説明

圧電発振器

【課題】発振回路素子と圧電振動片との温度差異をごく短時間で解消し、発振回路素子の短絡も防止できる構成の圧電発振器を提供する。
【解決手段】圧電発振器1は、水晶振動片25を収容した振動片収容体20と、水晶振動片25の振動を制御するための発振回路素子4と、発振回路素子4の外表面に配置された熱伝導樹脂5と、発振回路素子4との間に熱伝導樹脂5を挟持するように位置する熱伝導パッド37と、高熱伝導率の特性を有し、一端が熱伝導樹脂5と接し他端が振動片収容体20と接している第1埋込柱6と、を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧電振動片と発振回路素子とを有する圧電発振器に関する。
【背景技術】
【0002】
従来、圧電発振器は、圧電振動片を収容した第1の収容体と、圧電振動片を励振する発振回路素子を収容した第2の収容体と、を重ねて一体化した構成のものが知られている。これらの収容体は、それぞれセラミック等で形成されている。また、発振回路素子は、温度センサーと、温度センサーで検出した温度に対応して圧電振動片の温度補償をするための回路と、を備えている。これにより、圧電発振器は、圧電発振器周囲の環境温度変化に対応して、圧電振動片の共振周波数の温度補償ができ、周波数誤差の小さい発振周波数を出力することが可能である。
【0003】
さらに、特許文献1に示すような圧電発振器も開示されており、この圧電発振器は、各収容体(特許文献1におけるパッケージ体)に比べて熱伝導率の高い熱硬化性ペーストが、発振回路素子(特許文献1における集積回路素子)を覆うように、第2の収容体の内部へ充填された構成を有している。この構成によれば、発振回路素子が発する熱を圧電振動片の側へ効率よく伝達でき、第1の収容体の表面温度と第2の収容体の内部温度との温度差異を、より短時間で小さくすることが可能である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−158464号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1に開示された圧電発振器では、発振回路素子の発する熱が熱硬化性ペーストを伝って、発振回路素子および圧電振動片の各収容体が接する部位までは、ごく短時間で伝達されるが、そこから先の各収容体を形成するセラミック等の内部へは、熱硬化性ペーストに比べて伝わり難い。そのため、第1の収容体の内部温度と第2の収容体の内部温度との温度差異が十分小さくなるまでに、若干の時間を要していた。この若干の時間であっても、例えばGPS(Global Positioning System)機器に圧電発振器が用いられる場合等では、ほぼ瞬時の振動安定性を求められており、さらなる改善が必要な状況である。また、熱硬化性ペーストは、第2の収容体の内部全域へ充填されるため、発振回路素子の短絡防止が可能な絶縁性を有するペースト類しか使用できない、という課題もあった。
【課題を解決するための手段】
【0006】
本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の適用例または形態として実現することが可能である。
【0007】
[適用例1]本適用例に係る圧電発振器は、発振回路素子と、前記発振回路素子の表面に配置された熱伝導性部材と、前記発振回路素子によって励振される圧電振動片を収容する振動片収容体と、が平面視において重なるように配置され、一端が前記熱伝導性部材と接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第1の埋込部材を備え、前記第1の埋込部材は、周囲の部材より高い熱伝導率を有していることを特徴とする。
【0008】
この圧電発振器によれば、発振回路素子が駆動して生じた熱は、熱伝導性部材および第1の埋込部材を介して振動片収容体へ伝わることにより、これら熱伝導性部材および第1の埋込部材を介さずに振動片収容体へ伝わる場合に比べて、ごく短時間で振動片収容体へ伝えられる。この伝えられた熱により、振動片収容体の内部の圧電振動片の温度は、発振回路素子の内部温度とほぼ同等の温度に、すばやく到達する。つまり、振動片収容体の内部温度が、発振回路素子の内部温度の変化にすばやく追随して変化する。これにより、発振回路素子が圧電振動片の発振周波数を補正するために感知した温度、と、補正される圧電振動片が影響を受ける振動片収容体の内部温度と、の差異は、生じたとしても早急に解消されることになる。このような構成の圧電発振器は、振動片収容体と発振回路素子との内部温度をほぼ同温度に、常時、維持することができ、発振回路素子は、振動片収容体の圧電振動片に対して、適切な温度補正による振動の制御を行える。従って、圧電発振器は、安定した、周波数精度の高い発振信号を、常に、出力することが可能である。
【0009】
