説明

基点を用いて勾配を決定するための信号処理システムおよび方法

本開示は信号処理に関し、さらに詳細には、信号の勾配を決定することに関する。実施形態では、プロットの基点と、信号内の少なくとも2点との間の勾配が決定されてもよい。勾配はヒストグラムを生成するために使用されてもよく、ヒストグラム内の好ましい値に対応する信号の所望の勾配が選択されてもよい。実施形態では、二次元リサジュー図形が三次元リサジュー図形から選択されてもよく、所望の勾配を決定するために、選択されたリサジュー図形の中の勾配のヒストグラムが生成されてもよい。所望の勾配は臨床的関連を有していてもよい(例えば、所望の勾配は患者の血液酸素飽和度レベルを決定するために使用されてもよい)。三次元リサジュー図形は2つのスケイログラムに関連する表面信号から導出されてもよい。各スケイログラムは、信号に対して連続ウェーブレット変換を実行した結果であってもよい。所望の勾配を決定することに関連して信頼基準が生成されてもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本願は、「Signal Processing Systems and Methods for Determining Slope Using an Origin Point」と題する2008年7月15日に出願された米国仮出願第61/080,950号、および「Signal Processing Systems and Methods for Determining Slope」と題する2008年6月30日に出願された米国仮出願第61/077,079号の優先権を主張し、当該出願はその全体が参照により本明細書に組み込まれる。
【0002】
本開示は、一般に、信号処理システムおよび方法に関し、さらに詳細には、例えば、光電脈波(PPG)信号などの信号の勾配を決定するためのシステムおよび方法に関する。実施形態では、信号の多くのデータ点のそれぞれに対して、基点と、信号の複数の他のデータ点との間の勾配を計算することにより勾配が決定される。計算された勾配は、最も一般的な、または優位な勾配などの所望の勾配を決定するために比較される。
【背景技術】
【0003】
勾配が計算されてもよい基点は任意の好適な方法を用いて選択されてもよい。例えば、基点はプロット上の(0,0)の値を有していてもよく、または基点は信号のデータ点に対応してもよい。あるいは、基点はプロット内の信号の中点を用いて反復過程を通じて位置付けられてもよい。あるいは、基点は、プロットの各データ点と、他の各データ点との間の勾配値を計算して、各データ点から計算された勾配値の各組に対するヒストグラムを構成することにより位置付けられてもよい。勾配値の所与の組に対して計算された優位な勾配値を取り囲む最も幅の狭いピークを有するヒストグラムは、勾配値が計算されたデータ点が適切な基点であるということを示している可能性がある。あるいは、プロット内の任意点、または任意の信号データ点が、勾配値を取得するための基点としての役目を果たしてもよい。例えば、信号に関連する較正情報が、関心のある正確な勾配が特定の点またはデータ点を通る可能性があることを示しているとき、勾配値は、そのデータ点から計算されてもよい。あるいは、勾配はプロット上のデータ点と、信号が由来するシステムとの整合性を有すると分かっている可能性がある、または推定される可能性がある1つ以上の基点との間で計算されてもよい。あるいは、基点はプロット内のデータ点のすべての対を直線で結ぶことにより選択されてもよく、直線の最大密度の位置が基点と見なされてもよい。あるいは、基点は他の情報源からの情報を用いて選択されてもよい。例えば、二次元リサジュー図形は、任意の好適な個数の二次元リサジュー図形を含んでいてもよい三次元リサジュー図形から選択されてもよい。選択された二次元リサジュー図形の基点を決定するために他の二次元リサジュー図形からのデータが使用されてもよい。
【発明の概要】
【課題を解決するための手段】
【0004】
実施形態では、プロットされた信号が、任意の好適な個数のウェーブレット変換表面を走査することにより導出されたリサジュー図形であってもよい。リサジュー図形はゼロ値または基点を中心としてもよい。リサジュー図形は、別々に、または繰り返して基点の位置を導出する必要なく基点の周囲で振動していてもよいため、勾配値が基点から計算されて、それにより計算時間を低減してもよい。
【0005】
いくつかの実施形態では、計算された勾配のそれぞれがヒストグラムを生成するために使用されてもよい。例えば、ヒストグラムは信号の最大の勾配または優位な勾配で最大値を示してもよい。実施形態では、信号内のデータ点のすべてが勾配値を計算するために使用されたかどうかにかかわらず、所望の勾配値はプロットされた信号の優位な勾配に対応してもよい。他の二次的な勾配(例えば、中心から離れたデータ点を用いて信号の勾配を計算することに起因する勾配値)が、例えば、最大値から離間した値でヒストグラム上に存在し、かつ表される可能性があるため、二次的な勾配は優位な勾配値に影響を与えない可能性がある。実施形態では、二次的な勾配が所望の勾配であってもよく、例えば、不自然な結果が信号の大半を占めている場合には、優位な勾配が誤った(例えば、不自然な)勾配に起因する可能性がある。所望の勾配が、ヒストグラムから選択された好ましい値に対応してもよいことを理解すべきである。実施形態では、好ましい値がヒストグラムの最大値に対応してもよく、所望の勾配が、プロットされた信号の優位な勾配を表してもよい。実施形態では、好ましい値がヒストグラムの二次的なピークに対応してもよく、所望の勾配が、プロットされた信号の二次的な勾配を表してもよい。
【0006】
実施形態では、プロットされた信号の各データ点を用いて所望の勾配が決定されてもよい。あるいは、実施形態では、計算時の信号内の不自然な結果(例えば、雑音)の影響をあらかじめ取り除いておくために、互いに極めて接近したデータ点は勾配を計算する際に無視されてもよい。他の好適な実施形態では、時間的に、または他の任意の好適な測定単位において接近したデータ点が、勾配を計算する際に無視されてもよい。実施形態では、二次的な勾配が所望の勾配を表してもよく、優位な勾配が誤った勾配に起因する可能性がある。したがって、ヒストグラム内のどの極大が所望されても選択する柔軟性が許容されてもよい。基点からの勾配だけを計算することは、プロットの非常に異なる部分上に位置する可能性があるデータ点の間で計算される場合がある多くの誤った勾配を取り除く可能性がある。ヒストグラムは、より分離された勾配分布を提供する可能性があり、この勾配分布からは、所望の情報が導出される可能性があり、その理由は、ヒストグラム内の各ピークが、より明確である可能性があるためである。ヒストグラムは中心から離れたデータ点が非優位のピーク(複数可)として現れることを許容するため、任意の好適な二次的信号成分または不自然な結果に起因する信号の中に含まれる1つ以上の二次的な勾配を決定する際にヒストグラムが役立つ可能性がある。
【0007】
上述の勾配決定法は任意の好適な状況で使用されてもよい。いくつかの実施形態では、上述の勾配決定法が雑音低減アルゴリズムで使用される。実施形態では、プロットされた信号の優位な勾配を決定することに関連する信頼基準が開発されてもよい。実施形態では、優位な勾配の計算の信頼度を測定するためにヒストグラムの形が使用されてもよい。実施形態では、もともとの信号に対して直線フィッティングするために、ヒストグラムからの優位な勾配の値が使用されてもよい。
【0008】
限定するためにではなく、わかり易くするために、本明細書で開示するいくつかの実施形態は、光電脈波(PPG)信号などのウェーブレット変換された信号から生理的パラメータを決定するためのプロセスを含んでいてもよく、さらに詳細には、ウェーブレット変換されたPPG信号から酸素飽和度(SpO)を決定するために開示される。このような方法では、三次元リサジュープロットがPPG信号のウェーブレット変換(すなわち、赤色光信号および赤外線光信号のウェーブレット変換)から導出される。主軸に沿って広がる最大値と、主軸に対して直交する軸に沿って広がる最小値とを有する二次元リサジュープロットを見つけるためにリサジュープロットが調べられる。本明細書に記載の方法を用いて二次元リサジュープロットから代表的勾配が計算される。勾配はSpOルックアップ表に索引を付けるために使用され、または勾配はPPG信号が取得された患者の酸素飽和度レベルを決定するために較正方程式で使用される。
【0009】
実施形態では、プロット上の信号の勾配を決定するための方法が提供される。方法は、プロットの基点を特定することと、プロットの基点と、信号内の少なくとも2点との間の勾配を決定することと、勾配からヒストグラムを生成することと、ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択することと、を含んでいてもよい。
【0010】
実施形態では、プロット上の信号の勾配を決定するためのシステムが提供される。システムは、信号を生成する入力信号発生器と、入力信号発生器に接続されたプロセッサと、プロセッサに接続された出力と、を含んでいてもよい。出力は勾配に少なくとも部分的に基づいて情報を表示できてもよい。プロセッサは、プロットの基点を特定でき、プロットの基点と、信号内の少なくとも2点との間の勾配を決定でき、勾配からヒストグラムを生成でき、ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択できてもよい。
【0011】
実施形態では、プロット上の信号の勾配の決定で用いるコンピュータ可読媒体が提供される。コンピュータ可読媒体は、プロットの基点を特定し、プロットの基点と、信号内の少なくとも2点との間の勾配を決定し、勾配からヒストグラムを生成し、ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択するために、その上に記録された計算機プログラム命令を含んでいてもよい。
【0012】
特許または出願ファイルは色刷りで作成された少なくとも1つの図面を含んでいる。カラー図面を含む本特許または本特許出願公報のコピーは、要求に応じて、および必要な手数料の支払いが済み次第、所轄当局により提供される。
【0013】
本開示の上述の、および他の特徴、本開示の本質、ならびにさまざまな利点は、添付図面と照らしあわせて下記の詳細な説明を検討すれば、さらに明らかになる。
【図面の簡単な説明】
【0014】
【図1】実施形態の説明に役立つパルス酸素測定システムを示している。
【図2】実施形態の患者に接続された図1の説明に役立つパルス酸素測定システムのブロック図である。
【図3(a)】実施形態のPPG信号から導出されたスケイログラムの説明図を示している。
【図3(b)】実施形態のPPG信号から導出されたスケイログラムの説明図を示している。
【図3(c)】実施形態の2つの適切な成分を含む信号から導出された説明に役立つスケイログラムを示している。
【図3(d)】実施形態の図3(c)の凸部に関連している信号の説明に役立つ模式図と、これらの新規に導出された信号のさらなるウェーブレット分解の説明に役立つ模式図と、を示している。
【図3(e)】実施形態の逆連続ウェーブレット変換の実行にかかわる説明に役立つステップのフローチャートである。
【図3(f)】実施形態の逆連続ウェーブレット変換の実行にかかわる説明に役立つステップのフローチャートである。
【図4】いくつかの実施形態の説明に役立つ連続ウェーブレット処理システムのブロック図である。
【図5(a)】実施形態のプロットされた信号の説明に役立つ模式図を示している。
【図5(b)】実施形態の図5(a)でプロットされた信号の計算された勾配値のヒストグラムを示している。
【図5(c)】実施形態の図5(a)でプロットされた信号の計算された勾配値のヒストグラムを示している。
【図6】実施形態の信号の勾配を決定するための説明に役立つプロセスのフローチャートである。
【図7】実施形態の検出された2つの信号のプロットを示している。
【図8】実施形態の図7の検出された信号のそれぞれの変換表面を示している。
【図9】実施形態の図8の変換表面から少なくとも部分的に導出された三次元リサジュー図形を示している。
【図10】実施形態の図9の三次元リサジュー図形から選択されたリサジュー図形を示している。
【図11】実施形態の図10の選択されたリサジュー図形の勾配のヒストグラムを示している。
【図12】実施形態の雑音アルゴリズムが二次元リサジュー図形に適用された後に、患者の血液酸素飽和度を決定するための説明に役立つプロセスのフローチャートである。
【図13】実施形態のヒストグラムから信頼基準を生成するための説明に役立つプロセスのフローチャートである。
【発明を実施するための形態】
【0015】
本開示は、一般に、信号処理に関し、さらに詳細には、本開示は、例えば、2つの光電脈波(PPG)信号から導出されたリサジュー図形などの信号の勾配を決定することに関する。
【0016】
酸素濃度計は血液の酸素飽和度を測定してもよい医療機器である。1つのよくある種類の酸素濃度計はパルス酸素濃度計であり、このパルス酸素濃度計は(患者から取られた血液サンプルを分析することにより酸素飽和度を直接的に測定することとは対照的に)患者の血液の酸素飽和度と、皮膚内の血液容量の変化とを間接的に測定してもよい。また、血液酸素飽和測定の補助として、パルス酸素濃度計は、患者の脈拍数を測定するために使用されてもよい。パルス酸素濃度計は、動脈血中のヘモグロビンの酸素飽和度を含むが、これに限らないさまざまな血流特性を通常測定して表示する。
【0017】
酸素濃度計は、通常、指先、足指、額、もしくは耳たぶ、または新生児の場合には足を横切るようにして患者の所定の部位に取り付けられる光センサを含んでいてもよい。酸素濃度計は、血液がかん流した生体組織を通して光源を用いて光を通過させて、生体組織中での光の吸収を光電的に検知してもよい。例えば、酸素濃度計は、光センサで受信される光強度を時間の関数として測定してもよい。時間に対する光強度を表す信号、またはこの信号の数学的操作(例えば、この信号のスケーリングされたバージョン、この信号の対数、この信号の対数のスケーリングされたバージョンなど)は、光電脈波(PPG)信号と呼ばれてもよい。さらにまた、用語「PPG信号」は、本明細書で使用するように、吸収信号(すなわち、生体組織により吸収された光量を表す信号)、または吸収信号の任意の好適な数学的操作を示してもよい。その後、光強度または吸収された光量は、測定中の血液成分量(例えば、酸素ヘモグロビンなど)と、それぞれの個々の脈拍が生成されているときには脈拍数と、を計算するために使用されてもよい。
【0018】
生体組織を通過する光は、血液中に存在する血液成分量を代表する量の血液により吸収される1つ以上の波長であるように選択されている。生体組織を通り抜ける光量は、生体組織内の血液成分の変化量と、関連する光吸収とに基づいて変化する。低酸素飽和度を有する血液に比べて、酸素を非常に豊富に含む血液は、赤色光については相対的に少なくしか吸収しないが、逆に赤外線光はより多く吸収することが観察されているため、赤色および赤外線の波長が使用されてもよい。脈拍周期内の異なる点で2つの波長の強度を比較することにより、動脈血中のヘモグロビンの血液酸素飽和度を推定できる。
【0019】
測定される血液パラメータがヘモグロビンの酸素飽和度であるとき、便利な出発点は部分的にランバート−ベーアの法則に基づく飽和計算を仮定する。本明細書では下記の表記法が使用される:
【数1】

