説明

固液混合処理液のろ過液回収時における散気装置の洗浄方法

【課題】排水の処理を停止させることなく任意の時期に散気管の洗浄を行うことができる固液混合処理液のろ過液回収時における散気装置の洗浄方法を提供する。
【解決手段】前記散気装置(15)は、少なくとも1本のばっ気ブロア(B) に接続されたエア主管(18)と、そのエア主管(18)の途中に合流する液体供給配管と、前記エア主管(18)から分岐する気体供給管(16)を介して水平に接続された分岐管路(25)と、同分岐管路(25)に直交して水平に配され略鉛直下向きに開口する複数の散気孔を有する複数の散気管(17)とを備えている。前記気体分配管内の気体流速を5m/sec以下、前記液体の供給量を0.03L/min/mm2 以上に設定して、気液混合流体による散気管(17)の散気孔に付着てして閉塞させている固形汚泥を効率的に除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、通常の排水処理や浄水処理、膜分離活性汚泥処理などに適用されるばっ気槽内の処理液に浸漬配置される膜ろ過ユニットの散気装置を洗浄する洗浄方法に関する。
【背景技術】
【0002】
本発明装置が適用される代表的な例である膜分離活性汚泥処理方法は、例えば工業用排水や生活用排水中に含まれる有機物、或いは微生物や細菌類を含む排水を生物学的に処理して、各種の分離膜を用いて固液分離を行い処理水を処理水槽に回収し、或いは放流している。通常の膜分離活性汚泥処理装置は、原水調整槽と脱窒槽とばっ気槽とを備えており、原水調整槽では、槽内の液面を液面計により測定し、送液ポンプを間欠駆動して槽内の液面高さを所定の範囲内となるように調整している。送液ポンプによって送られる原水は脱窒槽に導入されたのち、脱窒槽から溢流する原水を隣接するばっ気槽に流入させる。このばっ気槽には膜ろ過ユニットが浸漬して配されている。この膜ろ過ユニットにて活性汚泥の汚染物質と処理水とに膜分離して、ろ過された処理水を吸引ポンプにより吸引して処理水槽に回収し或いは放流する。ばっ気槽内の余剰汚泥の大部分は汚泥貯蔵槽に送られて貯蔵されて、乾燥したのち焼却処分される。また、余剰汚泥の一部は送液ポンプによって上記脱窒槽へと返送されて、脱窒槽とばっ気槽との間を循環する。
【0003】
前記膜ろ過ユニットの代表的な例は、多数の多孔性中空糸を同一平面上に平行に並べたシート状の中空糸膜エレメントを所要の間隔をおいて複数枚並べて得られる中空糸膜モジュールと、同中空糸膜モジュールの下方に配された散気装置とを備えている。前記中空糸膜モジュールは、複数枚の中空糸膜エレメントからなる全体形状が略直方体をなしている。一方の散気装置は、例えば金属、樹脂などからなるパイプに孔やスリットを設けた複数本の散気管を平行に配設し、各散気管の一端をばっ気ブロアのエア供給配管に接続させている。ばっ気ブロアから送られるエアを散気装置を介して汚泥中に放出する。
【0004】
散気装置から放出されたエアは気泡となって上昇し、周りの汚泥と混合されて気液混合流となり、上方の中空糸膜モジュールの中空糸膜エレメントを揺動させる。この揺動により中空糸膜エレメントの膜面に付着する付着汚泥は膜面から剥離され、膜面の目詰まりを抑える、いわゆるエアスクラビング洗浄を行う。生活排水、工場排水などを処理する場合、好気性微生物の存在下でばっ気槽の汚泥中の有機物に、散気装置から発生した空気を接触させることにより、前記有機物を前記好気性微生物に吸着・代謝分解させて、生物学的に汚泥処理がなされる。
【0005】
前記中空糸膜モジュールと散気装置とは、上下が開放された矩形筒状の遮閉板により囲まれている。この遮閉板は、散気装置から発生する気泡の上昇により気液混合流を生成し、その流れを上昇流から下降流へと導くための壁部となる。散気装置から放出される気泡により発生した気液混合流は、斜め方向に飛散せず、まっすぐに上昇して中空糸膜モジュールに効率よく接触する。このとき、中空糸膜モジュールの膜面に対する気液混合流の一様な分散により、上述のように中空糸膜を揺動させて各中空糸膜エレメントを均一に洗浄する。そのあと、気液混合流は上記遮蔽板の上端部を越えて周辺へと流れて下降し、全体として上下方向の旋回流を形成する。この旋回流により活性汚泥は攪拌され、生物学的処理が均一化される。
【0006】
