングした場合には、周波数fa3と検出される。周波数f1は、第1サンプリング周波数fs1及び第2サンプリング周波数fs2よりも高い周波数であるが、検出される周波数fa2及びfa3は、第1サンプリング周波数fs1及び第2サンプリング周波数fs2の半分よりも遙かに低周波数である。つまり、周波数f1は、エイリアシングに起因して実際よりも遙かに低周波の雑音信号となって検出されてしまうことになる。
【0033】
上述したように、実電流は、所定のサンプリング周期STごとに、電流サンプリング部95においてサンプリングされる。実電流には、モータ20の回転速度ωに応じた基本周波数に、基本周波数の高調波が重畳されている。この高調波には、5次、7次、11次、13次などの高次高調波も含まれ、これらの高次高調波の周波数は、多くの場合、サンプリング周波数よりも高い周波数となる。このため、電流サンプリング部95において検出される検出電流iu,iv,iwには、エイリアシングに起因して実際よりも遙かに低周波の周波数(エイリアシング周波数)の雑音信号が混入することになる。
【0034】
この低周波のエイリアシング周波数の雑音信号は、フィードバック電流座標変換部4を経由して電流制御部3にも混入する。上述したように、電流制御部3は、所定の応答領域に応答するPI制御器を有して構成されている。この応答領域は、カットオフ周波数ωによって規定されている。例えば、図4に二点鎖線で示す周波数fc1がこのカットオフ周波数ωに相当し、符号Rで示す周波数範囲が応答領域Rに相当する。エイリアシングにより出現する雑音信号の周波数成分が周波数fc1(カットオフ周波数ω)より高ければ、電流制御部3における応答性が低いため、この雑音信号が電流フィードバック制御に与える影響は小さくなる。一方、エイリアシングにより出現する雑音信号の周波数成分が周波数fc1(カットオフ周波数ω)よりも低ければ、電流制御部3において、この雑音信号が良好に応答するために、雑音信号が電流フィードバック制御に大きな影響を与えることになる。
【0035】
ところで、図4を参照すると、実際の周波数f1,f2,f3,f4に対する、第1サンプリング周波数fs1(第1サンプリング周期ST1)及び第2サンプリング周波数fs2(第2サンプリング周期ST2)によるサンプリング結果は、次のようになる。
第1サンプリング周波数fs1(第1サンプリング周期ST1)
周波数fc1以上:f2(fa5),f4(fa5)
周波数fc1未満:f1(fa2),f3(fa1)
第2サンプリング周波数fs2(第2サンプリング周期ST2)
周波数fc1以上:f1(fa3),f3(fa4),f4(fa6)
周波数fc1未満:f2(fa2)
【0036】
例えば、モータ20が回転速度ωの場合に、実電流に重畳される高調波の周波数成分が、周波数f1,f2,f3,f4であったとする。実電流を第1サンプリング周波数fs1でサンプリングして検出電流iu,iv,iwを取得すると、2つの周波数f1及びf3に対するエイリアシング周波数(周波数fa2及びfa1)の雑音信号が、電流フィードバック制御に影響を与えることになる。一方、第2サンプリング周波数fs2で実電流をサンプリングして、検出電流iu,iv,iwを取得すると、1つの周波数f2に対するエイリアシング周波数(周波数fa2)の雑音信号のみが電流フィードバック制御に影響を与えることになる。
【0037】
従って、この場合には、電流サンプリング部95は、第2サンプリング周波数fs2(第2サンプリング周期ST2)で実電流をサンプリングして検出電流iu,iv,iwを取得することが好ましい。交流周波数成分を含む実電流をサンプリングして検出電流を取得するサンプリング周期を設定するサンプリング周期設定部は、より適切な周期にサンプリング周期を設定する。本実施形態においては、1回の制御周期において1回、実電流がサンプリングされるので、サンプリング周期ST(サンプリング周波数の逆数)と、制御周期とが一致する。従って、管理部10bの制御周期設定部6が、サンプリング周期設定部に相当し、制御周期設定部6は、サンプリング周期STが第2サンプリング周期ST2となるように、制御周期を設定する。つまり、制御周期設定部6(サンプリング周期設定部)は、エイリアシングに起因して検出される検出電流iu,iv,iwの複数のエイリアシング周波数の少なくとも1つが、電流制御部3の応答領域R外となるように、モータ20の回転速度ωに応じてサンプリング周期STを設定する。より好ましくは、制御周期設定部6(サンプリング周期設定部)は、検出電流の全てのエイリアシング周波数の内の最も多くが応答領域R外となるように、サンプリング周期STを設定するとよい。