ここで、
λ=波長、
t=時間、
I=検出される光強度、
=伝達された光強度、
s=酸素飽和度、
β、β=実験的に導出された吸収係数、
l(t)=時間の関数としての、濃度と、放射体から検出器までの経路長との組み合わせ。
【0020】
従来の方法は2つの波長(例えば、赤色および赤外線(IR))で光吸収を測定し、その後、下記のように「比率の比率」について解くことにより飽和度を計算する。
1.最初に、IRおよび赤色に対して(1)の自然対数を取る(自然対数を表すために「log」が使用される)
【数2】

2.その後、(2)を時間に関して微分する
【数3】

3.赤色(3)をIR(3)で割る
【数4】

4.sについて解く
【数5】

離散時間に注目すると、
【数6】

logA−logB=logA/Bを用いて、
【数7】

したがって、(4)は
【数8】

に書き直すことができ、
ここで、Rは「比率の比率」を表している。(5)を用いて(4)をsについて解くと
【数9】

が得られる。
(5)から、Rは2点(例えば、最大PPGおよび最小PPG)または点の群を用いて計算できる。点の群を使用する1つの方法は(5)の変更バージョンを使用する。
関係
【数10】

を用いると
(5)は
【数11】

になり、
(7)は、xに対するyの勾配がRを与える点の集団を規定し、ここで、
【数12】

である。
【0021】
図1はパルス酸素測定システム10の実施形態の斜視図である。システム10は、センサ12とモニタ14とを含んでいてもよい。センサ12は、2つ以上の波長の光を患者の生体組織の中へ光を放射する放射体16を含んでいてもよい。また、検出器18は、もともと放射体16から放射されて生体組織を通過した後に患者の生体組織から出て来た光を検出するためにセンサ12内に提供されてもよい。
【0022】
実施形態によれば、後述するように、システム10は、単一センサ12の代わりに、センサアレイを形成する複数のセンサを含んでいてもよい。センサアレイのセンサのそれぞれは、相補型金属酸化膜半導体(CMOS)センサであってもよい。あるいは、アレイの各センサは電荷結合素子(CCD)センサであってもよい。他の実施形態では、センサアレイはCMOSセンサとCCDセンサの組み合わせで構成されていてもよい。CCDセンサは、感光領域と、データを送受信するための伝送領域とを含んでいてもよく、他方、CMOSセンサは画素センサのアレイを有する集積回路で構成されていてもよい。各ピクセルは光検出器と能動増幅器とを有していてもよい。
【0023】
実施形態によれば、放射体16および検出器18は手の指または足の指などの指を挟んで両側にあってもよく、その場合、生体組織から出て来た光は指を完全に通り抜けている。実施形態では、放射体16および検出器18は、患者の額からパルス酸素測定データを取得するように設計されたセンサなどのように、放射体16からの光が生体組織に入り込み、生体組織により反射されて検出器18の中へ入るように配置されてもよい。
【0024】
実施形態では、センサまたはセンサアレイは、図示のようにモニタ14に接続されてモニタ14から電力を得てもよい。他の実施形態では、センサは無線でモニタ14に接続され、それ自身のバッテリまたは同様の電源(図示せず)を含んでいてもよい。モニタ14は、光の放射および検出に関連するセンサ12から受信されたデータに少なくとも部分的に基づいて生理的パラメータを計算するように構成されてもよい。他の実施形態では、計算はモニタリング装置自体の上で実行されてもよく、酸素測定示度の結果はモニタ14に送られてもよい。さらに、モニタ14は生理的パラメータまたはシステムに関する他の情報を表示するように構成された表示部20を含んでいてもよい。図示の実施形態では、また、モニタ14は、例えば、患者の生理的パラメータが所定の正常範囲からはずれている場合に音声警報を鳴らすなどの他のさまざまな実施形態で使用してもよい可聴音を提供するためにスピーカ22を含んでいてもよい。
【0025】
実施形態では、センサ12またはセンサアレイは、ケーブル24を介してモニタ14に通信可能なように接続されてもよい。しかしながら、他の実施形態では、無線送信装置(図示せず)などが、ケーブル24の代わりに、またはケーブル24に加えて使用されてもよい。
【0026】
また、図示の実施形態では、パルス酸素測定システム10がマルチパラメータ患者監視装置26を含んでいてもよい。監視装置はブラウン管型、液晶ディスプレイ(LCD)もしくはプラズマディスプレイなどのフラットパネルディスプレイ(図示のような)、または知られている、もしくは後から開発される他の任意の種類の監視装置であってもよい。マルチパラメータ患者監視装置26は生理的パラメータを計算するように構成されてもよく、ならびにモニタ14からの情報のために、および他の医療モニタリング装置またはシステム(図示せず)からの情報のために、表示部28を提供するように構成されてもよい。例えば、マルチパラメータ患者監視装置26は、パルス酸素測定モニタ14により生成された患者の血液酸素飽和度(「SpO」測定値と呼ばれる)の推定値と、モニタ14からの脈拍数情報と、血圧監視装置(図示せず)からの血圧と、を表示部28上に表示するように構成されてもよい。
【0027】
モニタ14は、センサ入力ポートまたはデジタル通信ポートにそれぞれ接続されたケーブル32または34を介して、マルチパラメータ患者監視装置26に通信可能なように接続されてもよく、および/または無線で通信してもよい(図示せず)。さらに、モニタ14および/またはマルチパラメータ患者監視装置26は、サーバまたは他のワークステーション(図示せず)と情報を共有できるようにするためにネットワークに接続されてもよい。モニタ14はバッテリ(図示せず)により、または壁コンセントのような従来の電源により電力を供給されてもよい。
【0028】
図2は、実施形態に基づいて患者40に接続されてもよい図1のパルス酸素測定システム10のようなパルス酸素測定システムのブロック図である。センサ12およびモニタ14の説明に役立つある特定の構成要素が図2に示されている。センサ12は、放射体16と、検出器18と、エンコーダ42とを含んでいてもよい。図示の実施形態では、放射体16が少なくとも2つの波長の光(例えば、赤色およびIR)を患者の生体組織40の中に放射するように構成されてもよい。したがって、放射体16は、患者の生理的パラメータを計算するために使用される波長の光を患者の生体組織40の中に放射するために、赤色発光ダイオード(LED)44のような赤色発光光源と、IRのLED46のようなIR発光光源と、を含んでいてもよい。一実施形態では、赤色波長は約600nmと約700nmの間であってもよく、IR波長は約800nmと約1000nmの間であってもよい。単一センサの代わりにセンサアレイが使用される実施形態では、各センサは単一波長を放射するように構成されてもよい。例えば、第1のセンサは赤色光だけを放射し、他方、第2のセンサはIR光だけを放射する。
【0029】
本明細書で使用するように、用語「光」は、放射源により作り出されるエネルギーを示してもよく、超音波、電波、マイクロ波、ミリメートル波、赤外線、可視光線、紫外線、ガンマ線、またはX線電磁波のうちの1つ以上を含んでいてもよいことが理解される。また、本明細書で使用するように、光は、電波、マイクロ波、赤外線、可視光線、紫外線、またはX線スペクトルの中の任意の波長を含んでいてもよく、任意の好適な波長の電磁波が本技術とともに使用するのに適している可能性がある。検出器18は、放射体16の選ばれて目標とされたエネルギースペクトルに対して特に感度がよいように選択されてもよい。
【0030】
実施形態では、検出器18は赤色およびIR波長の光強度を検出するように構成されてもよい。あるいは、アレイ内の各センサは単一波長の強度を検出するように構成されてもよい。動作について見ると、光は患者の生体組織40を通り抜けた後に検出器18に入射してもよい。検出器18は、受信された光の強度を電気信号に変換してもよい。光強度は生体組織40内の光の吸光度および/または反射率に直接関係している。すなわち、ある特定の波長の光がより多く吸収されたり、またはより多く反射されたりするとき、生体組織から戻ってくるその波長の光はより少なく検出器18により受信される。受信された光を電気信号に変換した後に、検出器18はモニタ14に信号を送信してもよく、患者の生体組織40内での赤色およびIR波長の吸収に基づいて生理的パラメータが計算されてもよい。
【0031】
実施形態では、エンコーダ42は、センサ12がどんな種類のセンサであるか(例えば、センサが額または指のどちらに取り付けることを目的としているのかなど)、および放射体16により放射される光の波長などのセンサ12に関する情報を含んでいてもよい。この情報は、モニタ14内に保存された適切なアルゴリズム、ルックアップ表、および/または較正係数を選択して患者の生理的パラメータを計算するためにモニタ14により使用されてもよい。
【0032】
エンコーダ42は、例えば、患者の年齢、体重、および診断のような患者40に固有の情報を含んでいてもよい。この情報が、モニタ14に、例えば、患者の生理的パラメータ測定値が入るべき患者固有のしきい値範囲などを決定することを可能にしてもよく、付加的な生理的パラメータアルゴリズムを有効にしたり、または無効にしたりすることを可能にしてもよい。エンコーダ42は、例えば、センサ12の種類に対応する値、もしくはセンサアレイ内の各センサの種類に対応する値、センサアレイの各センサ上の放射体16により放射される光の波長、および/または患者の特徴を保存するコード化されたレジスタであってもよい。他の実施形態では、エンコーダ42はメモリを含んでいてもよく、このメモリ上には下記の情報、すなわち、センサ12の種類、放射体16により放射される光の波長、センサアレイ内の各センサがモニタしている特定の波長、センサアレイ内の各センサに対する信号しきい値、他の任意の好適な情報、またはそれらの任意の組み合わせのうちの1つ以上がモニタ14と通信するために保存されていてもよい。
【0033】
実施形態では、検出器18とエンコーダ42とからの信号は、モニタ14に送信されてもよい。図示の実施形態では、モニタ14は、内部バス50に接続された汎用マイクロプロセッサ48を含んでいてもよい。マイクロプロセッサ48はソフトウェアを実行するようになされていてもよく、このソフトウェアには、本明細書で説明する機能を実行する一環として、オペレーティングシステムおよび1つ以上のアプリケーションを含んでいてもよい。また、読み出し専用メモリ(ROM)52、ランダムアクセスメモリ(RAM)54、ユーザ入力56、表示部20、およびスピーカ22もバス50に接続されていてもよい。
【0034】
RAM54およびROM52は一例として示されており、それらに限定するものではない。システム内にデータを記憶するために任意の好適なコンピュータ可読媒体が使用されてもよい。コンピュータ可読媒体は、マイクロプロセッサ48により解釈できる情報を保存できる。この情報はデータであってもよく、またはマイクロプロセッサに特定の機能および/またはコンピュータにより実現される方法を実行させる、ソフトウェアアプリケーションのようなコンピュータ実行可能命令の形を取ってもよい。実施形態に応じて、このようなコンピュータ可読媒体は、コンピュータ記憶媒体およびコンピュータ通信媒体を含んでいてもよい。コンピュータ記憶媒体は、コンピュータ可読命令、データ構造、プログラムモジュール、または他のデータなどの情報記憶用に任意の方法または技術で実現される揮発性および不揮発性の、取り外し可能および取り外し不可能な媒体を含んでいてもよい。コンピュータ記憶媒体は、RAM、ROM、EPROM、EEPROM、フラッシュメモリもしくは他の固体メモリ技術、CD−ROM、DVD、もしくは他の光学式記憶、磁気カセット、磁気テープ、磁気ディスク記憶装置、もしくは他の磁気記憶デバイス、または所望情報を保存するのに使用でき、システムの構成要素によりアクセスできる他の任意の媒体を含んでいてもよいが、これらに限らない。
【0035】
図示の実施形態では、タイムプロセッシングユニット(TPU)58が光駆動回路60にタイミング制御信号を提供してもよく、TPU58は放射体16をいつ発光させるかの制御と、赤色LED44およびIRのLED46に対する多重化されたタイミングの制御とを行ってもよい。また、TPU58は、検出器18から増幅器62とスイッチング回路64とを介しての信号のゲートインを制御してもよい。これらの信号は、どの光源を発光させるのかに応じて適切な時間にサンプリングされる。検出器18からの受信信号は、増幅器66、低域フィルタ、およびアナログデジタル変換器70を介して送られてもよい。その後、デジタルデータは、後でキュー待ちシリアルモジュール(QSM)72(またはバッファ)がいっぱいになったときにRAM54にダウンロードするまで、QSM72内に保存されてもよい。一実施形態では、受信された複数の光の波長またはスペクトルのための増幅器66と、フィルタ68と、A/Dコンバータ70とを有する複数の個別の平行な経路があってもよい。
【0036】
実施形態では、検出器18により受信された光に対応する受信信号および/またはデータの値に基づいてさまざまなアルゴリズムおよび/またはルックアップ表を用いて、マイクロプロセッサ48は、SpO、および脈拍数などの患者の生理的パラメータを決定してもよい。患者40に関する、および特に患者の生体組織から時間とともに出て来る光強度に関する情報に対応する信号は、エンコーダ42からデコーダ74に伝達されてもよい。これらの信号は、例えば、患者の特徴に関連する符号化された情報などを含んでいてもよい。デコーダ74は、これらの信号を変換して、ROM52内に保存されたアルゴリズムまたはルックアップ表に基づいてマイクロプロセッサがしきい値を決定できるようにしてもよい。年齢、体重、身長、診断、投薬、治療などのような患者に関する情報を入力するために、ユーザ入力56が使用されてもよい。実施形態では、表示部20は、患者に一般的に適用される可能性があり、ユーザ入力56を用いてユーザが選択してもよい、例えば、年齢幅または薬物療法群などの値のリストを示してもよい。
【0037】
生体組織の中を通る光信号は、他の発生源の中の雑音により劣化する可能性がある。1つの雑音源は光検出器に到達する周辺光である。他の雑音源は他の電子計器からの電磁結合である。また、患者の動きも雑音を導入して、信号に影響を与える。例えば、動きにより、検出器と皮膚の間の接触、または放射体と皮膚の間の接触が皮膚から離れると、どちらかの接触が一時的に途絶える可能性がある。さらに、血液は流体であるため、慣性効果に対して血液が周囲組織とは異なる反応を表し、その結果、酸素濃度計プローブが取り付けてある点の体積の瞬間的変化をもたらす。
【0038】
雑音(例えば、患者の動きによる)は、医師により信頼されたパルス酸素測定信号を医師も気付かぬ間に劣化させる可能性がある。このことは、離れたところから患者をモニタリングしているとき、動きが小さ過ぎて観察できないとき、または医師が、センサ位置ではなく、機器または患者の他の部分を見ているときに特に当てはまる。パルス酸素測定(すなわち、PPG)信号を処理することは、PPG信号から導出される生理的パラメータの測定値に雑音が影響を与えるのを防ぐために、信号中に存在している雑音量を減少させたり、または、そうでなければ、雑音成分を特定したりする操作を含んでいてもよい。
【0039】
本開示が任意の好適な信号に適用できること、およびPPG信号は単に説明のために使用されているに過ぎないことが理解される。当業者は本開示が、他の生体信号(例えば、心電図、脳波、胃電図、筋電図、心拍信号、病理音、超音波、もしくは他の任意の好適な生体信号など)、動的信号、非破壊試験信号、状態監視信号、流体信号、地球物理学的信号、天文学的信号、電気信号、財務指標を含む財政的信号、音響および音声信号、化学信号、気候指標を含む気象学的信号、ならびに/または他の任意の好適な信号、ならびに/またはそれらの任意の組み合わせを含むが、これらに限らない他の信号に対しても広い適用性を有していることを認識する。
【0040】
一実施形態では、PPG信号が連続ウェーブレット変換を用いて変換されてもよい。PPG信号の変換から導出された(すなわち、ウェーブレット空間内の)情報は、1つ以上の生理的パラメータの測定値を提供するために使用されてもよい。
【0041】
本開示に基づく信号x(t)の連続ウェーブレット変換は、
【数13】