膜分離モジュールには、多孔性中空糸を構成部材とするシート状の中空糸膜エレメントの他にも、複数の微細な孔を有するろ過膜を備えたものが使われており、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜がある。また、その材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。しかして、中空糸膜エレメントを使った中空糸膜モジュールは、ろ過面積が広くなることから多用されている。
【0007】
上記多孔性中空糸に形成される微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜で平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。
【発明の開示】
【発明が解決しようとする課題】
【0008】
ところで、上記散気装置の金属パイプや合成樹脂管からなる散気管には、開口が鉛直下方に向けられた散気孔が複数形成されている。従って、散気装置からはエアが各散気管を通して鉛直下方に向けて汚泥中に放出され気泡となって上昇するが、余剰汚泥は散気装置の下方に多く存在し、その汚泥が散気管に向けて流れるため、各散気管の周面に付着し、遂にはその付着物が散気管の開口を閉塞してしまい、散気が不能となることがある。これを防止するため、従来も散気管の洗浄を行っている。
【0009】
その洗浄は、例えば吸引ポンプ及びばっ気ブロアの運転を停止させて、散気装置を槽内から引き上げて散気管を洗浄したり、或いはばっ気ブロアに設けられたスピロメータにより付着汚泥を吸引排除したり、液体を散気管内部に送り込んで液圧により閉塞汚泥を排除するなどにより行われていた。しかしながら、一時的にせよ排水処理を全面的に停止することは、1日の処理量が余裕のない状態で決められていること、及び処理効率を大きく低下させることなどのため、可能な限り避けるべきである。
【0010】
本発明は、こうした課題を解決すべくなされたものであり、その具体的な目的は排水の処理を停止させることなく任意の時期に散気管の洗浄を行うことができる固液混合処理液のろ過液回収時における散気装置の洗浄方法を提供することにある。
【課題を解決するための手段】
【0011】
かかる課題は、本発明の基本的な構成である、処理槽内に膜分離モジュールの下方に散気装置を備えた膜ろ過ユニットが浸漬配置され、散気装置による散気と同時に膜分離モジュールにより固液混合処理液を固液分離し、吸引管路を介して膜分離モジュールからろ過液を吸引回収する固液混合処理液のろ過液回収時における散気装置の洗浄方法であって、前記散気装置が、少なくとも1本の気体供給配管と、その気体供給配管の途中に合流する液体供給配管と、前記気体供給配管から分岐する分岐管路を介して接続された水平分配管と、同水平分配管に直交して水平に配され略鉛直下向きに開口する複数の散気孔を有する複数の散気管とを備えてなり、前記気体供給配管内の気体流速を5m/sec以下、前記液体の供給量を0.03L/min/mm2 以上とすることを含んでなることを特徴とする散気装置の洗浄方法により効果的に解決される。
【0012】
本発明の好適な態様によれば、1本の前記散気管の前記散気孔の開口面積の総和を、同散気管の断面開口面積よりも小さく設定することを含んでいる。更に、前記散気管の断面開口面積に同散気管の本数を乗じた値を、前記気体供給配管の断面開口面積に同気体供給配管の本数を乗じた値よりも小さく設定することが好ましい。
【作用効果】
【0013】
上記構成から理解できるように、本発明による散気装置の洗浄方法の基本的な思想は、ばっ気ブロアから散気装置に送り込まれる気体に液体を混合させて、その気液混合流を散気管に送り、気液混合流の流体圧と付着汚泥を溶解させて吹き飛ばすことによって、付着汚泥により閉塞されている散気孔を開通させるものである。このときの気体に対する液体の供給は、排水を処理している間に連続して行うこともできるが、液体供給配管に電磁式開閉バルブを取り付けておき、制御部からの信号に基づき予め決められた期間ごとに液体を供給するようにしてもよい。
【0014】