[適用例2]本適用例に係る圧電発振器は、発振回路素子と、前記発振回路素子の表面に配置された熱伝導性部材と、前記発振回路素子によって励振される圧電振動片を収容する振動片収容体と、が平面視において重なるように配置され、前記振動片収容体は、表面に伝熱部材が形成され、前記伝熱部材が前記熱伝導性部材に接続され、一端が前記伝熱部材と接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第1の埋込部材を備え、前記第1埋込部材は、周囲の部材より高い熱伝導率を有していることを特徴とする。
【0010】
この圧電発振器によれば、発振回路素子が駆動して生じた熱は、熱伝導性部材、伝熱部材および第1の埋込部材を介して振動片収容体へ伝わることにより、これら熱伝導性部材、伝熱部材および第1の埋込部材を介さずに振動片収容体へ伝わる場合に比べて、ごく短時間で振動片収容体へ伝えられる。この伝えられた熱により、振動片収容体の内部温度は、発振回路素子の内部温度とほぼ同等の温度に、すばやく到達する。つまり、振動片収容体の内部の圧電振動片の温度が、発振回路素子の内部温度の変化にすばやく追随して変化する。これにより、発振回路素子が圧電振動片の発振周波数を補正するために感知した温度、と、補正される圧電振動片が影響を受ける振動片収容体の内部温度と、の差異は、生じたとしても早急に解消されることになる。このような構成の圧電発振器は、振動片収容体と発振回路素子との内部温度をほぼ同温度に、常時、維持することができ、発振回路素子は、振動片収容体の圧電振動片に対して、適切な温度補正による振動の制御を行える。従って、圧電発振器は、安定した、周波数精度の高い発振信号を、常に、出力することが可能である。また、熱伝導性部材は、発振回路素子と伝熱部材との間に位置決めされた状態で挟持されるため、発振回路素子を短絡させるような流動が規制され、例えば導電性ペーストのようなもの等であっても、使用することが可能である。
【0011】
[適用例3]上記適用例に係る圧電発振器において、前記振動片収容体は、前記第1の埋込部材の他端側に接している第1の放熱部材を備えていることが好ましい。
【0012】
この構成によれば、発振回路素子から第1の埋込部材へ伝えられた熱は、第1の放熱部材を介して振動片収容体の圧電振動片側へ伝わる。第1の放熱部材を介した熱伝導により、第1の埋込部材が振動片収容体への埋め込み加工に適した種々の形態をなしていても、その形態にかかわらず、熱を第1の放熱部材全体に分散させてから振動片収容体の圧電振動片側へ伝える。そのため、均一に且つより効率良く熱伝導が行われる。そして、第1の埋込部材は、第1の放熱部材に面して点在する複数の柱状体である形態や、第1の放熱部材の中央近傍に面して設けられた単一の貫通体である形態等が考えられる。
【0013】
[適用例4]上記適用例に係る圧電発振器において、前記振動片収容体は、前記第1の埋込部材と平面視において重なる位置に埋込形成され、周囲の部材より高い熱伝導率を有し、一端が前記第1の放熱部材に接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第2の埋込部材と、前記第2の埋込部材の他端に接している第2の放熱部材と、を備えていることが好ましい。
【0014】
この構成によれば、振動片収容体には、第1の埋込部材の他に、さらに、第1の放熱部材から圧電振動片の方向に向って形成された第2の埋込部材および第2の埋込部材に接する第2の放熱部材が設けられている。第2の埋込部材および第2の放熱部材を設けることにより、発振回路素子が発して第1の放熱部材に達した熱は、第2の埋込部材を介して第2の放熱部材の側へ伝わる。これにより、第1の放熱部材に達した熱は、第2の埋込部材を介さずに振動片収容体の内部を伝わる場合に比べて、より短時間で第2の放熱部材へ伝えられる。第2の放熱部材へ伝えられた熱は、振動片収容体の内部に放散される。これにより、振動片収容体の内部温度は、発振回路素子の表面温度とほぼ同等の温度に、より一層すばやく到達する。つまり、振動片収容体の内部温度が、発振回路素子の内部温度の変化に、直ちに、追随して変化する。従って、発振回路素子が圧電振動片の振動を補正するために感知した温度と、補正される圧電振動片が影響を受ける振動片収容体の内部温度と、の差異は、生じたとしてもよりすばやく解消されることになる。このような構成の圧電発振器は、より安定した、より精度の良い振動特性を発揮することが可能である。
【0015】
[適用例5]上記適用例に係る圧電発振器において、前記熱伝導性部材は、金属粉を含有した樹脂であることが好ましい。
【0016】