のように定義されてもよく、
ここで、ψ(t)はウェーブレット関数ψ(t)の複素共役であり、aはウェーブレットの拡張パラメータであり、bはウェーブレットの位置パラメータである。式(9)で与えられる変換は、変換表面上の信号の表現を構成するために使用されてもよい。変換はタイムスケール表現と見なされてもよい。ウェーブレットは、さまざまな周波数から構成されており、それらの周波数のうちの1つはウェーブレットの特性周波数として示されてもよく、ウェーブレットに関連する特性周波数はスケールaに反比例する。特性周波数の一例は優位周波数である。特定のウェーブレットの各スケールは、異なる特性周波数を有していてもよい。タイムスケールの中で実現するために必要な基本的な数学的詳細については、例えば、Paul S.Addison著、The Illustrated Wavelet Transform Handbook(Taylor&Francis Group 2002)に記載があり、当該文献はその全体が参照により本明細書に組み込まれる。
【0042】
連続ウェーブレット変換は、一般に時間について高度に局在化しているウェーブレットを用いて信号を分解する。連続ウェーブレット変換は、離散変換と比較して、より高い分解能を提供する可能性があるため、フーリエ変換(もしくは他の任意のスペクトル技法)などの典型的な周波数変換または離散ウェーブレット変換で達成されるよりも、より多くの情報を信号から集める能力を提供する。連続ウェーブレット変換は、信号の関心のあるスケールに亘るスケールを用いて、さまざまなウェーブレットの使用を可能にして、小さいスケールの信号成分は、より小さいスケールのウェーブレットと関連しているため、小さいスケールの信号成分が、変換において高エネルギーで、より小さいスケールで現れるようになっている。同様に、大きなスケールの信号成分は、より大きなスケールのウェーブレットと関連しているため、大きなスケールの信号成分が、変換において高エネルギーで、より大きなスケールで現れるようになっている。その結果、異なるスケールの成分は分離されて、ウェーブレット変換領域に抽出されてもよい。さらに、スケールおよび時間位置において連続範囲のウェーブレットを使用することにより、離散技法に対して可能であるよりも、より高分解能の変換が可能になる。
【0043】
さらに、信号または他の任意の種類のデータを、スペクトル(すなわち、周波数)領域に変換する変換および操作は、二次元座標系において一連の周波数変換値を必然的に生成し、2つの次元は周波数および、例えば、振幅であってもよい。例えば、任意の種類のフーリエ変換は、このような二次元スペクトルを生成する。対照的に、連続ウェーブレット変換などのウェーブレット変換は、三次元座標系に規定されることが必要であり、時間、スケール、および、例えば、振幅の次元を有する表面を生成する。したがって、スペクトル領域で実行される操作はウェーブレット領域では実行できず、その代わりに、ウェーブレット表面をスペクトルに変換しなければならない(すなわち、ウェーブレット表面を時間領域に変換するために逆ウェーブレット変換を実行して、その後、時間領域からスペクトル変換を実行することにより)。逆に、ウェーブレット領域で実行される操作はスペクトル領域では実行できず、その代わりに、最初にスペクトルをウェーブレット表面に変換しなければならない(すなわち、スペクトル領域を時間領域に変換するために逆スペクトル変換を実行して、その後、時間領域からウェーブレット変換を実行することにより)。例えば、時間における特定の点に沿った三次元ウェーブレット表面の断面もまた、スペクトルに基づく技法を使用してもよい周波数スペクトルとは同じではない。少なくともウェーブレット空間が時間次元を含んでいるため、スペクトル技法およびウェーブレット技法は交換可能ではない。スペクトル領域処理に依存するシステムを、ウェーブレット空間処理に依存するシステムに変換するためには、ウェーブレット空間処理に適合させるためにシステムに対して大幅かつ基本的な修正を必要とするということが理解される。(例えば、信号または信号の一部に対する代表的エネルギー値を導出するには、ウェーブレット領域で時間およびスケール全体にわたって二度積分する必要があるが、逆に、スペクトル領域から代表的エネルギー値を導出するには、周波数全体にわたって一度の積分が必要である)。さらなる実施例では、時間信号を再構成するには、ウェーブレット領域で時間およびスケール全体にわたって二度積分する必要があるが、逆に、スペクトル領域から時間信号を導出するには、周波数全体にわたって一度の積分が必要である。振幅に加えて、または振幅に代わるものとして、特に、エネルギー密度、絶対値、位相などのパラメータすべてが、このような変換を用いて生成されてもよいことと、三次元ウェーブレット座標系ではなく、二次元周波数座標系において定義された場合、これらのパラメータは非常に異なる背景および意味を有することとが当技術分野で知られている。例えば、フーリエシステムの位相は、すべての周波数について単一原点に関して計算されるが、ウェーブレットシステムの位相はウェーブレットの位置(多くの場合、時間における位置)およびスケールに関して二次元に展開される。
【0044】
ウェーブレット変換のエネルギー密度関数、すなわち、スケイログラムは
【数14】

のように定義され、
ここで、「||」はモジュロ演算子である。スケイログラムは有用な目的のために再スケーリングされてもよい。1つの一般的な再スケーリングは
【数15】

のように定義され、
例えば、モーレットウェーブレットが使用されるときにウェーブレット空間内の凸部を定義するのに有用である。凸部は平面内の極大点の軌跡と定義される。凸部の任意の妥当な定義が方法において使用されてもよい。また、極大の軌跡から動かされる経路も本明細書の凸部の定義として含まれる。平面内の極大点の軌跡だけに対応している凸部は、「最大凸部」と名付けられる。
【0045】
高速数値計算を要求する実施態様に対して、ウェーブレット変換はフーリエ変換を用いて近似として表されてもよい。たたみこみ定理によれば、ウェーブレット変換は信号とウェーブレット関数との相互相関であるため、ウェーブレット変換は、信号のフーリエ変換と、それぞれの要求されるaスケールに対するウェーブレットのフーリエ変換との積の逆FFTの結果に
【数16】

を乗じたものに関して近似されてもよい。
【0046】
本明細書で後述する技術の説明では、「スケイログラム」は、スケーリングされていない当初のウェーブレット表現、線形再スケーリング、ウェーブレット変換の絶対値の任意の累乗、または他の任意の好適な再スケーリングを含むが、これらに限らない再スケーリングのすべての好適な形を含むと解釈されてもよい。さらに、わかり易く簡潔にするために、用語「スケイログラム」は、ウェーブレット変換、T(a、b)自体、またはT(a、b)の任意の部分を意味すると解釈されるべきである。例えば、ウェーブレット変換の実部、ウェーブレット変換の虚部、ウェーブレット変換の位相、ウェーブレット変換の他の任意の好適な部分、またはそれらの任意の組み合わせが、用語「スケイログラム」で表されることを意図している。
【0047】
代表的時間周期と解釈されてもよいスケールは、ウェーブレット関数の特性周波数に変換されてもよい。任意のaスケールのウェーブレットに関連する特性周波数は、
【数17】

で与えられ、
ここで、マザーウェーブレット(すなわち、a=1における)の特性周波数fはスケーリング定数になり、fは任意のスケールaにおけるウェーブレットに対する代表的周波数または特性周波数である。
【0048】
任意の好適なウェーブレット関数が本開示に関連して使用されてもよい。最も一般的に使用されている複雑なウェーブレットの1つであるモーレットウェーブレットは
【数18】

のように定義され、
ここで、fはマザーウェーブレットの中心周波数である。括弧内の第2項はガウス窓の中の複雑な正弦曲線のノンゼロ平均を補正するため補正項として知られている。実際には、括弧内の第2項はf>>0の値に対して無視し得る程度に小さくなって無視でき、その場合、モーレットウェーブレットは
【数19】