例えば、膜分離活性汚泥処理では膜ろ過ユニットの膜モジュールを洗浄するため、ろ過運転を間欠的に行っている。具体的には、例えば6分間ろ過運転を行ったのち1分間ろ過運転を停止し、これを繰り返している。このろ過運転の停止時に本発明の散気装置の洗浄方法を実施すれば、排水処理を連続して行いながら洗浄操作を行うことができる。
【0015】
ここで、エアをばっ気ブロアから気体供給管路を介して散気装置に送る途中で、エアに気体供給管路を介して液体(水又は処理水)を合流させると、液体がエアと混合され、気体が大きな気泡となって散気管を流れる。ここで、気液混合流内のエアの一部は散気管内で液中を上昇し、散気管内の上部内壁部に集まり、その内圧で液体を下部内壁部へと押し付けるため、液体の多くが付着汚泥に接触する。このとき、同時に液体中の気泡が分散して付着汚泥の溶解を促進させる。気体分配管内を流れる気体の流速が5m/secを越えると、水平に配された気体分配管の下流側の液体が気体によって押されて上流側よりも液量が増す。散気管は、通常、気体分配管に水平に梯子状に取り付けられている。前述のように、気体の流速が5m/secを越えると気体供給配管の下流側で管内の液量が増すため、下流側に配された散気管内の気液混合体による洗浄が上流側の散気管内の気液混合体による洗浄を上回り、気体供給配管の長さ方向で洗浄ムラが発生して均一な洗浄ができない。また、液体の供給量が0.03L/min/mm2 よりも少ないと、付着汚泥の溶解が進まず、大幅に洗浄効果が低下する。
【0016】
更に、1本の散気管の散気孔の開口面積の総和を、同散気管の断面開口面積よりも小さく設定することにより、散気管内の流体圧が付着汚泥を圧壊しやすくなる。このとき、前記散気管の断面開口面積に同散気管の本数を乗じた値を、前記気体分配管の断面開口面積に同気体分配管の本数を乗じた値よりも小さく設定すれば、同様の理由により散気管内に付着汚泥の圧壊に必要な流体圧が得やすくなる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の好適な実施形態を図面に基づいて具体的に説明する。
図1は、本発明に係る固液混合処理液のろ過液回収時における散気装置の洗浄方法を実施するのに好適な膜分離活性汚泥処理装置におけるばっ気工程の概略構成を示している。
【0018】
膜分離活性汚泥処理装置によれば、図示せぬ原水調整槽に導入される原水は所定の液面範囲内を維持するように、図示せぬ送液ポンプにより同じく図示せぬ脱窒槽へと間欠的に導入されたのち、脱窒槽から溢流する原水を隣接するばっ気槽4へと流入させる。このばっ気槽4の汚泥中には多数基の膜ろ過ユニット5が浸漬して配されている。この膜ろ過ユニット5にて活性汚泥と処理水とに膜分離された処理水は吸引ポンプPvにより処理水槽へと吸引により送液されて回収されるか、或いはそのまま放流される。一方、ばっ気槽4にてばっ気処理されて増殖した微生物などからなる濃縮汚泥の一部は図示せぬ汚泥貯蔵槽に貯蔵される。また、ばっ気槽4の内部の濃縮汚泥の一部は図示せぬ送液ポンプによって上記脱窒槽へと返送されて、脱窒槽とばっ気槽との間を循環する。
【0019】
図2は、通常の膜ろ過ユニット5の代表的な例を示している。同図に示すように膜ろ過ユニット5は、糸長さ方向を垂直に配した複数枚の中空糸膜エレメント10を並列させて支持固定された中空糸膜モジュール9と、同中空糸膜モジュール9の下方に所要の間隔をおいて配される散気装置15とを含んでいる。前記中空糸膜エレメント10は、多数本の多孔性中空糸10aを平行に並列させた膜シート11の上端開口端部をポッティング材11aを介してろ過水取出管12に連通支持させるとともに、下端を閉塞して同じくポッティング材11aを介して下枠13により固定支持させ、前記ろ過水取出管12及び下枠13の各両端を一対の縦杆14により支持して構成される。多数枚の中空糸膜エレメント10が、シート面を鉛直にして上下端面が開口した矩形筒状の上部壁材20のほぼ全容積内に収容されて並列支持される。ここで、上記中空糸膜エレメント10は、一般には図3に示すように多数本の多孔性中空糸10aが同じ間隙をもたせて同一平面上を並列して配されている。
【0020】