この構成によれば、樹脂である熱伝導性部材は、発振回路素子および伝熱部材の形状に合わせて柔軟に設定でき、発振回路素子と伝熱部材との間における熱伝導が効率良く行われるよう容易に配置される。また、樹脂が金属粉を含有することにより、熱伝導性部材は、樹脂単体に比べ熱伝導率が高められており、熱を発振回路素子から伝熱部材へより短時間で伝えることが可能である。熱伝導性部材が樹脂であれば、ペースト状にすること等が可能であり、配置作業が、発振回路素子および伝熱部材の形状にかかわらず、より簡便に行える。この場合、熱伝導樹脂は、発振回路素子と伝熱部材との間に挟持されているため、発振回路素子の外表面以外への流動が規制され、金属粉を含有していても、発振回路素子等の短絡を防ぐことが可能である。
【0017】
[適用例6]上記適用例に係る圧電発振器において、前記熱伝導性部材は、金属製であることが好ましい。
【0018】
この構成によれば、熱伝導性部材が金属そのものであることにより、熱伝導率の高い部材が選択でき、当該部材の選択肢も広くなる。このような金属製の熱伝導性部材は、熱を発振回路素子から伝熱部材へほぼ最短の時間で伝えることが可能である。
【0019】
[適用例7]上記適用例に係る圧電発振器において、前記熱伝導性部材は、熱伝導性シートであることが好ましい。
【0020】
この構成によれば、発振回路素子または伝熱部材に熱伝導性部材としての熱伝導性シートを貼付しておくことができ、熱伝導性部材は、発振回路素子と伝熱部材との間に、自在に配置される。また、熱伝導性部材はシート状であるため、発振回路素子または伝熱部材の形状に合わせて切り取る等して柔軟に対応でき、取り扱いが容易である。
【0021】
[適用例8]上記適用例に係る圧電発振器において、前記振動片収容体と前記発振回路素子と前記熱伝導性部材とは、被覆部材により覆われていることが好ましい。
【0022】
この構成によれば、圧電発振器は、振動片収容体と発振回路素子と熱伝導性部材とが、例えば樹脂等の被覆部材で覆われて一体化された形態のものである。被覆部材で覆われた圧電発振器は、外部の温度変化の影響を受けにくくなり、振動片収容体および発振回路素子の内部温度が急激に変化することを防止する効果を奏する。これにより、圧電発振器は、熱伝導性部材、伝熱部材および第1の埋込部材等を介して、振動片収容体と発振回路素子との内部温度をほぼ同温度に維持することが容易になる。
【0023】
[適用例9]上記適用例に係る圧電発振器において、前記発振回路素子または前記伝熱部材の少なくともいずれかは、前記熱伝導性部材に接する面に溝部を有していることが好ましい。
【0024】
この構成によれば、発振回路素子に溝部が形成されていれば、発振回路素子と熱伝導性部材との接触面積が広くなり、発振回路素子から熱伝導性部材への熱伝導が迅速に行われる。同様に、伝熱部材にも溝部が形成されていれば、熱伝導性部材と伝熱部材との接触面積が広くなり、熱伝導性部材から伝熱部材への熱伝導が迅速に行われる。このように、発振回路素子または伝熱部材のいずれかまたは両方に溝部が形成されていれば、発振回路素子が発した熱は、溝部がない場合に比べ、より早く効率良く伝えられる。
【図面の簡単な説明】
【0025】
【図1】実施形態1に係る圧電発振器の構成を示す断面図。
【図2】水晶振動子の側から見た圧電発振器の構成を示す平面図。
【図3】実施形態2に係る圧電発振器の構成を示す断面図。
【図4】実施形態3に係る圧電発振器の構成を示す断面図。
【図5】実施形態1に係る圧電発振器における変形例を示す断面図。
【図6】実施形態2に係る圧電発振器における変形例を示す断面図。
【発明を実施するための形態】
【0026】
以下、圧電発振器の具体的な実施形態について図面に従って説明する。実施形態における圧電発振器は、圧電振動片としての水晶振動片を含む水晶振動子と、水晶振動片を励振させるための発振回路素子を含む回路素子部と、を備えた構成のものである。
(実施形態1)
【0027】
図1は、実施形態1に係る圧電発振器の構成を示す断面図である。また、図2は、水晶振動子の側から見た圧電発振器の構成を示す平面図である。図1および図2に示すように、本実施形態の圧電発振器1は、圧電単結晶材である水晶からなる水晶振動片(圧電振動片)25を振動片収容体20へ収容した水晶振動子2と、発振回路素子4を素子収容体30へ収容した回路素子部3と、水晶振動子2および回路素子部3のそれぞれの一部を覆って水晶振動子2と回路素子部3とを一体化するための樹脂モールド(被覆部材)9と、を備えている。
【0028】
この水晶振動片25は、水晶を略直方体の薄板状に形成した水晶基板へ振動片電極28(図2)が設けられている。振動片電極28は、クロム(Cr)を下地とし、その上に金(Au)を形成した金属膜であり、水晶基板の薄板状部において、平行で対極をなす2つの対極面のそれぞれに独立して形成されている。これら金属膜は、この場合、スパッタリングにより形成されている。また、振動片電極28は、対極面の略中央部に形成された矩形状の励振電極28aと、励振電極28aの角部から水晶基板の長手方向に沿って水晶基板の端部まで延在し、さらに反対側の対極面まで回り込んでいる引出電極28bと、から成っている。対極面にそれぞれ形成された振動片電極28は、水晶基板の長手方向を中心軸にして回転させると、同一方向から見れば同形状となるように配置されている。