のような簡単な形で書くことができる。
【0049】
このウェーブレットは、スケーリングされたガウスエンベロープの中の複合波である。本明細書にはモーレットウェーブレットの両方の定義が含まれているが、式(14)の関数はノンゼロ平均を有しているため厳密に言えばウェーブレットではない(すなわち、式(14)の関数の対応するエネルギースペクトルのゼロ周波数項はノンゼロである)。しかしながら、式(14)はf>>0のとき極めて小さい誤差で実際に使用されてもよく、(他の同様の似通ったウェーブレット関数とともに)本明細書のウェーブレットの定義に含まれることが当業者により認識される。ウェーブレット関数の定義を含む基本的なウェーブレット理論のより詳しい概説については一般的文献に記載がある。本明細書では、信号のウェーブレット分解からウェーブレット変換機能がどのように引き出される可能性があるかについて検討されている。例えば、PPG信号のウェーブレット分解は医療機器の中で臨床的に有用な情報を提供するために使用されてもよい。
【0050】
実施形態では、信号の適切な反復特徴が、ウェーブレット空間または再スケーリングされたウェーブレット空間内にタイムスケール帯域を生じさせる可能性がある。例えば、PPG信号の脈拍成分は、ウェーブレット空間内の脈拍周波数の位置に、または脈拍周波数の周囲に、優位な帯域を作り出す。図3(a)および図3(b)は、実施形態のPPG信号から導出された説明に役立つスケイログラムの2つの図を示している。図3(a)および図3(b)は、このような信号内の脈拍成分に起因する帯域の例を示している。脈拍帯域は図3(a)のプロット内の点線の間に位置している。帯域はスケイログラムを横切る一連の優位な合体形状から形成されている。これは、プロット内に矢印で示されたスケールの領域(毎分60拍に対応する)の中にある図3(b)の変換表面を横切る隆起した帯域としてはっきりと分かる。スケールに関するこの帯域の最大値は凸部である。凸部の軌跡は図3(b)の帯域の上部の黒色曲線として示されている。式(11)で与えられるようなスケイログラムの適切な再スケーリングを使用することにより、ウェーブレット空間内にある凸部が、信号の瞬時周波数に関連している可能性がある。このようにして、脈拍数がPPG信号から求められてもよい。また、スケイログラムを再スケーリングする代わりに、ウェーブレット表面上の凸部から求められたスケールと、実際の脈拍数との間の適切な所定の関係が、脈拍数を決定するために使用されてもよい。
【0051】
実施形態では、脈拍凸部のタイムスケール座標を、ウェーブレット変換により得られたウェーブレット位相情報上へ写像することにより、個々の脈拍が捕捉されてもよい。このようにして、個々の脈拍と、各脈拍の中の成分のタイミングとの間の両方の時間が、心拍異常を検知したり、動脈系コンプライアンスを測定したり、または他の任意の好適な計算または診断を実行したりするために監視され使用されてもよい。凸部の他の定義が使用されてもよい。凸部と、脈拍周波数の発生との間の他の関係が使用されてもよい。
【0052】
上述のように、信号内の適切な反復特徴は、ウェーブレット空間または再スケーリングされたウェーブレット空間内にタイムスケール帯域を生じさせる。周期信号に対して、この帯域はタイムスケール平面内に一定のスケールで残る。多くの実際の信号では、特に、生物学的信号では、帯域は非定常であり、スケール、振幅、またはその両方が時間とともに変化してもよい。図3(c)は、実施形態の変換空間内に2つの帯域を生じさせる2つの適切な成分を含む信号のウェーブレット変換の説明に役立つ模式図を示している。これらの帯域は、ウェーブレット表面の三次元模式図上で帯域Aおよび帯域Bと名付けられている。実施形態では、帯域凸部は、これらの帯域の、スケールに対するピーク値の軌跡と定義される。検討を行うために、帯域Bが、関心のある信号情報を含んでいると仮定してもよい。この帯域Bは「一次帯域」と呼ばれる。さらに、信号が由来し、その後、変換が導出されるシステムが、帯域Aおよび帯域B内の信号成分の間で何らかの形の結合を示すと仮定してもよい。帯域Bの特徴の類似のスペクトル特性を有する雑音または他の誤った特徴が信号内に存在している場合、帯域Bの中の情報があいまいになる(すなわち、不明瞭になったり、断片化したり、または紛失したりする)可能性がある。この場合、帯域Aの凸部は、ウェーブレット空間内で追跡され、振幅信号またはスケール信号のどちらか一方として抽出されてもよく、これらの振幅信号およびスケール信号は、それぞれ、「凸部振幅摂動」(RAP)信号および「凸部スケール摂動」(RSP)信号と呼ばれる。RAPおよびRSP信号は、凸部をそれぞれ時間振幅平面上またはタイムスケール平面上に投影することにより抽出されてもよい。図3(d)の上側のプロットは、図3(c)の凸部Aに関連するRAPおよびRSP信号の模式図を示している。これらのRAPおよびRSP信号の下方には、これらの新規に導出された信号のさらなるウェーブレット分解の模式図がある。この二次的なウェーブレット分解は、図3(c)の帯域Bの領域内の情報を帯域Cおよび帯域Dとして利用することを可能にする。帯域Cおよび帯域Dの凸部は、帯域Cおよび帯域Dを生じさせる信号成分の瞬時タイムスケール特性尺度として働いてもよい。雑音または他の誤った信号特徴の存在下で帯域B自体が不明瞭になっているとき、本明細書では二次的ウェーブレット機能分離(SWFD)と呼ばれるこの技法により、一次帯域B(図3(c))を生じさせる基本的物理プロセスに関連している信号成分の本質に関する情報を抽出できるようにしてもよい。
【0053】
いくつかの実施形態では、例えば、不自然な結果を取り除くためにスケイログラムの変更(または変換された信号の係数の変更)が行われた場合などに、逆連続ウェーブレット変換が要求される可能性がある。一実施形態では、すべてのスケールaおよび位置bにわたって積分することにより、もともとの信号を、そのウェーブレット変換から復元できる逆連続ウェーブレット変換がある。
【数20】