【0038】
図5は、制御周期設定部6により、サンプリング周期STが第2サンプリング周期ST2となるように設定された場合を例示している。上述したように、サンプリング周期STを適切に設定することによって、検出電流iu,iv,iwに含まれるエイリアシング周波数が電流フィードバック制御に与える影響を抑制することが可能である。しかし、以下に説明するように、電流制御部3の応答領域Rを変更することによって、検出電流iu,iv,iwに含まれるエイリアシング周波数が電流フィードバック制御に与える影響をさらに抑制することも可能である。
【0039】
例えば、本実施形態では、上述したように、第2サンプリング周波数fs2(第2サンプリング周期ST2)で実電流をサンプリングした場合でも、電流制御部3のカットオフ周波数ωに対応する周波数fc1を下回るエイリアシング周波数(周波数fa2)の雑音信号が検出電流iu,iv,iwに混入する。ここで、図5に示すように、カットオフ周波数ωをΔωだけ低下させると、カットオフ周波数ωに対応する周波数が、周波数fc1から周波数fc2(周波数fa1)となる。この周波数fc2は、雑音信号の周波数fa2よりも低い周波数である。従って、エイリアシング周波数は、全てカットオフ周波数ω(=周波数fc2)よりも高い周波数となる。つまり、実電流に重畳される高調波の周波数f1,f2,f3,f4に対する全てのエイリアシング周波数の雑音信号の影響を抑制することが可能となる。
【0040】
管理部10bの応答領域設定部7は、電流制御部3の応答領域Rを規定するカットオフ周波数ωを変更可能な機能部である。応答領域設定部7は、1つの態様として、上述したように、制御周期設定部6(サンプリング周期設定部)が設定したサンプリング周期STにおいてエイリアシング周波数の内の少なくとも1つが応答領域Rに含まれる場合に、カットオフ周波数ωを低下させて応答領域Rを変更する。
【0041】
1つの態様として、管理部10bの制御周期設定部6(サンプリング周期設定部)及び応答領域設定部7は、回転速度ωを引数として制御条件マップ6aを参照して、サンプリング周期ST(制御周期)及びカットオフ周波数ωを設定する。図6は、制御条件マップ6aの一例を示している。図6において実線はサンプリング周波数のマップを示し、破線はカットオフ周波数のマップを示している。図6では、サンプリング周波数として第1サンプリング周波数fs1から第4サンプリング周波数fs4までの4種類の周波数(fs1,fs2,fs3,fs4)が選択可能な例を示している。例えば、第1サンプリング周波数fs1を5[kHz]、第2サンプリング周波数fs2を4.5[kHz]、第3サンプリング周波数fs3を4[kHz]、第4サンプリング周波数を3.5[kHz]と、異なる周波数を用いることができる。エイリアシング周波数は、サンプリング対象の信号と、サンプリング周波数との関係で定まる。従って、同じ周波数成分に対して同じようなエイリアシング周波数が生じないように、サンプリング周波数は、互いに共通する公約数が少なくなるような(最小公倍数が大きくなるような)値の周波数として設定されると好適である。
【0042】
また、図6では、カットオフ周波数ωとして、第1カットオフ周波数fc1と、第2カットオフ周波数fc2とが選択可能な例を示している。例えば、第1カットオフ周波数fc1に基づく角速度(2π・fc1)を1500[rad/s]、第2カットオフ周波数fc2に基づく角速度(2π・fc2)を750[rad/s]と設定することができる。
【0043】
図6において白抜きのマークは、対応する回転速度を含まないことを表し、塗りつぶされたマークは、対応する回転速度を含むことを表している。図6は、回転速度ωがv0以上v1未満の範囲及びv5においては第1サンプリング周波数fs1を用い、v1以上v2未満の範囲及びv4以上v5未満の範囲においては第2サンプリング周波数fs2を用い、v2以上v3未満の範囲においては第3サンプリング周波数fs3を用い、v3以上v4未満の範囲においては第4サンプリング周波数fs4を用いることを示している。また、図6は、回転速度ωがv0より大きくv2以下の場合、及びv4より大きくv5未満の場合には、第1カットオフ周波数fc1(角速度2π・fc1)を用い、v0の場合及びv5の場合、及びv2より大きくv4以下の場合には、第2カットオフ周波数fc2(角速度2π・fc1)を用いることを示している。
【0044】