【0029】
実施形態における水晶振動片25は、圧電単結晶材である水晶柱のX−Z平面において、X軸回りに約35度傾いたX−Z’平面に沿って切り出された、水晶ウエハからさらに切り出された水晶基板を用いている。このようにして水晶柱から切り出された水晶振動片25は、X−Z’平面に沿う薄板状で、表裏の方向であるY’方向に厚さを有している。この水晶振動片25は、2つの対極面にそれぞれ形成された励振電極28aの間に交番電圧が加えられると励振し、規則正しい振動を持続することが可能である。
【0030】
このような水晶振動片25を収容する振動片収容体20は、セラミック製で板状をなして対向する2つの基部体23,24と、同じくセラミック製で基部体23の縁辺の全周に沿って立設された枠壁22と、基部体23および枠壁22により形成され、水晶振動片25を収容するために平面視すると水晶振動片25と略相似形の長方形である凹状部と、図2では省略されているが凹状部の開口を塞ぐための蓋21と、基部体24に対し凹状部側に位置する基部体23と基部体24との間に設けられ高熱伝導率の特性を有するタングステン(W)またはモリブデン(Mo)等の金属材である放熱パッド(第1の放熱部材)38と、を有している。さらに、振動片収容体20は、基部体23の凹状部側の短辺角部にそれぞれ形成され振動片電極28と同様の金属膜である2つの電極部26を有している。電極部26には、水晶振動片25に形成された2つの振動片電極28のそれぞれの引出電極28bが、導電性接着剤27によって接着固定されている。即ち、水晶振動片25は、水晶基板端部の引出電極28bの位置において片持ち支持されており、基部体23とほぼ平行に保持されている。なお、導電性接着剤27は、この場合、弾力性を有するシリコン樹脂を母材にして、ニッケル微粉や銀微粉等を導電粒子として母材に分散させたものである。従って、水晶振動片25は、シリコン樹脂の弾力性により水晶振動片25への応力が緩和され、耐衝撃性の向上が図られている。
【0031】
そして、蓋21は、水晶振動片25を真空状態で気密に封止するためのものである。そのため、枠壁22の開口側端面には、コバールのシームリング(不図示)が銀ロウ材で固着されていて、このシームリングの表面には、ニッケル(Ni)メッキが施されている。また、蓋21は、シームリングと同じコバールの板状をなしていて、板状部の表面にニッケル(Ni)メッキが施されている。この構成によれば、まず、大気圧中でシームリングと蓋21とをシーム溶接して開口を塞ぐことにより(蓋封止工程)、水晶振動片25を振動片収容体20へ気密に封止した水晶振動子2が構成される。なお、蓋21の板状部を貫通する封止孔を形成し、蓋封止工程の後、真空に減圧したチャンバー内で加熱し、封止孔に封止孔径より大きい球状の金ゲルマニウム(AuGe)を封止材として配置して加熱溶融することにより、水晶振動子2の気密封止を行うこともできる。この方法によれば、蓋封止工程において発生する不純ガスが振動片収容体20の内部空間から排出されるため、不純ガスの水晶振動子2の周波数への影響を抑制できる。
【0032】
また、発振回路素子4を収容する素子収容体30は、ポリイミドまたはガラスエポキシ製で板状をなす素子基板33と、素子基板33と振動片収容体20との間の縁辺に配置され、素子基板33と振動片収容体20とを一定間隔に保持するための導電スペーサー32と、を有している。さらに、素子基板33は、素子収容体30の内部側に位置する面に設けられ導電スペーサー32と接する電極部36と、素子収容体30の外部側に位置する面に設けられ電極部36と図示しない導通線により電気的に導通した外部端子41と、を有し、基部体24は、素子収容体30の内部側に位置する面に、導電スペーサー32と接する電極部35を有している。
【0033】
このように構成された素子収容体30は、内部に発振回路素子4を収容するため、素子基板33の内面側のほぼ中央位置に、発振回路素子4の有する素子側端子40と係合する基板側端子39を有している。素子側端子40と基板側端子39とは、いわゆるフリップチップ用の端子であり、両端子が係合することにより発振回路素子4が素子基板33に固定される。また、基板側端子39は、電極部36と図示しない配線により電気的に導通している。そして、素子収容体30に面する基部体24には、発振回路素子4と対向して位置する熱伝導パッド(伝熱部材)37が設けられている。熱伝導パッド37は、振動片収容体20に属し、発振回路素子4とほぼ同形の矩形形状をなしている。また、発振回路素子4は、温度センサーと、温度センサーにより検出した温度により発振周波数を調整する温度補償回路とを有していて、環境温度に応じて変化する水晶振動片25の周波数温度特性を補償する役割を果たしている。
【0034】