また式(15)は
【数21】

のように書かれてもよい。
ここで、Cgは許容定数として知られているスカラー値である。Cgはウェーブレット型依存であり、
【数22】

で計算されてもよい。
【0054】
図3(e)は、上述の検討に基づいて逆連続ウェーブレット変換を実行するために採用されてもよい説明に役立つステップのフローチャートである。式(15)がスケール全体にわたる一連のたたみ込みであると考えることにより逆変換を近似してもよい。フォワード変換の相互相関とは異なり、ここには複素共役がないことを理解すべきである。各時間tについてaおよびbのすべてにわたって積分するとともに、この式はまた、一連の乗算を用いて逆ウェーブレット変換を実行できるようにするたたみこみ定理を利用してもよい。図3(f)は、逆連続ウェーブレット変換の近似を実行するために採用されてもよい説明に役立つステップのフローチャートである。逆連続ウェーブレット変換を実行するための他の任意の好適な技法が本開示に基づいて使用されてもよいことが理解される。
【0055】
図4は、実施形態の説明に役立つ連続ウェーブレット処理システム400である。この実施形態では、入力信号発生器410が入力信号416を生成する。図示のように、入力信号発生器410は、入力信号416としてPPG信号を提供してもよいセンサ418に接続された酸素濃度計420を含んでいてもよい。入力信号発生器410は、信号416を作り出すために任意の好適な信号源、信号生成データ、信号生成装置、またはそれらの任意の組み合わせを含んでいてもよいことが理解される。信号416は、例えば、生体信号(例えば、心電図、脳波、胃電図、筋電図、心拍信号、病理音、超音波、もしくは他の任意の好適な生体信号など)、動的信号、非破壊試験信号、状態監視信号、流体信号、地球物理学的信号、天文学的信号、電気信号、財務指標を含む財政的信号、音響および音声信号、化学信号、気候指標を含む気象学的信号、ならびに/または他の任意の好適な信号、ならびに/またはそれらの任意の組み合わせなどの任意の好適な信号(複数可)であってもよい。
【0056】
この実施形態では、信号416はプロセッサ412に接続されてもよい。プロセッサ412は、信号416を処理するための任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせであってもよい。例えば、プロセッサ412は、1つ以上のハードウェアプロセッサ(例えば、集積回路など)、1つ以上のソフトウェアモジュール、メモリなどのコンピュータ可読媒体、ファームウェア、またはそれらの任意の組み合わせを含んでいてもよい。プロセッサ412は、例えば、コンピュータであってもよく、または1つ以上のチップ(すなわち、集積回路)であってもよい。プロセッサ412は、本開示の連続ウェーブレット変換に関連する計算および変換の任意の好適な質問に関連する計算を実行してもよい。プロセッサ412は、信号416をフィルタリングするために、任意の好適な帯域通過フィルタリング、適応フィルタリング、閉ループフィルタリング、および/もしくは他の任意の好適なフィルタリング、ならびに/またはそれらの任意の組み合わせなどの信号416の任意の好適な信号処理を実行してもよい。
【0057】
プロセッサ412は、任意の好適な揮発性メモリデバイス(例えば、RAM、レジスタなど)、不揮発性メモリデバイス(例えば、ROM、EPROM、磁気記憶デバイス、光記憶デバイス、フラッシュメモリなど)、またはそれらの両方のような1つ以上のメモリデバイス(図示せず)に接続されてもよく、または1つ以上のメモリデバイスを組み込んでもよい。メモリは、例えば、スケイログラムを表すデータのような、入力信号416の連続ウェーブレット変換に対応するデータを保存するために、プロセッサ412により使用されてもよい。一実施形態では、スケイログラムを表すデータは、タイムスケール平面内のエネルギーレベルとしてスケイログラムを表す三次元アレイのような任意の好適な三次元データ構造としてプロセッサ412の内部のRAMまたはメモリ内に保存されてもよい。
【0058】
いくつかの実施形態では、プロセッサ412が出力414に接続されてもよい。出力414は、例えば、1つ以上の医療機器(例えば、さまざまな生理的パラメータを表示する医療監視装置、医療警報、または生理的パラメータを表示するか、もしくはプロセッサ412の出力を入力として使用するかのどちらかを行う他の任意の好適な医療機器)、1つ以上の表示装置(例えば、モニタ、PDA、携帯電話、他の任意の好適な表示装置、またはそれらの任意の組み合わせ)、1つ以上のオーディオ装置、1つ以上のメモリデバイス(例えば、ハードディスクドライブ、フラッシュメモリ、RAM、光ディスク、他の任意の好適なメモリデバイス、またはそれらの任意の組み合わせ)、1つ以上の印刷装置、他の任意の好適な出力装置、またはそれらの任意の組み合わせのような任意の好適な出力装置であってもよい。
【0059】
システム400はシステム10(図1および図2)に組み込まれてもよく、システム10では、実施形態に基づいて、例えば、入力信号発生器410はセンサ12およびモニタ14の一部として実現されてもよく、プロセッサ412はモニタ14の一部として実現されてもよいことが理解される。
【0060】
本開示の勾配決定プロセスが図5から図11を参照して検討される。
【0061】
図5(a)は、実施形態に基づいてプロットされた信号のデータ点の説明に役立つ模式図を示している。信号は、連続信号、離散信号、または複数のデータ点から形成された信号を含む任意の好適な信号であってもよい。実施形態では、信号がスケイログラムまたはリサジュー図形の特徴を含んでいてもよい。図5(a)では、プロット500がデータ点A、B、C、D、E、F、およびG、ならびに信号の中の他の任意の好適な個数のデータ点を含んでいてもよい。プロット500は、時間、振幅、スケール、長さ、周波数、距離、または他の任意の好適な測定単位に関連する軸のような、任意の好適な測定単位に関連する軸を含んでいてもよい。
【0062】
点Xは基点を表してもよく、この基点から、実施形態に基づいて、点Xと、信号のデータ点との間で勾配が計算されてもよい。信号の勾配は任意の好適な方法で決定されてもよい。いくつかの実施形態では、点Xからデータ点までの縦軸変化分と、点Xからデータ点までの横軸変化分との比率を取ることにより、点Xと任意の好適なデータ点との間の勾配値が決定されてもよい。比率は任意の好適な軸(例えば、図5(a)では軸T)に関して取られてもよい。いくつかの実施形態では、同じ軸と、点Xおよびデータ点を結ぶ直線との間で作られる角度を最初に決定することにより勾配値が決定されてもよい。その後、決定された角度は勾配値に変換されてもよい。データ点からポイントXまでの勾配値が決定されるとき、軸Tと、データ点および点Xを結ぶ直線との間の角度が同様に決定されてもよい。いくつかの実施形態では、角度値が狭くて直線的に分散した範囲に広がっている可能性があるため、角度を決定して、それらの角度を勾配値に変換することの方が、勾配値を決定することよりも計算上効率的である可能性がある。例えば、基準軸と、点Xと、信号内の点との間に存在している角度値は−90°から90°(0°を通って)の範囲に広がっている可能性があるが、勾配値は負の無限大から無限大(ゼロを通って)の範囲に広がっている可能性がある。本開示で使用されるような「勾配」または「傾き」という言葉は、勾配値を決定するための上述の方法のうちのいずれかを含んでいてもよいことを理解すべきである。
【0063】
点Xは任意の好適な方法を用いて基点を表すように選択されてもよい。例えば、点Xはプロット500上の(0,0)の値(例えば、プロット500内の位置(0,0))を有していてもよい。他の実施例として、点Xはプロット500内の信号のデータ点に対応してもよい。実施形態では、点Xが反復過程を通じて位置付けられてもよい。例えば、プロット500内の信号の中点は任意の好適な方法を用いて(例えば、プロット500内のデータ点の平均値を用いて)最初に選択されてもよい。中点が選択されると、選択された中点と、プロット500内のデータ点のすべてとの間の勾配値が計算されてもよい。プロット500内の点のいくつかの間で計算された勾配値が、プロット500内の他の点の間で計算された勾配値と比較されてもよい。例えば、選択された中点と、中点の左側にあるデータ点との間で計算された勾配値が、中点と、中点の右側にあるデータ点との間で計算された勾配値と比較されてもよい。他の実施例として、中点より上側にあるデータ点を用いて計算された勾配値が、中点より下側にあるデータ点を用いて計算された勾配値と比較されてもよい。さらに他の実施例として、データ点の最大広がりを決定するためにデータ点が解析されてもよく、または直線フィッティング法が使用されてもよい。例えば、プロット500の最大広がりは、データ点Aからプロット500内の右端のデータ点くらいまで広がっていてもよい。中点を通り、最大広がりまたは最良適合線に対して垂直な線が、その対応する勾配が比較される予定のデータ点を分離するために使用されてもよい。
【0064】
データ点の2つの群の勾配は任意の好適な方法を用いて比較されてもよい。例えば、各群の中の勾配値の平均値または中央値を使用することにより勾配が比較されてもよい。他の実施例として、各群に対して計算された勾配がヒストグラムに入力されてもよく、最大値に対応する勾配が比較に使用されてもよい。データ点の2つの群の間で比較される勾配が実質的に似ておらず、または同じでもないときには、勾配の2つの群の間の違いを低減するように中点が動かされてもよい。実施例として、基点としてプロット500内のデータ点Fが最初に選択されたとき、データ点Fの右側にあるデータ点に基づいて計算された勾配値が、データ点Fの左側にあるデータ点に基づいて計算された勾配値よりも高い可能性がある。実際にそうなっていた場合には、基点の右側にある勾配を減少させ、基点の左側にある勾配を増加させるように中点が上方に動かされてもよい。このプロセスは、2つの群の中の勾配値が実質的に似たものになるか、または同じになるまで繰り返されてもよい。このプロセスが完了すると、最後の位置がプロットの基点または点Xとして選択されてもよい。
【0065】
他の実施形態では、プロット500の各データ点と、他の各データ点との間の勾配値が計算されてもよい(例えば、100個のデータ点に対して、100組の99個の勾配値が計算されてもよい)。ヒストグラムは各データ点から計算された勾配値の各組に対して構成されてもよい(例えば、100個のヒストグラムが構成されてもよい)。勾配値の所与の組に対して計算された優位な勾配値を取り囲む最も幅の狭いピークを有するヒストグラムは、勾配値が計算されたデータ点が適切な点Xであるということを示している可能性がある。
【0066】
実施形態では、プロット500が、任意の好適な個数のウェーブレット変換表面を走査することにより導出されたリサジュー図形であってもよい。図3(a)、図3(b)、および図3(c)に関して上述したように、各ウェーブレット変換表面は信号(例えば、PPG信号)にウェーブレット変換を適用した結果であってもよい。ウェーブレット変換表面が取得される可能性があるウェーブレットスケイログラムの低いスケールで信号ドリフトが表されてもよいため、信号ドリフトはプロット500に影響を与えない可能性がある。低いスケールは関心のあるスケールではない可能性があり、ウェーブレット変換表面からリサジュー図形を導出する際に使用されない可能性がある。また、実施形態では、信号ドリフトは、信号をウェーブレット変換処理する前に信号から取り除かれたり、またはフィルタリングされたりしてもよい。結果として、信号(複数可)がゼロ平均を含んでいてもよく、またはゼロ点のまわりで振動してもよい。また、信号から導出される可能性がある変換表面値はゼロ点の周囲で振動してもよく、導出されたリサジュー図形はゼロ値または基点Xを中心としてもよい。リサジュー図形は、別々に、または繰り返して点Xの位置を導出する必要なく点Xの周囲で振動していてもよいため、勾配値が点Xから計算されて、それにより計算時間を低減してもよい。
【0067】
実施形態では、勾配値を取得するために、プロット500内の任意点、または任意の信号データ点が使用されてもよい。例えば、信号に関連する較正情報が他の情報源から存在しており、かつ較正情報が、関心のある正確な勾配が特定の点またはデータ点を通る可能性があることを示しているとき、勾配値は、そのデータ点から計算されてもよい。あるいは、勾配はプロット500上のデータ点(例えば、リサジュー図形のデータ点)と、信号が由来するシステムとの整合性を有すると分かっている可能性がある、または推定される可能性がある1つ以上の基点との間で計算されてもよい。例えば、ゼロのまわりで振動する信号(例えば、フィルタリングされたPPG信号)に対しては、点Xと、信号のデータ点のすべてとの間で勾配値が計算されてもよく、計算された勾配値からヒストグラムが構成されてもよい。
【0068】
実施形態では、図5(b)に示すように、プロット500内の各データ点を用いて信号の勾配が決定されてもよい。このような方法は、例えば、Watsonらの「Signal Processing Systems and Methods for Determining Slopes of Electronic Signals」と題する2008年9月30日に出願された米国出願第12/242,882号(代理人整理番号H−RM−01189−01 (COV−8−01))に記載されており、当該文献はその全体が参照により本明細書に組み込まれる。例えば、信号の第1の勾配がデータ点Aとデータ点Bとの間で決定されてもよく、信号の第2の勾配がデータ点Aとデータ点Cとの間で決定されてもよく、などと、信号のデータ点の間の勾配のすべてを決定するために各データ点が他の各データ点とともに使用されるまで続く。あるいは、実施形態では、計算時の信号内の不自然な結果(例えば、雑音)の影響をあらかじめ取り除いておくために、互いに極めて接近したデータ点(例えば、データ点CおよびE)は勾配を計算する際に無視されてもよい。また、信号の勾配は、例えば、データ点DとGとの間、データ点Dと信号内の他のデータ点との間、およびデータ点Gと信号内の他のデータ点との間などを含む、信号の任意のデータ点の間で決定されてもよい。データ点DおよびGはプロット500上の「中心から離れた」データ点であってもよく、相関雑音のような信号の中の任意の好適な成分を表してもよい。プロットされた信号の勾配を最小二乗技法を用いて解析する際に、中心から離れたデータ点が使用された場合、中心から離れたデータ点の存在により、決定された勾配値がゆがめられている可能性がある。プロット500上の最小二乗技法により計算された最良適合線は、信号内の雑音または中心から離れたデータ点により表されるような信号の他の特徴の存在により正確な最良適合線から、ゆがめられている(例えば、平行移動されている、および回転されている)可能性がある。
【0069】
図5(b)は、実施形態の図5(a)でプロットされた信号のすべての点の間の勾配のヒストグラムを示している。ヒストグラム510は任意の好適な測定単位を表す任意の好適な軸を含んでいてもよい。実施形態では、ヒストグラム510が、計算された各勾配値の出現回数、または勾配値の計算された各範囲を、勾配値の関数としてグラフにしてもよく、信号のすべての点を用いて計算された勾配のすべてをプロットした結果として任意の好適な形であってもよい。例えば、ヒストグラム510は、1つのピーク値と、極めて接近したより小さめの1つのピーク値とを有する比較的滑らかなプロファイルを有していてもよい。ヒストグラム510は、勾配値を計算するために中心から離れたデータ点DおよびGのようなプロット500の非常に異なる部分上に位置する可能性があるデータ点を使用することから生じる誤った勾配を含む可能性がある。ヒストグラム510は、最も頻繁に計算された勾配値S1で最大値を含んでいてもよい。これはプロット500内でプロットされた信号の優位な勾配値を表す可能性があるが、勾配S1の値は、勾配値を計算するためにプロット500内のデータ点のすべて(例えば、中心から離れたデータ点DおよびG)を使用することにより、ゆがめられている可能性がある。実施形態では、ヒストグラム510が、解析する前に、例えば、ガウスカーネル平滑化、低域通過フィルタリング、または他の任意の好適な手段などの平滑化技法を用いて平滑化されてもよい。
【0070】
実施形態では、中心から離れたデータ点DおよびGの存在が、所望の勾配の計算に影響を与えない可能性がある。上述のように、信号の勾配は、もっぱら基点Xから信号の他の各データ点までで決定されてもよい。計算された勾配のそれぞれがヒストグラムに入力されてもよい。ヒストグラムは信号の優位な勾配で最大値を示してもよい。他の二次的な勾配(例えば、データ点DおよびGのような中心から離れたデータ点を用いて信号の勾配を計算することに起因する勾配値)が、例えば、最大値から離間したピークとしてヒストグラム上に存在し、かつ表される可能性があるため、二次的な勾配は優位な勾配値に影響を与えない可能性がある。
【0071】
図5(c)は、実施形態の点Xを用いて図5(a)でプロットされた信号の勾配のヒストグラムを示している。ヒストグラム550は任意の好適な測定単位を表す任意の好適な軸を含んでいてもよい。一実施形態では、ヒストグラム550が、計算された各勾配値の出現回数、または点Xと、プロット500の他の各データ点との間の勾配値の計算された各範囲を、勾配値の関数としてグラフにしてもよい。他の好適な実施形態では、時間的に、または他の任意の好適な測定単位において基点Xに近いデータ点は、勾配を計算する際に、およびヒストグラム550をポピュレートする際に、無視されてもよい。さらに他の好適な実施形態では、ヒストグラム550が、例えば、ガウスカーネル平滑化、低域通過フィルタリング、または他の任意の好適な手段などの平滑化技法を用いて平滑化されてもよい。信号内のデータ点のすべてが勾配値を計算するために使用されたかどうかにかかわらず、最も頻繁に計算された勾配値S2がプロット500内の信号の優位な勾配を表す可能性がある。データ点DおよびGの中心から離れた特徴のせいで、点Xと、中心から離れたデータ点DおよびGとの間で計算された信号の勾配値は、ヒストグラム550上に二次的なピークS3として表されてもよい。基点Xからの勾配だけを計算することは、プロット500の非常に異なる部分上に位置する場合があるデータ点の間で計算される可能性がある、データ点BとDとの間の勾配計算、またはデータ点FとGとの間の勾配計算のような、多くの誤った勾配を取り除く可能性がある。ヒストグラム550は、より分離された勾配分布を提供する可能性があり、この勾配分布からは、所望の情報(例えば、患者に関する臨床的に意義のある情報など)が導出される可能性があり、その理由は、プロット500を生成するために使用されたもともとの信号が2つ以上の優位な成分を含んでいる場合でも、ヒストグラム550内の各ピークが、より明確になっている(例えば、各ピークが、より小さい広がりを含む)可能性があるためである。