本実施形態にあって、前記多孔性中空糸10aは中心部に沿って長さ方向に中空とされたPVDF(ポリフッ化ビニデン)の多孔質中空糸が使われており、そのろ過孔の孔径は0.4μmである。また、1枚あたりの有効膜面積は25m2 である。上記シート状の中空糸膜エレメント10は1膜ろ過ユニット5あたり20枚が使われ、その大きさは奥行きが30mm、幅が1250mm、ろ過水取出管12の上面から下枠13の下面までの長さが2000mmである。散気装置15をも含めた1膜ろ過ユニット5の大きさは、奥行きが1552.5mm、幅が1447mm、高さが3043.5mmである。上記ろ過水取出管12の長さが1280mm、その材質はABS樹脂であり、縦杆14の材質はSUS304が使われている。
【0021】
ただし、多孔性中空糸10a、ろ過水取出管12及び縦杆14などの材質、中空糸膜エレメント10の大きさ、1膜ろ過ユニット5の大きさやユニット1基あたりの中空糸膜エレメント10の枚数などは、用途に応じて多様に変更が可能である。例えば、中空糸膜エレメント10の枚数で言えば処理量に合わせて20枚、40枚、60枚、…と任意に設定でき、或いは多孔性中空糸10aの材質には、セルロース系、ポリオレフィン系、ポリスルホン系、ポリビニルアルコール系、ポリメチルメタクリレート、ポリフッ化エチレンなど、従来公知のものを適用することができる。
【0022】
各中空糸膜エレメント10の上記ろ過水取出管12の一端には各多孔性中空糸10aによってろ過された良質のろ過水(処理水)の取出口12aが形成されている。本実施形態にあって、各取出口12aには、図2に示す膜ろ過ユニット5と同様に、それぞれL型継手12bがシール材を介して液密に取り付けられる。また、図3に示すように、上記上部壁材20の上端の前記取出口12aが形成されている側の端縁に沿って集水ヘッダー管21が横設されている。この集水ヘッダー管21は複数の前記取出口12aに対応する位置にはそれぞれに集水口21aが形成されており、各集水口21aに上記取出口12aと同様のL型継手21bがシール材を介して液密に取り付けられている。
【0023】
前記ろ過水取出管12の処理水取出口12aと前記集水ヘッダー管21の集水口21aとが、それぞれに取り付けられたL型継手12b,21b同士を接続することにより通水可能に連結される。集水ヘッダー管21の一端部には吸引ポンプPvとろ過水吸引管路22を介して接続される吸水口21cが形成されている。各集水ヘッダー管21ごとに形成された吸水口21cと前記ろ過水吸引管22とは、図1に示すように、同ろ過水吸引管22からそれぞれ分岐した吸引管路22a内に介装された流量調整バルブ23を介して連結されている。ここで、前記吸引管路22aは集水ヘッダー管21からばっ気槽4の液面より高い上方位置まで立ち上がり、それぞれが水平に配されたろ過水吸引管22に接続されている。本実施形態にあっては、水平に配されて槽外に延びる前記ろ過水吸引管22は、槽外にて下方に屈曲して地上に設置された吸引ポンプPvの吸引口に接続されている。この吸引ポンプPvの吐液口には排液管路が接続され、ろ過水は図示せぬ処理水槽へと送られるか、そのまま放流される。
【0024】
上記散気装置15は、図4に示すように、前記上部壁材20の下端に結合された同じく上下が開口する矩形筒体を備え、その4隅の下端から下方に延びる4本の支柱24aを有する下部壁材24の底部に収容固設されている。前記散気装置15は、図1に示すように外部に配されたばっ気ブロアBとエア主管18を介して接続される。具体的には、分岐管路であり且つ本発明の気体供給配管でもある気体供給管16を備えている。気体供給管16の開口端は前記下部壁材24の正面側内壁面に沿って幅方向に水平に延設された分岐管路25の一端部に接続され、同分岐管路25の長さ方向には所定の間隔をおいて梯子状に配され、一端が分岐管路25に連通して固設されるとともに、他端が背面側の下部壁材24の内壁面に沿って水平に固設された複数本の散気管17とを有している。
【0025】
本実施形態では、散気管17の前記気体供給管16との接続側端部は同気体供給管16の内部と連通しており、散気管17の他端は閉塞されている。本実施形態による散気装置15は複数基の膜ろ過ユニット5ごとに対応して配され、同じばっ気ブロアBから送られるエアを、それぞれの散気装置15に分流させるため、前記ばっ気ブロアBに直接接続されたエア主管18を有し、同エア主管18から分岐管路である気体供給管16を介して各散気装置15へと接続される。
【0026】