そして、素子収容体30に収容された発振回路素子4には、素子側端子40と反対側の面である外表面のほぼ全面に、ペースト状の熱伝導樹脂(熱伝導性部材)5が塗布されている。この熱伝導樹脂5は、発振回路素子4の外表面と熱伝導パッド37との間に挟持された状態となるように充填されている。さらに、振動片収容体20の基部体24には、基部体24を貫通する6つの円形孔が形成されていて、それぞれの円形孔に埋め込まれたタングステン(W)の第1埋込柱(第1の埋込部材)6が設けられている。この場合、タングステン(W)は、基部体24を形成するセラミックより熱伝導率が高い熱伝導材として用いられている。これら第1埋込柱6は、平面視すると、振動片電極28の励振電極28aの内側領域に位置するように、3つずつ2列となって均等に配置(図2)されている。また、第1埋込柱6は、基部体24の素子収容体30側の一端が熱伝導パッド37に接しており、他端が水晶振動片25側の放熱パッド38に接するようになっている。そして、この場合、熱伝導樹脂5は、エポキシ樹脂に、高熱伝導率の特性を有する金属粉としての銀(Ag)を含有した、ペースト状のものである。熱伝導パッド37は、銀と同様、高熱伝導率の特性を有するタングステン、モリブデン、又は銅等の金属の板で構成されている。
【0035】
以上説明したようにそれぞれ構成されている水晶振動子2および回路素子部3は、振動片収容体20の基部体24と素子収容体30とが接するようにして重ねられ、枠壁22の外側面および導電スペーサー32の位置する側面全周を含めた素子収容体30が樹脂モールド9で覆われている。これにより、水晶振動子2と回路素子部3とが一体化され、圧電発振器1として機能する。なお、圧電発振器1において、基部体23の電極部26と基部体24の電極部35とは、図示しない導通線により電気的に導通するようになっており、水晶振動片25および発振回路素子4は、外部端子41、電極部26,35,36、導電スペーサー32を介して、外部との接続が可能である。
【0036】
また、水晶振動片25の励振電極28aは、平面視において、第1埋込柱6の形成領域、熱伝導樹脂5、及び発振回路素子4と重なった状態(図2)である。より詳細には、第1埋込柱6の形成領域は、平面視において、励振電極28aと重なり、熱伝導樹脂5と重なり、且つ発振回路素子4と重なっている。このようにすることで、発振回路素子4で発生した熱が水晶振動片25に伝わる熱伝導経路が短くなり、温度変化に対して、発振周波数をすばやく安定させることができる。なお、実施形態1において、熱伝導パッド37を設けずに熱伝導樹脂5と第1埋込柱6の一端とが直接接するような構造としても、振動片収容体20の凹状部内の温度は、素子収容体30の内部温度の変化に追随して、すばやく同じ温度に到達する。
【0037】
以下に、実施形態1における圧電発振器1が有する効果についてまとめて述べる。
【0038】
(1)圧電発振器1は、素子収容体30の側に熱伝導樹脂5、熱伝導パッド37、および第1埋込柱6を設け、振動片収容体20の側に放熱パッド38を設けている。これにより、発振回路素子4が駆動して生じた熱は、素子収容体30の内部温度を高めると同時に振動片収容体20へも伝えられ、振動片収容体20への熱伝導は、熱伝導樹脂5、熱伝導パッド37、第1埋込柱6、および放熱パッド38が無い場合に比べ、ごく短時間で行える。従って、振動片収容体20の凹状部内の水晶振動片25の温度は、素子収容体30の内部温度の変化に追随して、すばやく同じ温度に到達する。これにより、発振回路素子4が、素子収容体30の内部温度に準じて、振動片収容体20に収容された水晶振動片25の振動を制御しても、素子収容体30と振動片収容体20との内部温度が常にほぼ同一であるため、水晶振動片25は、適切な温度補正によって制御されることになる。そのため、水晶振動片25は、温度変化に対して、振動精度をすばやく安定させることができる。
【0039】
(2)第1埋込柱6は、耐熱性のタングステン(W)を用いることにより、高温で焼結するセラミック製の対向基板31へ埋め込むことができ、第1埋込柱6を任意の形状で形成することができる。
【0040】
(3)熱伝導樹脂5は、発振回路素子4と熱伝導パッド37との間に位置決めされた状態で挟持されるため、ペースト状であっても発振回路素子4の素子側端子40等への流動が規制できる。従って、導電性の熱伝導樹脂5を用いても、発振回路素子4等の短絡を防止でき、熱伝導樹脂5を高熱伝導率とするために、銀(Ag)のような導電性材料を含有させることが可能である。
【0041】
(4)圧電発振器1は、水晶振動子2と回路素子部3とが樹脂モールド9で覆われているため、水晶振動片25および発振回路素子4が外部温度の影響を受けにくい構成となっている。そのため、水晶振動片25および発振回路素子4に対して極端な温度変化が生じ難く、水晶振動片25にとって安定した振動を維持しやすい環境が保持される。
【0042】
(5)圧電発振器1は、第1埋込柱6の他端からの熱を、放熱パッド38によって振動片収容体20へ伝える構成である。そのため、柱状で面積の狭い他端であっても、放熱パッド38を介することにより、熱を広い面積に拡散させてから基部体23へ放熱でき、振動片収容体20へすばやい熱伝導が可能である。