図7のフローチャートは、主として管理部10bの機能として実行されるプログラム(管理プログラム)の流れを示している。主として、主制御部10aの機能として実行されるプログラム(メインプログラム)は、図7のフローチャートと並行して、あるいは図7のフローチャートの中で適宜実行されるが、ここでは簡略化のため、メインプログラムについては図示並びに詳細な説明は省略する。
【0045】
はじめに、現在の実電流のサンプリング周期STに対応するメインプログラムの現在の制御周期が取得される(#1)。次に、速度検出部94により検出されたモータ20の回転速度ωが取得される(#2)。続いて、回転速度ωに基づいて、例えば制御周期設定部6により、実電流の波形を構成する基本波の周波数(基本周波数)と、この基本波の高調波の周波数とが演算される(#3)。もちろん、ステップ#3の機能を実現させるために、別途、高調波周波数演算部などが設けられていてもよい。本実施形態では、奇数次の高調波が生じるが、モータ20が3相同期モータであるので、3の倍数となる次数の高調波は抑制され、例えば、5次、7次、11次、13次などの高調波成分が実電流に重畳される。
【0046】
求められた高調波成分の周波数と、サンプリング周波数(サンプリング周期STの逆数)とに基づいて、例えば制御周期設定部6により、設定可能な範囲内における最適なサンプリング周期STが導出される(#4)。つまり、エイリアシングに起因して、検出電流に出現する複数のエイリアシング周波数の少なくとも1つ、好適には、全てのエイリアシング周波数の内の最も多くが電流制御部3の応答領域外となるように、最適なサンプリング周期STが求められる。サンプリング周期STが連続的に任意の値に設定可能であれば、可変範囲内における最適な値が導出される。図6を参照して上述したように、複数のサンプリング周期ST(サンプリング周波数)の内から最適なものを選択する形態であってもよい。
【0047】
最適なサンプリング周期STが導出されると、現在のサンプリング周期STと、最適なサンプリング周期STとが一致しているか否かが判定される(#5)。現在のサンプリング周期STが、最適なサンプリング周期STと異なる場合には、現在のサンプリング周期STを最適なサンプリング周期STに変更する(#6)。現在のサンプリング周期STが、最適なサンプリング周期STと一致している場合には、サンプリング周期STの変更を行わず、次のステップに移行する。
【0048】
次に、応答領域設定部7において、電流制御部3の応答領域を規定するカットオフ周波数ω以下のエイリアシング周波数が存在するか否かが判定される(#7)。カットオフ周波数ω以下のエイリアシング周波数が存在しない場合には、応答領域設定部7は、初期設定値のカットオフ周波数ωの値をカットオフ周波数ωとして確定(設定)する(#10)。一方、カットオフ周波数ω以下のエイリアシング周波数が1つ以上存在する場合には、設定可能な範囲内において、当該エイリアシング周波数が応答領域外となるようにカットオフ周波数ωを低下させる低下幅Δωを導出する(#8)。
【0049】
この低下幅Δωは、カットオフ周波数ωが連続的に任意の値に設定可能であれば、設定可能な範囲内における最適な値が導出される。また、図6を参照して上述したように、複数のカットオフ周波数ωの内から最適なものを選択する形態であれば、選択されたそのカットオフ周波数ωまでの低下幅Δωが導出されると好適である。尚、設定可能な範囲内においてカットオフ周波数ωを低下させても、エイリアシング周波数が応答領域外とならない場合には、電流制御部3の応答性を確保するために許容される最大の低下幅Δωが設定されると好適である。低下幅Δωが求まると、応答領域設定部7は、カットオフ周波数ωを低下幅Δω低下させて応答領域を変更する(#9)。
【0050】
以上、説明したように、本発明によれば、エイリアシングの影響を抑制するために、制御周期を大きく変更することがないため、回転電機制御装置の演算負荷の増加が抑制される。また、エイリアシング周波数が電流制御の応答領域外となるように、制御周期(サンプリング周期)が設定されるので、エイリアシング周波数が電流フィードバック制御に与える影響も抑制される。
【0051】
〔その他の実施形態〕
以下、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
【0052】
(1)上記実施形態においては、好適な態様として、サンプリング周期ST及びカットオフ周波数ωの双方を変更する例を示した。しかし、カットオフ周波数ωを変更することなく、サンプリング周期STのみを適切に設定する構成であってもよい。例えば、管理部10bは、応答領域設定部7を備えず、制御周期設定部6(サンプリング周期設定部)と制御条件マップ6aとで構成されていてもよい。