また、前記エア主管18又は気体供給管16には液体供給管26が合流している。この液体供給管26には図示せぬ液体(水や処理済のろ過水)供給源から、同じく図示せぬ送液ポンプによって積極的に液体が供給される。このときの液体の供給は、吸引ポンプPvを駆動しているとき、すなわちろ過運転を行っているとき常に送液を維持させてもよいし、或いはろ過運転が停止しているときに行うようにしてもよい。
【0027】
上述のとおり、同一ばっ気槽4に浸漬された複数基の膜ろ過ユニット5は各吸引管路22aと流量調整バルブ23とを介して同一のろ過水吸引管22に接続されている。汚泥処理が長期間にわたって継続して行われると、膜ろ過ユニット5のろ過膜の表面に目詰まりが進行するため、ろ過流量の低下、或いは膜間差圧の上昇が生じる。このような膜間差圧の上昇を抑えるため、中空糸膜エレメント10の下方に配された上記散気装置15から噴出するエアと汚泥液との気液混合流体を利用して、いわゆるエアスクラビングを行うとともに、各多孔性中空糸10aを揺動させて膜面に付着した汚泥物質を剥がして離脱させ、物理的な洗浄を行う。このとき同時に微生物による硝化反応を活発化させて生物学的処理を行う。
【0028】
ここで、ばっ気槽4の活性汚泥は膜ろ過ユニット5の多孔性中空糸10aの中空部を通して固液分離を行い、ろ過水を外部の吸引ポンプPvにより積極的に吸引して図示せぬ処理水槽へと送り回収する。本実施形態では、このときの運転を、吸引ポンプPvを6分間駆動したのち1分間停止させることを繰り返している。すなわち、吸引ポンプPvによるろ過水の吸引運転を間欠的に行っている。このろ過運転時及び停止時にもばっ気ブロアBの駆動は維持されており、常に散気装置15へとエアが送られている。そのため、ろ過運転時のみならずろ過運転の一時的な停止時にも、散気装置15から放出される気泡と活性汚泥との気液混合液の上昇流により、中空糸膜モジュール9の中空糸膜が揺動し、膜面に付着する汚泥付着物は膜面から剥離され、いわゆるエアスクラビング洗浄がなされている。
【0029】
また、ろ過運転の停止時には、中空糸膜モジュール9からのろ過水吸引は行われずに、エアスクラビングだけがなされるようになる。このときのエアスクラビングは、多孔性中空糸10aがろ過吸引を行っていないため、汚泥付着物の付着が少なくなるため、洗浄効果はろ過運転時と比較して極めて高くなり、膜間差圧の回復速度も高くなる。本実施形態にあっては、このろ過運転の一時的な停止時に合わせて、上記液体供給管26を介してエア主管18又は気体供給管16内を流れるエア中にろ過水が供給される。このろ過水が供給されて混合する気液混合流は、散気装置15の分岐管路25を通って複数の散気管17に到達する。
【0030】
このとき、散気管17に送り込まれた気液混合流体中のエアの一部はろ過水の上面、すなわち散気管17の上部内壁部に集まり、次第に内圧を高めて流体を散気管17の下部内壁部へと押し付けるようになる。一方、ろ過水中のエアは気泡となってろ過水中を流動しろ過水に乱流を起こさせる。この乱流効果と前記内圧上昇により、散気管17の散気孔を閉塞して固まっている付着汚泥を溶解させるとともに、散気孔から管外の活性汚泥中に押し出して、付着汚泥を効率的に排除する。
【0031】
本発明にとって、この流体供給管から供給されるろ過水の流量は0.03L/min/mm2 以上であることが肝要である。ろ過水の供給量が0.03L/min/mm2 より少ないと、エアに対する液体の量が少なすぎて、前述のような液体による効果が期待できず、付着汚泥の溶解が進まず、洗浄効果が大幅に低下する。また、前記分岐管路25内を流れるエアの流速を5m/sec以下にする必要がある。5m/secを越えると、分岐管路25の気液混合流の入口側と下流閉塞側とでは気液混合体の管内高さが、気体の流速の影響を受けて均一でなくなり、下流閉塞側の方が入口側よりも管内高さが高くなる。このように、下流閉塞側の方が入口側よりも管内高さが高くなると下流閉塞側に配された散気管17の液高が、入口側に配された散気管17の液高よりも高くなり、散気管の内壁面及び散気孔の洗浄に差異が生じ、一部で付着汚泥を除去できなくなることになりかねない。
【0032】