(実施形態2)
【0043】
次に、圧電発振器として他の実施形態について説明する。図3は、実施形態2に係る圧電発振器の構成を示す断面図である。本実施形態の圧電発振器10と、実施形態1における圧電発振器1との相違点は、圧電発振器10が第2埋込柱(第2の埋込部材)7をさらに備えていることである。従って、圧電発振器1と同一の構成部分については、同一符号を付して詳細な説明を省略する。
【0044】
図3に示すように、本実施形態の圧電発振器10は、水晶振動片25を振動片収容体20へ収容した水晶振動子2と、発振回路素子4を素子収容体30へ収容した回路素子部3と、を備えている。また、発振回路素子4の駆動により生じた熱を振動片収容体20へ伝えるために、圧電発振器10は、発振回路素子4の外表面に塗布された熱伝導樹脂5と、外表面との間に熱伝導樹脂5を挟持するよう配置された熱伝導パッド37と、振動片収容体20の基部体24に埋め込まれ一端が熱伝導パッド37に接している6つの第1埋込柱6と、第1埋込柱6の他端に接して配置され振動片収容体20の基部体23へ放熱するための放熱パッド38と、を備えている。
【0045】
このような構成に加え、圧電発振器10は、振動片収容体20の基部体23に設けられた第2埋込柱7と、第2埋込柱7から伝えられた熱を水晶振動片25へ放熱するため基部体23の凹状部側に設けられた銅板の放熱パッド(第2の放熱部材)29と、をさらに備えている。第2埋込柱7は、基部体23を貫通して形成された6つの円形孔のそれぞれにタングステン(W)が埋め込まれたものである。この場合、タングステン(W)は、基部体23を形成するセラミックより熱伝導率が高い材料として用いられている。これら第2埋込柱7は、放熱パッド38を挟んで第1埋込柱6と対峙し、平面視3つずつ2列となって均等に配置されている。第2埋込柱7は、その一端が放熱パッド38に接しており、他端が放熱パッド29に接している。
【0046】
この構成によれば、放熱パッド38から振動片収容体20の凹状部側への熱伝導の早さは、第2埋込柱7を伝わる場合の方が、基部体23自体を伝わる場合に比べ、より短時間である。このように、基部体23に第2埋込柱7を設けた圧電発振器10は、発振回路素子4が水晶振動片25の振動を補正するために感知した温度、即ち素子収容体30の内部温度、と、補正される水晶振動片25が影響を受ける振動片収容体20の内部温度と、の差異が、生じたとしてもよりすばやく解消することができる。よって、圧電発振器10は、より安定した、より精度の良い振動特性を発揮することが可能である、という効果を有するものである。
(実施形態3)
【0047】
次に、圧電発振器として他の実施形態について説明する。図4は、実施形態3に係る圧電発振器の構成を示す断面図である。本実施形態の圧電発振器50と、実施形態1における圧電発振器1または実施形態2における圧電発振器10と、の相違点は、発振回路素子4および熱伝導パッド37の表面の形態が異なっていることである。従って、発振回路素子4および熱伝導パッド37以外の構成については、圧電発振器1または圧電発振器10と同一であるため、同一符号を付して詳細な説明を省略する。
【0048】
図4に示すように、圧電発振器50は、振動片収容体20の基部体24と素子基板33との間に、素子基板33の側から発振回路素子4、熱伝導樹脂5および熱伝導パッド37を備え、発振回路素子4の発する熱を第1埋込柱6の側へ伝える構成である。ここで、本実施形態に係る発振回路素子4には、熱伝導樹脂5が塗布される外表面に、複数の溝部45が形成されていて、溝部45は、外表面の縁辺部から他の縁辺部まで、それぞれが直線状に且つ平行に延在している。これにより、発振回路素子4の外表面の表面積は、溝部45の無い場合に比べ、広くなっている。
【0049】
同様に、熱伝導パッド37には、発振回路素子4の外表面との間に熱伝導樹脂5を挟持する挟持面側に、複数の溝部46が形成されていて、この溝部46は、発振回路素子4の溝部45に倣って、それぞれが直線状に且つ平行に延在している。これにより、熱伝導パッド37の挟持面の表面積は、溝部46の無い場合に比べ、広くなっている。
【0050】
このような溝部45,46の形成により、発振回路素子4と熱伝導樹脂5との接触面積、および熱伝導樹脂5と熱伝導パッド37との接触面積は、共に、溝形成前の接触面積より増加している。即ち、発振回路素子4の駆動により生じた熱は、溝部45を介することにより、迅速に熱伝導樹脂5へ伝えられ、熱伝導樹脂5へ伝えられた熱は、溝部46を介することにより、熱伝導樹脂5から熱伝導パッド37へ迅速に伝えられる。
【0051】
溝部45,46を備えた圧電発振器50は、発振回路素子4から熱伝導樹脂5を介して熱伝導パッド37までの熱伝導が迅速に行われ、より一層安定した、より一層精度の良い振動特性を発揮することが可能である、という効果を有するものである。