【0072】
実施形態では、二次的な勾配S3が所望の勾配を表しており、優位な勾配S2が誤った(例えば、不自然な)勾配に起因する可能性があるということが起こる場合があり、このようなことは、例えば、不自然な結果が信号の大半を占めている場合に起こる可能性がある。したがって、ヒストグラム550内のどの極大が所望されても選択する柔軟性が許容されてもよい。例えば、相関雑音に起因して存在している可能性がある1の勾配値は無視されてもよい。また、実施例として、最も高い勾配に対応する最大値は、ある特定の状況下で選択されてもよい。任意の好適な情報に従って、ニューラルネットワーク、経験的に導出される発見的問題解決法、重み付けビンカウント、他の任意の好適な技法、またはそれらの任意の組み合わせなどの任意の好適な技法を用いて勾配を選択するために、任意の好適な基準が使用されてもよい。ヒストグラム550は中心から離れたデータ点が非優位のピーク(複数可)として現れることを可能にしてもよいため、ヒストグラム550は、プロット500内の信号の所望の優位な勾配を決定する際だけでなく、任意の好適な二次的信号成分または不自然な結果(例えば、相関雑音など)に起因して信号の中に含まれる1つ以上の二次的な勾配を決定する際にも役立つ可能性がある。
【0073】
図6は、実施形態の信号の所望の勾配を決定するための説明に役立つプロセスのフローチャートである。プロセス600はステップ602から始まってもよい。ステップ603で、上述したそれらの方法などの任意の好適な方法を用いて基点が特定されてもよい。実施形態では、基点が、解析される予定のプロット(例えば、プロット500)上の(0,0)の値を有していてもよい。他の実施形態では、基点がプロット内の信号のデータ点に対応してもよい。他の実施形態では、基点が上述のように反復過程を通じて位置付けられてもよい。さらに他の実施形態では、基点が、勾配値を用いて、プロット上の信号がその点のまわりに振動していてもよい点を用いて、またはプロットが生成されてきた可能性があるシステムにより提供された較正情報を用いて、位置付けられてもよい。ステップ603は、例えば、マイクロプロセッサ48(図2)またはプロセッサ412(図4)により実行されてもよい。
【0074】
実施形態では、プロセス600はステップ604に進んでもよく、このステップ604では、第1の勾配値が信号の中の任意の点(例えば、図5(a)の基点X)と、第1のデータ点との間で計算される。基点Xは信号のデータ点であってもよい。第1の勾配値を決定する際には、中心から離れたデータ点、基点の極近傍もしくは他の測定単位の中にはないデータ点、または信号の特定の部分の中のデータ点を含む任意のデータ点が含まれていてもよい。ステップ604は、QSM72(図2)から、またはRAM54(図2)内に保存されたサンプルからのサンプルについてリアルタイムで動作するマイクロプロセッサ48により実行されてもよい。
【0075】
実施形態では、プロセス600はステップ606に進んでもよく、このステップ606では、信号の第2の勾配値が決定されてもよい。第1の勾配値が決定されたのと同じ方法で(例えば、基点Xを用いて)、第2の勾配値を決定するために第2のデータ点を用いて第2の勾配値が計算されてもよい。実施形態では、プロセス600が、信号内の他のデータ点に対する任意の好適な個数の勾配値を決定するために、任意の好適な個数の付加的なステップ(図示せず)を含んでいてもよい。例えば、プロセス600内で使用される信号は100個のデータ点を含んでいてもよく、プロセス600はステップ608に進む前に100組の勾配値を決定するために100個のステップを含んでいてもよい。
【0076】
実施形態では、プロセス600はステップ608に進んでもよく、このステップ608では、ヒストグラムを生成するために、計算された勾配値のそれぞれが使用されてもよい(例えば、マイクロプロセッサ48またはプロセッサ412により)。ヒストグラムは任意の好適な測定単位を表す任意の好適な軸を含んでいてもよい。一実施形態では、ヒストグラムが各勾配値の出現回数を勾配値の関数としてプロットしてもよい。各勾配値は個々のピークを用いるなどの任意の好適な方法でヒストグラム上に表されてもよい。ヒストグラム上の各ピークの高さは、そのピーク値に対する勾配値で出現する、または勾配値の範囲内で出現する勾配の出現回数に対応してもよい。
【0077】
実施形態では、プロセス600はステップ610に進んでもよく、このステップ610では、所望の勾配がヒストグラムから選択されてもよい。実施形態では、信号の優位な勾配値を決定することが望ましい可能性がある。ヒストグラム上の最大出現回数(例えば、最大の高さを有するヒストグラムピーク)を有する勾配値は、信号の優位な勾配値を示してもよい。実施形態では、信号の中で他の勾配値を決定することが望ましい可能性がある。例えば、信号は相関雑音のような他の成分または不自然な結果を含んでいる可能性がある。ヒストグラムは、これらの成分のうちの1つ以上が、信号の優位な勾配値と比較して最大出現回数ではないが、決定された他の勾配値よりも多くの出現回数を有する特定の勾配値を有していることを例証する可能性がある。ヒストグラムは、この二次的な勾配値を位置付けて、その値を決定できるようにする可能性がある。いくつかの実施形態では、勾配値がマイクロプロセッサ48またはプロセッサ412によりヒストグラムから自動的に選択されて、その後、表示部20(図2)、表示部28(図2)、または出力414(図4)のような任意の好適な出力機構上に表示されてもよい。他の実施形態では、マイクロプロセッサ48(図2)が表示部20、表示部28、または出力414上にヒストグラムを表示してもよく、所望の勾配がユーザ入力56(図2)を通じてシステム10(図1)のユーザにより選択されたり、または他の方法で特定されたりしてもよい。その後、プロセス600はステップ612に進んで、終了してもよい。プロセス600は、リサジュー図形を形成する可能性がある信号、または1つ以上のスケイログラム(図3(a)、図3(b)、および図3(c)に関して上述した)から取得される可能性がある信号、および/またはスケイログラムが導出される可能性があるもともとの信号を含む、任意の好適な信号を用いて実行されてもよいことを理解すべきである。
【0078】
図7は、PPG信号が使用された実施形態の検出された2つの信号のプロットを示している。この実施形態では、一方のPPG信号が赤色光信号720を含んでいてもよく、他方のPPG信号が上述のようにパルス酸素濃度計センサから取得された赤外線光信号740を含んでいてもよい。赤色光信号720および赤外線信号740は、患者の血液がかん流した生体組織(例えば、指先、足指、足など)の一部を通り抜けた後に図7に示すようにプロットされてもよい。例えば、任意の低振幅周波数ドリフトなどを取り除くために各信号がフィルタリングされるとき、赤色光信号720および赤外線信号740は、図示のようにゼロ値のまわりでそれぞれ振動してもよい。パルス酸素濃度計センサは赤色光信号720および赤外線光信号740を、さらなる解析のために任意の好適な処理装置(例えば、プロセッサ412またはマイクロプロセッサ48)に送信してもよい。例えば、赤色光信号720と赤外線光信号740の両方の信号が人体組織を通り抜けた後に、赤色光信号720の変化と、赤外線光信号740の変化との比率を解析することは、患者の血液酸素飽和度を決定する際に役立つ可能性がある。
【0079】
図8は、実施形態の図7の検出されたPPG信号のそれぞれのウェーブレット変換の実部を示している。図8がそれにより導出されたウェーブレット変換は、モーレットウェーブレットのような複雑なウェーブレットを用いて計算されてもよい。また、ウェーブレット変換の虚部、もしくは変換の実部、および/または変換の他の形が、方法において利用されてもよい。例えば、実成分だけを有するウェーブレットが使用されるときには、変換自体が使用されてもよい。また、上記で規定したようなスケイログラムが利用されてもよい。しかしながら、変換の実部のみ(または虚部のみ)は、技法を改善する、より顕著な変換表面の振動運動を作り出す可能性がある。使用される可能性がある、すべてのこのような変換は、本明細書では「変換表面」と呼ばれる。変換表面は連続的であっても連続的でなくてもよい。実施形態では、変換表面が三次元配列で表されてもよい。変換表面820および変換表面840が任意の好適な方法を用いて導出されてもよい。一実施形態では、変換表面820および変換表面840のそれぞれが、赤色光信号820および赤外線光信号840の変換係数を、それぞれ図3(a)、図3(b)、および図3(c)に関して上述したように解釈した結果であってもよい。
【0080】
実施形態では、変換表面820および変換表面840が、それぞれ、任意の好適な個数の凸部を任意の好適なスケール値で含んでいてもよい。一実施形態では、赤色光信号720および赤外線光信号740が、それぞれ、患者の脈拍、患者の呼吸数、および1つ以上の不自然な信号(例えば、雑音など)に関連する成分を含んでいてもよい。脈拍数および呼吸数に関連する信号成分は、他の信号成分よりも高いエネルギーを含んでいてもよい。変換表面820および変換表面840は、それぞれ、赤色光信号720および赤外線光信号740の脈拍成分および呼吸成分にそれぞれ関連してもよい特定のスケール値で凸部を含んでいてもよい。変換表面820および変換表面840のそれぞれでは、矢印Aが各信号の脈拍成分に関連する凸部を示してもよく、矢印Bが各信号の呼吸成分に関連する凸部を示してもよい。変換表面820および840に示された他の凸部は、高周波雑音または低周波雑音などの信号720および740の他の成分を示してもよい。
【0081】
図9は、実施形態の図8の変換表面から少なくとも部分的に導出された三次元リサジュー図形を示している。変換表面820および840の表面が、例えば、スライディングタイム窓(図示せず)を用いて互いに対してさまざまなスケールにわたってプロットされてもよい。各スケール値に対して、変換表面820の振幅表面は、リサジュー図形を導出するために変換表面840の振幅表面に対してプロットされてもよい。例えば、1つのリサジュー図形は、それぞれの特定のスケール値に対してある期間にわたって変換表面840の振幅の変化に対して変換表面820の振幅の変化をプロットすることによりもたらされてもよい。三次元リサジュー図形900が、所与の期間の間、変換表面820および840のリサジュー図形のすべてをプロットすることにより作られてもよい。
【0082】
実施形態では、三次元リサジュー図形900が、任意の好適な方法を用いて1つのリサジュー図形をさらに選択するために解析されてもよい。例えば、三次元リサジュー図形900の中の1つのリサジュー図形が、その主軸に沿って最大の長さを有しており、主軸に対して垂直な方向に沿って最小の広がりを有していてもよい。この選択されたリサジュー図形の大きさが、選択されたリサジュー図形に対応するスケールにおける信号720および740の小さい雑音または高い信号対雑音比を示してもよい。
【0083】
図10は、実施形態の図9の三次元リサジュー図形から選択されたリサジュー図形を示している。リサジュー図形1000が、その主軸に沿って最大の長さを有しており、主軸に対して垂直な方向に沿って最小の広がりを有していてもよく、それにより最小量の関連する雑音を示してもよいため、リサジュー図形1000が三次元リサジュー図形900から選択されてもよい。図10では、選択されたリサジュー図形1000に対応するスケールに対してある期間にわたって、変換表面820の振幅が変換表面840の振幅の関数としてプロットされてもよい。リサジュー図形1000は基点Wのまわりで振動してもよく、この基点Wは、基点X(図5(a))と同じであってもよく、基点X(図5(a))の特徴の一部またはすべてを含んでいてもよい。基点Wが、実施形態では、リサジュー図形1000のデータ点を含んでいてもよい。
【0084】
実施形態では、リサジュー図形1000が、実施形態では関連を有している可能性がある優位な勾配を有していてもよい。例えば、三次元リサジュー図形900が変換表面820および840を用いて、それぞれ赤色光信号720および赤外線光信号740に少なくとも部分的に基づいて生成されたとき、図1000の優位な勾配は、赤色光信号720の変化と、赤外線光信号740の変化との比率に対応してもよい。比率は、値のルックアップ表とともに使用されてもよく、または比率は、赤色光信号720および赤外線光信号740が取得された患者の血液酸素飽和度レベルを決定するために較正方程式で使用されてもよい。ルックアップ表は、例えば、経験的な患者データを用いて作成されてもよい。患者の血液酸素飽和度レベルを決定するためにリサジュー図形1000を使用することが、患者の脈拍数の決定を要求しないことを本開示から理解すべきである。しかしながら、実施形態では、患者の脈拍数がそれ自体を変換表面820および/または変換表面840で表してもよいスケールが、三次元リサジュー図形900からリサジュー図形1000を選択するために使用されてもよい。
【0085】
実施形態では、リサジュー図形1000の優位な勾配を決定するために、最小二乗技法を適用してリサジュー図形1000の中のデータ点を用いて最良適合線を生成してもよい。しかしながら、信号720および740の中に存在する可能性がある相関雑音などの他の信号成分の存在により最小二乗技法がゆがめられる可能性がある。他の信号成分の存在は、リサジュー図形1000の中に二次的な勾配を表す可能性があり、この二次的な勾配は優位な勾配の決定をゆがめる可能性があり、優位な勾配を用いた患者情報の解析に影響を及ぼす可能性がある。
【0086】
実施形態では、信号720および740の中の優位な成分(例えば、最も高いエネルギーを有する成分など)に関連する可能性がある優位な勾配が、任意の好適な方法を用いて決定されてもよい。図11は、実施形態のリサジュー図形1000の勾配、または勾配値の範囲のヒストグラムを示している。実施形態では、基点(例えば、基点W)と、リサジュー図形1000の、中心から離れた任意のデータ点を含むデータ点のそれぞれとの間のリサジュー図形1000の勾配が決定されてもよい。実施形態では、時間的に、または他の任意の好適な測定単位において基点Wに近いデータ点は、リサジュー図形1000の勾配を計算する際に無視されてもよい。結果として得られる計算は、ヒストグラム1100を生成することによるなどの任意の好適な方法でグラフにされてもよい。ヒストグラム1100は、リサジュー図形1000の中で特定の勾配値、または勾配値の範囲が出現する可能性がある回数を図形的に表してもよい。優位なピークMで示されたヒストグラム1100の最大値は、ヒストグラム1100の優位な勾配を示してもよい。実施形態では、優位な勾配Mがルックアップ表とともに使用されてもよく、または優位な勾配Mは患者の血液酸素飽和度レベルを決定するために較正方程式で使用されてもよい。
【0087】
また、実施形態では、ヒストグラム1100が、信号720および/または信号740の中の他の1つ以上の成分に起因する、リサジュー図形1000の中に存在する他の1つ以上の勾配値、または勾配値の範囲を図形的に表してもよい。リサジュー図形1000の優位な勾配を確認するためにヒストグラム1100を使用することにより、例えば、ヒストグラムピークNにより表された1つ以上の二次的な勾配、または二次的な勾配値の範囲は、リサジュー図形1000の優位な勾配の決定をゆがめない可能性がある。実施形態では、他の信号成分の影響の一部を取り除くために、時間的に、または他の任意の好適な測定単位において基点Wに近いデータ点の間の勾配はヒストグラム1100上にプロットされなくてもよい。あるいは、1つ以上の二次的な勾配の存在または相対的な影響に関心があってもよい。例えば、信号720および740の中の雑音に関連する可能性があるヒストグラム1100の中の二次的な勾配(例えば、ヒストグラムピークN)は、ヒストグラム1100を生成することにより解析されてもよい。
【0088】
図12は、実施形態の雑音アルゴリズムが二次元リサジュー図形に適用された後に、患者の血液酸素飽和度を決定するための説明に役立つプロセスのフローチャートである。プロセス1200はステップ1202から始まってもよい。ステップ1204で、第1のPPG信号および第2のPPG信号が、任意の好適な方法を用いて患者から取得されてもよい。例えば、第1および第2のPPG信号は、患者40(図2)に接続されてもよいセンサ12から取得されてもよい。あるいは、PPG信号は入力信号発生器410から取得されてもよく、この入力信号発生器410は、入力信号416(図4)としてPPG信号を提供してもよいセンサ418に接続された酸素濃度計420を含んでいてもよい。実施形態では、PPG信号がセンサ12または入力信号発生器410を用いてリアルタイムで患者40から取得されてもよい。実施形態では、従来、PPG信号が、ROM52、RAM52、および/またはQSM72(図2)内に保存されてきた可能性があり、処理される予定のモニタ14の中のマイクロプロセッサ48によりアクセスされてもよい。実施形態では、第1のPPG信号が赤色光信号(例えば、信号720)を含んでいてもよく、第2のPPG信号が赤外線光信号(例えば、信号740)を含んでいてもよい。第1および第2のPPG信号は患者40から同時に取得されてもよい。
【0089】
実施形態では、プロセス1200はステップ1206に進んでもよく、このステップ1206では、第1のスケイログラムが第1のPPG信号から導出されてもよい。プロセス1200はステップ1208に進んでもよく、このステップ1208では、第2のスケイログラムが第2のPPG信号から導出されてもよい。実施形態では、ステップ1208がステップ1206と同時に行われてもよい。例えば、PPG信号がマイクロプロセッサ48に、あるいはプロセッサ412(図4)に送信された後に、スケイログラムは図3(a)、図3(b)、および図3(c)に関して上述したように導出されてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、PPG信号の連続ウェーブレット変換に関連する計算を実行してもよい。
【0090】
実施形態では、プロセス1200はステップ1210に進んでもよく、このステップ1210では、三次元リサジュー図形が2つのスケイログラムから生成されてもよい。例えば、三次元リサジュー図形は図9に関して上述したように生成されてもよい。1つのリサジュー図形は、それぞれの特定のスケール値に対してある期間にわたって第2のスケイログラムの振幅の変化に対して、例えば、第1のスケイログラムの振幅の変化をプロットすることによりもたらされてもよい。三次元リサジュー図形は、所与の期間の間、スケイログラムのリサジュー図形のすべてをプロットすることにより作られてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、ステップ1206および1208のスケイログラムを処理して三次元リサジュー図形を生成するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。