更に、本実施形態にあっては、1本の前記散気管17の前記散気孔の開口面積の総和を、同散気管17の断面開口面積よりも小さく設定している。また上記実施形態にあっては、1本の分岐管路25に各散気管17の一端を接続固定させているが、2本の分岐管路25に各散気管17の両端を連通させて接続固定させてもよい。いずれにしても、前記散気管17の断面開口面積に同散気管17の本数を乗じた値を、前記分岐管路25の断面開口面積に同分岐管路25の本数を乗じた値よりも小さく設定することも重要である。こうした関係に開口面積を設定すると、上記液体と気体との混合効果が更に高まり、散気装置15の洗浄効果を大幅に向上させることができる。
【0033】
以下に、本発明の実施例を比較例とともに具体的に説明する。
【実施例1】
【0034】
内径が100mmで長さが1400mmの平行な2本の分岐管路の間に、内径が25mm、長さが1400mmの散気管を等ピッチで接続固定した。散気管には直径5mmの開口を鉛直下方に向けた9個の散気孔をピッチ120mmにて形成した。気体分配管を流れる風量を200m3 /hr、水量を100L/minとし、散気管の気液洗浄時間を1min、6回/日の割合で行った。この運転を6か月行ったのちに、散気孔の閉塞状態を黙視で調査した結果、閉塞は認められなかった。
【比較例1】
【0035】
水の供給量を10L/minとしたこと以外の条件は、実施例1と全て同じとし、6か月間の運転後の散気孔の平俗状態を調査した結果、閉塞が5か所に認められた。
【比較例2】
【0036】
空気の供給量を350m3 /hrとする以外の条件を、実施例と全て同じとし、6か月間の運転後に散気孔の閉塞状態を調査した結果、閉塞が8か所に認められた。
【図面の簡単な説明】
【0037】
【図1】本発明の代表的な実施形態である散気装置の洗浄方法が適用されるろ過水回収装置の概略構成を示す説明図である。
【図2】通常の膜ろ過ユニットの全体構成を一部破断して示す立体図である。
【図3】中空糸膜モジュールの構成部材である膜エレメントの構成例を模式的に示す斜視図である。
【図4】膜ろ過ユニットの構成部材の一つである散気装置の立体図である。
【符号の説明】
【0038】
4 ばっ気槽
5 膜ろ過ユニット
9 中空糸膜モジュール
10 中空糸膜エレメント
10a 多孔性中空糸
11 膜シート
11a ポッティング材
12 ろ過水取出管
12a ろ過水取出口
12b L型継手
13 下枠
14 縦杆
15 散気装置
16 気体供給管
17 散気管
18 エア主管
20 上部壁材
21 集水ヘッダー管
21a 集水口
21b L型継手
21c 吸水口
22 吸引管
22a 吸引管路
23 流量調整バルブ
24 下部壁材
24a 支柱
25 分岐管路
26 液体供給管
Pv 吸引ポンプ
B ばっ気ブロア

【特許請求の範囲】
【請求項1】
処理槽内に膜分離モジュールの下方に散気装置を備えた膜ろ過ユニットが浸漬配置され、散気装置による散気と同時に膜分離モジュールにより固液混合処理液を固液分離し、吸引管路を介して膜分離モジュールからろ過液を吸引回収する固液混合処理液のろ過液回収時における散気装置の洗浄方法であって、
前記散気装置が、少なくとも1本の気体供給配管と、その気体供給配管の途中に合流する液体供給配管と、前記気体供給配管から分岐する分岐管路を介して接続された水平分配管と、同水平分配管に直交して水平に配され略鉛直下向きに開口する複数の散気孔を有する複数の散気管とを備えてなり、
前記分岐管路内の気体流速を5m/sec以下、前記液体の供給量を0.03L/min/mm2 以上とすることを含んでなることを特徴とする散気装置の洗浄方法。
【請求項2】
1本の前記散気管の前記散気孔の開口面積の総和を、同散気管の断面開口面積よりも小さく設定することを含んでなる請求項1記載の洗浄方法。
【請求項3】
前記散気管の断面開口面積に同散気管の本数を乗じた値を、前記分岐管路の断面開口面積に同分岐管路の本数を乗じた値よりも小さく設定することを含んでなる請求項1又は2に記載の洗浄方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2007−209948(P2007−209948A)
【公開日】平成19年8月23日(2007.8.23)
【国際特許分類】
【出願番号】特願2006−35167(P2006−35167)
【出願日】平成18年2月13日(2006.2.13)
【出願人】(000176741)三菱レイヨン・エンジニアリング株式会社 (90)
【Fターム(参考)】