【0052】
また、以上説明した圧電発振器1,10,50は、上記の各実施形態に例示された形態に限定されるものではなく、次に挙げる変形例のような形態であっても、実施形態と同様な効果が得られる。
【0053】
(変形例1)実施形態1に係る圧電発振器1は、基部体24に円柱状をなす6つの第1埋込柱6(図1)を形成して、熱伝導を向上させる構成であるが、この構成に限定されるものではない。例えば、第1埋込柱6は、矩形や楕円等の柱であっても良く、6つ以外の複数の柱数であっても良い。同様に、実施形態2に係る圧電発振器10は、基部体24の第1埋込柱6および基部体23の第2埋込柱7が矩形や楕円等の柱であっても良く、6つ以外の複数の柱数であっても良い。これらにより、発振回路素子4等の形状、大きさに対応して、柔軟な設定が可能である。
【0054】
(変形例2)また、実施形態1に係る圧電発振器1の第1埋込柱6は、発振回路素子4の外表面とほぼ同じ形状の一端を有する1つの埋込体であっても良く、図5は、実施形態1に係る圧電発振器における変形例を示す断面図である。図5に示す一例のように、圧電発振器60は、基部体24を貫通し一端が発振回路素子4の外表面との間に熱伝導樹脂5を挟持するように配置された第1埋込柱65を、当該埋込体として備えたものである。この第1埋込柱65は、基部体24を貫通して形成された1つの矩形孔に埋め込まれたタングステン(W)であって、矩形孔は、発振回路素子4の外表面とほぼ同じ形状である。そして、第1埋込柱65は、基部体24の素子収容体30側の一端が熱伝導樹脂5に接し、他端が振動片収容体20の基部体23に接している。また、圧電発振器60において、第1埋込柱6に替わって配置された第1埋込柱65以外の構成は、実施形態1の圧電発振器1と同様である。このような構成の圧電発振器60は、第1埋込柱65が発振回路素子4の外表面とほぼ同じ形状の一端を有しているため、第1埋込柱65を伝わる熱伝導が実施形態1における第1埋込柱6の場合に比べて、同等以上にすばやく行われ、素子収容体30の内部温度と振動片収容体20の内部温度との差異を解消することができる。なお、圧電発振器60は、第1埋込柱65の形状が矩形状に限定されるものではなく、円形状等でも良く、加えて、第1埋込柱65の一端と発振回路素子4の外表面とのいずれかまたは両方に、熱伝導樹脂5との接触面積を広げるための溝部が形成されていても良い。そして、熱伝導にとってより好ましくは、基部体23にも、第1埋込柱65と同様の埋込柱が第1埋込柱65に接するように配置されて設けられていることが望ましい。
【0055】
(変形例3)さらに、図6は、実施形態2に係る圧電発振器における変形例を示す断面図である。図6に示すように、この圧電発振器70は、実施形態2における第1埋込柱6(図3)の形成されている基部体24の領域に、基板開口75が設けられていて、この基板開口75は、発振回路素子4の外表面の形状より大きな貫通孔である。基板開口75には、発振回路素子4および熱伝導樹脂5の部位が挿入されていて、熱伝導樹脂5は、発振回路素子4の外表面と反対側の面が振動片収容体20の放熱パッド38に接している。圧電発振器70において、第1埋込柱6の替わりに基部体24に設けられた基板開口75以外の構成は、実施形態2の圧電発振器10と同様である。このような構成によれば、発振回路素子4に生じた熱は、熱伝導樹脂5のみを介して、直接、振動片収容体20の放熱パッド38へ伝えられるため、実施形態2の場合と比べて、より一層すばやく振動片収容体20へ伝えられ、素子収容体30の内部温度と振動片収容体20の内部温度との差異を解消することができる。なお、圧電発振器70は、放熱パッド38の熱伝導樹脂5の側と発振回路素子4の外表面とのいずれかまたは両方に、熱伝導樹脂5との接触面積を広げるための溝部が形成されていても良い。
【0056】
(変形例4)第1埋込柱6,65および第2埋込柱7は、タングステン(W)を用いているが、セラミックの焼結温度に耐える耐熱性の熱伝導材であれば、タングステン(W)以外のモリブデン(Mo)等であっても良い。
【0057】
(変形例5)熱伝導性部材の熱伝導樹脂5は、エポキシ樹脂に銀(Ag)の金属粉を含有したものに限定されることなく、シリコン樹脂等に銅(Cu)やアルミニウム(Al)等の微粉を含有させたものであっても良い。また、熱伝導性部材は、ペースト状の樹脂に限定されることなく、ハンダ、金(Au)錫(Sn)合金、金(Au)ゲルマニウム(Ge)合金等の金属や、ポリアミドやフッ素樹脂等のシートに、アルミナやカーボンファイバー等を含有させたいわゆる熱伝導性シートであっても良い。熱伝導性部材が金属であれば、熱伝導率の高い部材が幅広く選択でき、熱を発振回路素子4から熱伝導パッド37へほぼ最短の時間で伝えることができる。そして、熱伝導性部材が熱伝導性シートであれば、発振回路素子4または熱伝導パッド37の形状に合わせて切り取って柔軟に対応でき、取り扱いが容易である。