【0053】
(2)サンプリング周期ST及びカットオフ周波数ωは、必ずしも、図7のフローチャートに示した手順のように設定される必要はない。例えば、図6に一例を示した制御条件マップ6aに従い、回転速度ωに応じて一義的にサンプリング周期ST及びカットオフ周波数ωが決定される形態であってもよい。
【0054】
(3)上述した実施形態では、電流制御部3のPI制御部がローパスフィルタ特性を有している場合を例示した。このため、フィルタ特性を変更するために、カットオフ周波数を低下させる例を示したが、フィルタ特性の変更はカットオフ周波数を低下させることに限定されるものではない。例えば、フィルタ特性がバンドパス特性を有している場合には、上限周波数及び下限周波数の何れか一方を変更させてもよい。この場合において、上限周波数を低下させてもよいし、下限周波数を上昇させてもよい。また、上限周波数と下限周波数とを共に低下させてもよいし、共に上昇させてもよい。つまり、サンプリング周波数を変更しても残存するエイリアシング周波数の応答性が低くなるように応答領域の特性を変更すればよい。
【0055】
(4)上記実施形態においては、主制御部10aによる演算の周期である制御周期と、実電流のサンプリング周期とが一致している場合を例として説明した。しかし、制御周期とサンプリング周期とは、異なる期間に設定されるものであってもよい。図2に基づいて上述した例においては、制御周期設定部6がサンプリング周期設定部である場合を例示したが、制御周期とサンプリング周期とが異なる期間に設定される場合や、制御周期は一定であり、サンプリング周期だけが可変である場合には、独立したサンプリング周期設定部が設けられていてもよい。
【産業上の利用可能性】
【0056】
本発明は、制御装置の演算負荷の増加を抑制しつつ、エイリアシングに起因して検出される周波数成分が、電流フィードバック制御に与える影響を抑制して、回転電機を制御する回転電機制御装置に適用することができる。
【符号の説明】
【0057】
ω :回転速度
ω :カットオフ周波数
3 :電流制御部
6 :制御周期設定部(サンプリング周期設定部)
7 :応答領域設定部
20 :モータ(回転電機)
30 :直流電源
ST :サンプリング周期
iu,iv,iw:検出電流

【特許請求の範囲】
【請求項1】
回転電機に流れる実電流を検出し、前記回転電機の目標電流に前記実電流が近づくように電流フィードバック制御を行って前記回転電機を制御する回転電機制御装置であって、
交流周波数成分を含む前記実電流をサンプリングして検出電流を取得するサンプリング周期を設定するサンプリング周期設定部と、
前記サンプリング周期に応じて前記実電流をサンプリングして検出電流を取得する電流サンプリング部と、
所定の周波数領域の周波数成分の入力に応答するように応答領域が設定され、前記検出電流と前記目標電流とに基づいて前記電流フィードバック制御を行う電流制御部と、を備え、
前記サンプリング周期設定部は、エイリアシングに起因して検出される前記検出電流の複数のエイリアシング周波数の少なくとも1つが、前記電流制御部の前記応答領域外となるように、前記回転電機の回転速度に応じて前記サンプリング周期を設定する回転電機制御装置。
【請求項2】
前記電流制御部の前記応答領域を規定するカットオフ周波数を変更可能な応答領域設定部をさらに備える請求項1に記載の回転電機制御装置。
【請求項3】
前記応答領域設定部は、前記サンプリング周期設定部が設定した前記サンプリング周期において前記エイリアシング周波数の内の少なくとも1つが前記応答領域に含まれる場合に、前記カットオフ周波数を低下させて前記応答領域を変更する請求項2に記載の回転電機制御装置。
【請求項4】
前記サンプリング周期設定部は、前記検出電流の全てのエイリアシング周波数の内の最も多くが前記応答領域外となるように、前記サンプリング周期を設定する請求項1から3の何れか一項に記載の回転電機制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−62985(P2013−62985A)
【公開日】平成25年4月4日(2013.4.4)
【国際特許分類】
【出願番号】特願2011−201002(P2011−201002)
【出願日】平成23年9月14日(2011.9.14)
【出願人】(000100768)アイシン・エィ・ダブリュ株式会社 (3,717)
【Fターム(参考)】