【0091】
実施形態では、プロセス1200はステップ1212に進んでもよく、このステップ1212では、二次元リサジュー図形が図10に関して上述したように三次元リサジュー図形から選択されてもよい。二次元リサジュー図形が、その主軸に沿って最大の長さを有しており、主軸に対して垂直な方向に沿って最小の広がりを有していてもよく、それにより最小量の関連する雑音を示してもよいため、二次元リサジュー図形が三次元リサジュー図形から選択されてもよい。二次元リサジュー図形の優位な勾配が赤色光信号の変化と、赤外線光信号の変化との比率に対応してもよいため、二次元リサジュー図形は臨床的関連(例えば、勾配は値のルックアップ表とともに使用されてもよく、または勾配はステップ1204でPPG信号が取得された患者の血液酸素飽和度レベルを決定するために較正方程式で使用されてもよい)を有する優位な勾配を有していてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、三次元リサジュー図形から所望の二次元リサジュー図形を分離するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。
【0092】
実施形態では、プロセス1200はステップ1214に進んでもよく、このステップ1214では、第1の勾配が二次元リサジュー図形の第1の点と、基点との間で任意の好適な方法を用いて決定されてもよい。実施形態では、任意のデータ点がステップ1214で基点とともに使用されてもよい。実施形態では、時間的に、または他の任意の好適な測定単位において互いに極めて接近したデータ点は使用されなくてもよく、中心から離れたデータ点もまた第1の勾配を決定するために基点とともに使用されなくてもよい。基点(例えば、基点X)は、例えば、図5(a)に関して上述した方法を含む任意の好適な方法を用いて位置付けられてもよい。ステップ1216で、第2の勾配が二次元リサジュー図形の第2の点と、ステップ1214で使用された基点との間で任意の好適な方法を用いて決定されてもよい。ステップ1214で使用された第1のデータ点以外の任意のデータ点がステップ1216で使用されてもよく、あるいは、時間的に、または他の任意の好適な測定単位において互いに極めて接近したデータ点は使用されなくてもよく、中心から離れたデータ点もまた第2の勾配を決定するために基点とともに使用されなくてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、勾配値を決定して、勾配値を計算する際にどのデータ点を使用すべきかを決定するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。実施形態では、信号内の他のデータ点に対して任意の好適な付加的な個数の勾配値を決定するために、プロセス1200が任意の好適な個数の付加的なステップ(図示せず)を含んでいてもよい。
【0093】
実施形態では、ステップ1218で、二次元リサジュー図形内の少なくとも1つの点が特定されてもよい。この少なくとも1つの点が、二次元リサジュー図形の派生物または中心から離れた点であってもよい。派生物は、入力信号発生器410(図4)により生成された雑音、または、例えば、センサ12、モニタ14、表示部28、もしくはケーブル32および/もしくは24(図2)を含むシステム10により生成された雑音などの任意の好適な原因から生じてもよい。第1および第2のPPG信号がいつ患者40から取得された可能性があるかにかかわらず、任意の好適な時間に中心から離れた点(複数可)が特定されてもよい。例えば、ステップ1218で二次元リサジュー図形を検討して、中心から離れたデータ点を調べることにより、PPG信号が患者40から取得されるときにリアルタイムで雑音が検出されてもよい。実施形態では、別個の雑音決定構成要素を用いてリアルタイムで雑音が検出されてもよい。あるいは、従来、第1および第2のPPG信号は、ROM52、RAM52、および/またはQSM72(図2)内に保存されてきた可能性があり、プロセス1200を用いて解析される予定のマイクロプロセッサ48によりアクセスされてもよい。中心から離れたデータ点はステップ1218で任意の好適な方法で特定されてもよい。実施形態では、中心から離れたデータ点が、隣接した、またはほぼ隣接したデータ点を用いてステップ1214および/または1216で計算された勾配値を比較することにより特定されてもよい。例えば、ステップ1214で決定された、隣接した、もしくはほぼ隣接した第1の勾配値、またはステップ1216で決定された第2の勾配値とは大きく異なる勾配値は、1つ以上の中心から離れたデータ点の存在を示してもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、勾配値を比較して二次元リサジュー図形内の少なくとも1つの中心から離れた点を位置付けるために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。
【0094】
実施形態では、プロセス1200はステップ1220に進んでもよく、このステップ1220では、ステップ1214、1216、または他の任意の付加的なステップ(図示せず)で決定された勾配値が、ステップ1218で、二次元リサジュー図形の中心から離れたデータ点として特定された点のうちのいずれかを用いて、第1の勾配、第2の勾配、または他の任意の付加的な決定された勾配値として取り除かれてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、第1の勾配、第2の勾配、および/または他の任意の決定された勾配値を操作して、ステップ1218で特定された1つ以上の中心から離れた点を含んでいる可能性がある任意の勾配値を取り除くために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。
【0095】
実施形態では、プロセス1200はステップ1222に進んでもよく、このステップ1222では、ヒストグラムが、特定された中心から離れたデータ点のうちのいずれかを用いて決定された勾配値を除いて、ステップ1214で決定された第1の勾配と、ステップ1216で決定された第2の勾配と(およびプロセス1200の一部として図示されていない他の任意の決定された勾配値)から、任意の好適な方法を用いて生成されてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、ステップ1318でヒストグラムを生成するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。患者40、システム10またはシステム400のユーザ、および/または医療専門家が治療中の患者40による再検討のために、ヒストグラムは表示部20(図2)、表示部28(図2)上などに、または出力414(図4)を用いて、任意の好適な方法で表示されてもよい。ヒストグラムは、二次元リサジュー図形の中で特定の勾配値、または勾配値の範囲が出現する可能性がある回数を図形的に表してもよい。ヒストグラムの最大値は、二次元リサジュー図形の優位な勾配を示してもよい。中心から離れた点を用いて計算された勾配値はヒストグラム上にプロットされなくてもよいため、雑音に関連する二次的な勾配はヒストグラム上に現れない可能性があり、その結果、所望の勾配を計算するとき、雑音の影響をさらに低減する可能性がある。
【0096】
実施形態では、プロセス1200はステップ1224に進んでもよく、このステップ1224では、任意の好適な方法を用いてヒストグラムから所望の勾配が選択されてもよく、所望の勾配はヒストグラム内の最大値に対応してもよい。ヒストグラムの最大値は表示部20、表示部28上などに、または出力414を用いて、任意の好適な方法で表示されてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、ヒストグラムの最大値を自動的に特定して表示するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。実施形態では、患者40、システム10またはシステム400のユーザ、および/または医療専門家が治療中の患者40が、表示されたヒストグラムを再検討してもよく、ヒストグラムの最大値を特定してもよく、それにより所望の勾配を視覚的に特定してもよい。実施形態では、出力414またはパルス酸素測定システム10が、ヒストグラムの最大値をスピーカ22(図2)の音声出力(例えば、口頭メッセージなど)として提示してもよい。
【0097】
実施形態では、プロセス1200はステップ1226に進んでもよく、このステップ1226では、所望の勾配がルックアップ表とともに使用されてもよく、または患者の血液酸素飽和度レベルを決定するために較正方程式で使用されてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、患者40の血液酸素飽和度を決定するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。例えば、プロセッサ412またはマイクロプロセッサ48は、ルックアップ表または較正方程式を内蔵してもよく、ステップ1224でヒストグラムから特定された所望の勾配値を用いて血液酸素飽和度を決定してもよい。実施形態では、ステップ1224で特定されたヒストグラムの最大値がルックアップ表または較正方程式以外には臨床的関連を有していない可能性があるときには、最大値は表示部20、表示部28、または出力414上に表示されなくてもよい。実施形態では、パルス酸素測定システム10または連続ウェーブレット処理システム400のユーザが、ステップ1224で表示された所望の勾配をルックアップ表に関連して使用してもよく、または患者40の血液酸素飽和度を決定するために較正方程式で使用してもよい。患者40の血液酸素飽和度は、表示部20、表示部28上などに、または出力414を用いて、任意の好適な方法で表示されてもよい。実施形態では、パルス酸素測定システム10または連続ウェーブレット処理システム400が、血液酸素飽和度をスピーカ22の音声出力(例えば、口頭メッセージなど)として提示してもよい。その後、プロセス1200はステップ1228に進んで、終了してもよい。
【0098】
プロセス1200は所望の勾配を決定するために任意の好適な方法で、および任意の好適なステップ順序で実行されてもよいことを理解すべきである。いくつかの実施形態では、ステップ1218および/または1220などの、プロセス1200のステップのうちの1つ以上が任意であってもよい。例えば、雑音フィルタリングステップ1218および1220なしでプロセス1200が実行されて、ヒストグラム上の所望の勾配から患者40の血液酸素飽和度レベルを決定してもよい。
【0099】
実施形態では、優位な勾配Mを決定することに関連して信頼基準が生成されてもよい。図13は、実施形態のヒストグラムから信頼基準を生成するための説明に役立つプロセスのフローチャートである。プロセス1300はステップ1302から始まってもよい。ステップ1304で、第1のPPG信号および第2のPPG信号が、任意の好適な方法を用いて患者から取得されてもよい。例えば、第1および第2のPPG信号は、患者40(図2)に接続されてもよいセンサ12から取得されてもよい。あるいは、PPG信号は入力信号発生器410から取得されてもよく、この入力信号発生器410は、入力信号416(図4)としてPPG信号を提供してもよいセンサ418に接続された酸素濃度計420を含んでいてもよい。実施形態では、PPG信号がセンサ12または入力信号発生器410を用いてリアルタイムで患者40から取得されてもよい。実施形態では、従来、PPG信号が、ROM52、RAM52、および/またはQSM72(図2)内に保存されてきた可能性があり、処理される予定のモニタ14の中のマイクロプロセッサ48によりアクセスされてもよい。実施形態では、第1のPPG信号が赤色光信号(例えば、信号720)を含んでいてもよく、第2のPPG信号が赤外線光信号(例えば、信号740)を含んでいてもよい。第1および第2のPPG信号は患者40から同時に取得されてもよい。
【0100】
実施形態では、プロセス1300はステップ1306に進んでもよく、このステップ1306では、第1および第2のPPG信号に対して第1のサイクルが定義されてもよい。例えば、サイクルは、任意の好適な機構により(例えば、マイクロプロセッサ48により、またはプロセッサ412により)有限期間として定義されてもよく、この有限期間の間に、変換表面620および変換表面640(図8)が生成されてもよい。結果として、ステップ1308で、三次元リサジュー図形、第1の二次元リサジュー図形、および第1のヒストグラムがそれぞれ、第1のサイクルの間に収集された第1および第2のPPG信号の一部から、図12のステップ1206から1218に関して上述したように少なくとも部分的に導出されてもよい。プロセス1300はステップ1310に進んでもよく、このステップ1310では、第1の所望の勾配が第1のヒストグラムから選択されてもよく、第1の所望の勾配は第1のヒストグラム内の最大値に対応してもよい。実施形態では、第1の所望の勾配がルックアップ表に入力されたり、またはPPG信号が取得された患者40の血液酸素飽和度レベルを決定するために較正方程式で使用されたりしてもよいため、第1の所望の勾配は臨床的関連を有していてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、第1のヒストグラムの最大値を自動的に選択するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。
【0101】
実施形態では、プロセス1300はステップ1312に進んでもよく、このステップ1312では、第1のサイクルの終わりに、第2のサイクルが定義されてもよい。実施形態では、第2のサイクルが第1のサイクルと重なっていてもよく、第1のサイクルと連続していてもよく、または第1のサイクルから離間していてもよい。プロセス1300はステップ1314に進んでもよく、このステップ1314では、第2の三次元リサジュー図形、第2の二次元リサジュー図形、および第2のヒストグラムが、第2のサイクルの間に収集された第1および第2のPPG信号の一部から、図12のステップ1206から1218に関して上述したように少なくとも部分的に導出されてもよい。ステップ1316で、第2の所望の勾配が第2のヒストグラムから選択されてもよく、第2の所望の勾配は第2のヒストグラム内の最大値に対応してもよい。第1の所望の勾配と同様に、第2の所望の勾配もまた患者の血液酸素飽和度レベルに関連する臨床的関連を有していてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、第2のヒストグラムの最大値を自動的に選択するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。連続した変換表面から連続したリサジュー図形および関連するヒストグラムを導出するこのプロセス1300は、任意の付加的な所望サイクル数(図示せず)の間継続してもよい。
【0102】
実施形態では、プロセス1300はステップ1318に進んでもよく、このステップ1318では、第1および第2のサイクルから取得された第1の所望の勾配と第2の所望の勾配とが比較されてもよい。実施形態では、プロセッサ412またはマイクロプロセッサ48が、任意の好適な個数の勾配値を比較するために、任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせを含んでいてもよい。ステップ1320で、所望の勾配のうちの少なくとも1つが特定されてもよい。実施形態では、例えば、ヒストグラムを生成するために使用されたPPG信号からのデータが、患者の動作、患者40とセンサ12の間の不十分な接続によりひずんだ可能性があるとき、またはそうでなければデータが不完全であったとき、1つのサイクルが、著しく異なる所望の勾配値を生成する可能性があるヒストグラムを含んでいる場合がある。患者40の血液酸素飽和度レベルを計算するのに著しく異なる所望の勾配値を使用することは望ましくない。したがって、著しく異なる所望の勾配値につながるデータ点を含むPPG信号のうちの1つ以上の部分を特定して、血液酸素飽和度を決定することと関連するPPG信号のさらなる解析からそれらの部分を取り除くことは有益である。比較されている1つ以上の他の所望の勾配値とは著しく異なる可能性がある所望の勾配値が、任意の好適な技法を用いてマイクロプロセッサ48またはプロセッサ412により自動的に特定されてもよい。
【0103】
実施形態では、プロセス1300はステップ1322に進んでもよく、このステップ1322では、特定された所望の勾配値に関連する可能性があるサイクルが、第1および第2のPPG信号から生成された可能性がある他のサイクルおよび結果として得られるヒストグラムと比較して低い信頼度を有すると特定される可能性がある。実施形態では、低い信頼度を有すると特定されたサイクル内に含まれる可能性があるPPG信号からのデータが、システム10またはシステム400のユーザにより、またはマイクロプロセッサ48またはプロセッサ412により自動的に、さらなる解析から取り除かれてもよい。その後、プロセス1300はステップ1324に進んで、終了してもよい。
【0104】
実施形態では、優位な勾配Mの計算の信頼度を測定するためにヒストグラム1100の形が使用されてもよい。例えば、優位な勾配Mの値が信頼できるかどうかに関する信頼性のレベルを測定するために、ヒストグラム1100上のピークMの高さ、またはヒストグラム1100の幅などの大きさが使用されてもよい。あるいは、ヒストグラム1100の全体のデータセットを用いた、ピークMの下の面積と、ヒストグラム1100の下の面積との比率もまた、優位な勾配Mの計算が信頼できるかどうかを決定するために使用されてもよい。
【0105】
実施形態では、任意の好適な方法を用いて、もともとの信号に対して直線フィッティングするために、ヒストグラムからの優位な勾配の値が使用されてもよい。例えば、y=a+bxのような直線フィッティング方程式では、優位な勾配Mが「b」値を表してもよい。「a」値により表された線の片寄りは、任意の好適な方法を用いて計算されてもよい。一実施形態では、ヒストグラム上に表された優位な勾配に含まれる勾配値を計算するために使用されたデータ点を調べることにより片寄りが計算されてもよい。優位な勾配に含まれる勾配値を計算するために使用されなかったデータ点は、片寄り値を計算する際に無視されてもよい。これは1つ以上の中心から離れたデータ点が最良適合線の片寄りの計算に影響を及ぼすことを排除する可能性がある。
【0106】
以上の記述はあくまで本開示の原理の例を示したに過ぎず、本開示の範囲および要旨を逸脱することなく、当業者によりさまざまな修正を行うことができる。

【特許請求の範囲】
【請求項1】
プロットの基点を特定するステップと、
プロットの基点と、信号内の少なくとも2点との間の勾配を決定するステップと、
勾配からヒストグラムを生成するステップと、
ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択するステップと、を含む、プロット上の信号の勾配を決定する方法。
【請求項2】
プロット上の信号の少なくとも部分を選択するステップと、
基点と、信号の選択された部分の中の少なくとも2点との間の勾配を決定するステップと、をさらに含む、請求項1に記載の方法。
【請求項3】
信号内の少なくとも1つの点を、決定された勾配から除外するステップをさらに含む、請求項1に記載の方法。
【請求項4】
信号が三次元リサジュー図形から選択されたリサジュー図形である、請求項1に記載の方法。
【請求項5】
第1のスケイログラムを導出するために第1の基礎をなす信号に対して第1の連続ウェーブレット変換を実行するステップと、
第2のスケイログラムを導出するために第2の基礎をなす信号に対して第2の連続ウェーブレット変換を実行するステップと、
第1のスケイログラムと第2のスケイログラムとから三次元リサジュー図形を導出するステップと、をさらに含む、請求項4に記載の方法。
【請求項6】
第1の基礎をなす信号が患者からパルス酸素濃度計により収集された赤色光信号であり、第2の基礎をなす信号が患者からパルス酸素濃度計により収集された赤外線光信号である、請求項5に記載の方法。
【請求項7】
所望の勾配に少なくとも部分的に基づいて患者に関する血液酸素飽和度情報を決定するステップをさらに含む、請求項6に記載の方法。
【請求項8】
ヒストグラムから信頼基準を生成するステップをさらに含む、請求項1に記載の方法。
【請求項9】
雑音低減アルゴリズムを用いて信号をフィルタリングするステップをさらに含む、請求項1に記載の方法。
【請求項10】
信号内のすべての点の中央値または平均値を用いて基点が選択される、請求項1に記載の方法。
【請求項11】
初期点を選択することによりプロットの基点を特定するステップと、
初期点と、第1の領域の中の信号内の少なくとも2点との間の第2の勾配を計算するステップと、
初期点と、第2の領域の中の少なくとも2点との間の第3の勾配を計算するステップと、
第2の勾配と第3の勾配とを比較するステップと、
第2の勾配と第3の勾配との比較に少なくとも部分的に基づいて初期点を調節するステップと、をさらに含む、請求項1に記載の方法。
【請求項12】
信号内の第1の点と、信号内の他の少なくとも2点との間の第2の勾配を決定することによりプロットの基点を特定するステップと、
信号内の第2の点と、信号内の他の少なくとも2点との間の第3の勾配を決定するステップと、
第2の勾配から第2のヒストグラムを生成するステップと、
第3の勾配から第3のヒストグラムを生成するステップと、
第2および第3のヒストグラムに少なくとも部分的に基づいて、基点が第1の点または第2の点のどちらかであるように選択するステップと、をさらに含む、請求項1に記載の方法。
【請求項13】
信号を生成する入力信号発生器と、
入力信号発生器に接続されたプロセッサと、
プロセッサに接続された出力とを含み、出力が勾配に少なくとも部分的に基づいて情報を表示でき、プロセッサが、
プロットの基点を特定でき、
プロットの基点と、信号内の少なくとも2点との間の勾配を決定でき、
勾配からヒストグラムを生成でき、
ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択できる、プロット上の信号の勾配を決定するシステム。
【請求項14】
プロセッサが、さらに、
プロット上の信号の少なくとも部分を選択でき、
基点と、信号の選択された部分の中の少なくとも2点との間の勾配を決定できる、請求項13に記載のシステム。
【請求項15】
プロセッサが、さらに、信号内の少なくとも1つの点を、決定された勾配から除外できる、請求項13に記載のシステム。
【請求項16】
入力信号発生器が、センサに接続されたパルス酸素濃度計である、請求項13に記載のシステム。
【請求項17】
プロセッサが、さらに、所望の勾配に少なくとも部分的に基づいて患者に関する血液酸素飽和度情報を決定できる、請求項14に記載のシステム。
【請求項18】
出力が電子装置である、請求項13に記載のシステム。
【請求項19】
信号内のすべての点の中央値または平均値を用いて基点が選択される、請求項13に記載のシステム。
【請求項20】
プロセッサが、さらに、ヒストグラムを用いて信頼基準を生成できる、請求項13に記載のシステム。
【請求項21】
プロセッサが、さらに、雑音低減アルゴリズムを実行することにより信号をフィルタリングできる、請求項13に記載のシステム。
【請求項22】
プロット上の信号の勾配の決定で用いるコンピュータ可読媒体であって、
プロットの基点を特定し、
プロットの基点と、信号内の少なくとも2点との間の勾配を決定し、
勾配からヒストグラムを生成し、
ヒストグラム内の好ましい値に対応する信号の所望の勾配を選択するために、
その上に記録された計算機プログラム命令を有するコンピュータ可読媒体。
【請求項23】
パルス酸素濃度計を用いて信号を取得するために、その上に記録された計算機プログラム命令をさらに有する、請求項22に記載のコンピュータ可読媒体。
【請求項24】
所望の勾配に少なくとも部分的に基づいて血液酸素飽和度情報を決定し、
血液酸素飽和度情報を表示するために、
その上に記録された計算機プログラム命令をさらに有する、請求項23に記載のコンピュータ可読媒体。
【請求項25】
血液酸素飽和度情報を決定するステップが、ルックアップ表内の所望の勾配を使用するステップを含む、請求項24に記載のコンピュータ可読媒体。
【請求項26】
血液酸素飽和度情報を決定するステップが、較正方程式内の所望の勾配を使用するステップを含む、請求項24に記載のコンピュータ可読媒体。

【図1】
image rotate

【図2】
image rotate

【図3(a)】
image rotate

【図3(b)】
image rotate

【図3(c)】
image rotate

【図3(d)】
image rotate

【図3(e)】
image rotate

【図3(f)】
image rotate

【図4】
image rotate

【図5(a)】
image rotate

【図5(b)】
image rotate

【図5(c)】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公表番号】特表2011−526514(P2011−526514A)
【公表日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2011−515656(P2011−515656)
【出願日】平成21年6月29日(2009.6.29)
【国際出願番号】PCT/IB2009/006138
【国際公開番号】WO2010/001235
【国際公開日】平成22年1月7日(2010.1.7)
【出願人】(511002515)
【Fターム(参考)】