【0058】
(変形例6)圧電振動片は、水晶振動片25のような水晶を用いたものに限定されることなく、水晶以外のニオブ酸リチウム(LiNbO3)、チタン酸ジルコン鉛(PZT)等の圧電体や、シリコン等の半導体であっても良い。また、水晶振動片25のような略直方体の薄板状の形状に限定されず、音叉型等の複数の振動腕を有する形状をなしていても良い。
【0059】
(変形例7)被覆部材の樹脂モールド9は、振動片収容体20と素子収容体30とを一体化する構成が可能であれば、樹脂による被覆に限定されず、金属板等による一体固定構造であっても良い。
【0060】
(変形例8)実施形態3における溝部45,46は、それぞれの溝が直線状に且つ平行に延在している構成であるが、曲線状の形態やモザイク状に凹凸が連続する形態等であっても良い。こうすれば、発振回路素子4等の形状に柔軟に対応して、熱伝導に最適な溝部45,46が形成できる。
【産業上の利用可能性】
【0061】
圧電発振器1,10,50,60,70は、圧電振動片の一例である水晶振動片25と、水晶振動片25の振動を制御する発振回路素子4と、の温度差を解消して、的確な温度補正が行えるため、振動特性の精度向上が図れる。この特徴により、圧電振動片を備えた圧電発振機は、タイミングデバイス等として、デジタル携帯電話、パーソナルコンピューター、電子時計、ビデオレコーダー、テレビなどの電子機器に広く用いられ、これら電子機器の高精度化に貢献することができる。
【符号の説明】
【0062】
1,10,50,60,70…圧電発振器、2…水晶振動子、3…回路素子部、4…発振回路素子、5…熱伝導性部材としての熱伝導樹脂、6…第1の埋込部材としての第1埋込柱、7…第2の埋込部材としての第2埋込柱、20…第1の収容体としての振動片収容体、21…蓋、22…枠壁、23…基部体、24…基部体、25…圧電振動片としての水晶振動片、29…第2の放熱部材としての放熱パッド、32…導電スペーサー、33…素子基板、37…伝熱部材としての熱伝導パッド、38…第1の放熱部材としての放熱パッド、45,46…溝部。

【特許請求の範囲】
【請求項1】
発振回路素子と、
前記発振回路素子の表面に配置された熱伝導性部材と、
前記発振回路素子によって励振される圧電振動片を収容する振動片収容体と、
が平面視において重なるように配置され、
一端が前記熱伝導性部材と接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第1の埋込部材を備え、
前記第1の埋込部材は、周囲の部材より高い熱伝導率を有していることを特徴とする圧電発振器。
【請求項2】
発振回路素子と、
前記発振回路素子の表面に配置された熱伝導性部材と、
前記発振回路素子によって励振される圧電振動片を収容する振動片収容体と、
が平面視において重なるように配置され、
前記振動片収容体は、表面に伝熱部材が形成され、前記伝熱部材が前記熱伝導性部材に接続され、
一端が前記伝熱部材と接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第1の埋込部材を備え、
前記第1の埋込部材は、周囲の部材より高い熱伝導率を有していることを特徴とする圧電発振器。
【請求項3】
請求項1または2に記載の圧電発振器において、
前記振動片収容体は、前記第1の埋込部材の他端側に接している第1の放熱部材を備えていることを特徴とする圧電発振器。
【請求項4】
請求項3に記載の圧電発振器において、
前記振動片収容体は、
前記第1の埋込部材と平面視において重なる位置に埋込形成され、周囲の部材より高い熱伝導率を有し、一端が前記第1の放熱部材に接し、前記一端から前記圧電振動片に近づく方向に向かって前記振動片収容体に埋込形成されている第2の埋込部材と、
前記第2の埋込部材の他端に接している第2の放熱部材と、
を備えていることを特徴とする圧電発振器。
【請求項5】
請求項1から4のいずれか一項に記載の圧電発振器において、
前記熱伝導性部材は、金属粉を含有した樹脂であることを特徴とする圧電発振器。
【請求項6】
請求項1から4のいずれか一項に記載の圧電発振器において、
前記熱伝導性部材は、金属製であることを特徴とする圧電発振器。
【請求項7】
請求項1から4のいずれか一項に記載の圧電発振器において、
前記熱伝導性部材は、熱伝導性シートであることを特徴とする圧電発振器。
【請求項8】
請求項1から7のいずれか一項に記載の圧電発振器において、
前記振動片収容体と前記発振回路素子と前記熱伝導性部材とは、被覆部材により覆われていることを特徴とする圧電発振器。
【請求項9】
請求項1から8のいずれか一項に記載の圧電発振器において、
前記発振回路素子または前記伝熱部材の少なくともいずれかは、前記熱伝導性部材に接する面に溝部を有していることを特徴とする圧電発振器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate