説明

太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュール

【課題】エチレン・α−オレフィン共重合体と有機過酸化物などを含有し、架橋特性、耐熱性のよい太陽電池封止材用樹脂組成物、それを用いた太陽電池封止材、太陽電池モジュールの提供。
【解決手段】下記の(a1)〜(a2)の特性を有するエチレン・α−オレフィン共重合体成分(A)及び有機過酸化物成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物などによって提供。
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22(個/total1000C)以上(ただし、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュールに関し、より詳しくは、エチレン・α−オレフィン共重合体と有機過酸化物などを含有し、架橋特性、耐熱性、透明性に優れた太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、太陽電池モジュールに関するものである。
【背景技術】
【0002】
二酸化炭素の増加など地球環境問題がクローズアップされる中で、水力、風力、地熱などの有効利用とともに太陽光発電が再び注目されるようになった。
太陽光発電は、一般にシリコン、ガリウム−砒素、銅−インジウム−セレンなどの太陽電池素子を上部透明保護材と下部基板保護材とで保護し、太陽電池素子と保護材とを樹脂製の封止材で固定し、パッケージ化した太陽電池モジュールを用いるものであり、水力、風力などと比べて規模は小さいものの、電力が必要な場所に分散して配置できることから、発電効率等の性能向上と価格の低下を目指した研究開発が推進されている。また、国や自治体で住宅用太陽光発電システム導入促進事業として設置費用を補助する施策が採られることで、徐々にその普及が進みつつある。しかしながら、更なる普及には一層の低コスト化が必要であり、そのため従来型のシリコンやガリウム−砒素などに代わる新たな素材を用いた太陽電池素子の開発だけでなく、太陽電池モジュールの製造コストをより一層低減する努力も地道に続けられている。
【0003】
太陽電池モジュールを構成する太陽電池封止材の条件としては、太陽電池の発電効率を低下しないように、太陽光の入射量を確保するため、透明性が良好なことが求められている。また、太陽電池モジュールは通常、屋外に設置されるから長期間太陽光に晒され温度上昇する。それにより樹脂製の封止材が流動し、モジュールが変形したりするトラブルを避けるために、耐熱性を有するものでなければならない。また年々、太陽電池素子の材料コストを削減するために薄肉化が進んでおり、一層柔軟性に優れた封止材も求められている。
例えば太陽電池モジュールでは、従来から価格、加工性、耐湿性等の観点から、封止材として、酢酸ビニル含量の高いエチレン・酢酸ビニル共重合体(EVA)に有機過酸化物を配合して架橋構造を付与した組成物が採用されている(たとえば、特許文献1参照)。ところが、エチレン・酢酸ビニル共重合体(EVA)系樹脂は、長期にわたって使用されると黄変、亀裂入り、発泡等の劣化・変質により耐湿性が低下して、太陽電池セルの腐食等による発電量の低下を招いていた。これらはEVA系樹脂が加水分解性の高いエステル構造を有しているために、太陽光や水分の影響を受け易いものと考えられている。
【0004】
そのため、太陽電池モジュールの封止材では、結晶化度が40%以下の非晶性又は低結晶性のα−オレフィン系共重合体からなるものが提案されている(特許文献2参照)。この特許文献2には、低結晶性のエチレン・ブテン共重合体に、有機過酸化物を混合し、異形押出機を用いて加工温度100℃でシートを作製することが例示されているが、加工温度が低いため、生産性が高められないという問題がある。
また、太陽電池モジュールの封止材として、(a)約0.90g/cc未満の密度、(b)ASTM D−882−02により測定して約150メガパスカル(mPa)未満の2%割線係数、(c)約95℃未満の融点、(d)ポリマーの重量に基づいて少なくとも約15および約50重量%未満のα−オレフィン含量、(e)約−35℃未満のTg、ならびに(f)少なくとも約50のSCBDI、の1以上の条件を満たすポリオレフィンコポリマーを含むポリマー材料が提案されている(特許文献3参照)。
太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。その際、太陽電池封止材の上部または下部保護材側から衝撃が加わると、配線が断線しやすいことが問題となっていた。それを改良するため、封止材の剛性を高くすることが求められるが、特許文献3のポリマー材料では剛性を高くすると、架橋効率が悪くなることが問題となっていた。
【0005】
このように従来の技術では、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物は得られていなかった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭58−023870号公報
【特許文献2】特開2006−210906号公報
【特許文献3】特表2010−504647号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、エチレン・α−オレフィン共重合体と有機過酸化物などを含有し、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記問題を解決すべく鋭意検討した結果、樹脂成分としてメタロセン触媒などを用いて重合された特定の密度、分子量分布、不飽和結合数などの特性を有するエチレン・α−オレフィン共重合体を選択し、これに有機過酸化物を配合することにより、架橋性、耐熱性、透明性、柔軟性に優れる太陽電池封止材用樹脂組成物が得られ、これを用いれば太陽電池モジュールの生産性が大幅に向上するとの知見を得て、本発明を完成させるに至った。
【0009】
即ち、本発明の第1の発明によれば、下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(A):下記(a1)〜(a2)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22(個/total1000C)以上
(ただし、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
成分(B):有機過酸化物
【0010】
また、本発明の第2の発明によれば、第1の発明において、成分(A)が、さらに下記(a3)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする太陽電池封止材組成物が提供される。
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
【0011】
また、本発明の第3の発明によれば、第1又は2の発明において、成分(B)の含有量が、成分(A)100重量部に対して、0.2〜5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、さらに、下記の成分(C)を含有することを特徴とする太陽電池封止材用樹脂組成物が提供される。
成分(C):ヒンダードアミン系光安定化剤
また、本発明の第5の発明によれば、第4の発明において、成分(C)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、成分(A)が、エチレン・1−ブテン、又はエチレン・1−ヘキセン共重合体であることを特徴とする太陽電池封止材用樹脂組成物が提供される。
一方、本発明の第7の発明によれば、第1〜6のいずれかの発明に係り、太陽電池封止材用樹脂組成物からなる太陽電池封止材が提供される。
また、本発明の第8の発明によれば、第7の発明に係り、太陽電池封止材を用いた太陽電池モジュールが提供される。
【発明の効果】
【0012】
本発明の太陽電池封止材用樹脂組成物は、特定の密度、分子量分布、不飽和結合数などの特性を有するエチレン・α−オレフィン共重合体を主成分とし、これに有機過酸化物を配合しているため、この樹脂組成物をシート化する際には、エチレン・α−オレフィン共重合体が比較的短時間で架橋して、剛性と架橋効率とのバランスもよく、太陽電池封止材としてモジュールの形成が容易であり、製造コストを低減することができる。また、得られた太陽電池モジュールは、透明性、柔軟性、耐候性等に優れるものとなり、長期間安定した変換効率を維持することが期待できる。
【発明を実施するための形態】
【0013】
1.太陽電池封止材用樹脂組成物
本発明の太陽電池封止材用樹脂組成物(以下、単に樹脂組成物ともいう)は、下記のエチレン・α−オレフィン共重合体成分(A)及び有機過酸化物(B)を含有することを特徴とする。
【0014】
(1)成分(A)
本発明に用いる成分(A)は、下記(a1)〜(a2)の特性を有したエチレン・α−オレフィン共重合体である。
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22(個/total1000C)以上
(ただし、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
【0015】
(i)成分(A)のモノマー構成
本発明に使用されるエチレン・α−オレフィン共重合体は、エチレンから誘導される構成単位を主成分としたエチレンとα−オレフィンのランダム共重合体である。
コモノマーとして用いられるα−オレフィンは、好ましくは炭素数3〜12のα−オレフィンである。具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−ヘプテン、4−メチル−ペンテン−1、4−メチル−ヘキセン−1、4,4−ジメチルペンテン−1等を挙げることができる。かかるエチレン・α−オレフィン共重合体の具体例としては、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体、エチレン・1−オクテン共重合体、エチレン・4−メチル−ペンテン−1共重合体等が挙げられる。なかでも、エチレン・1−ブテン共重合体、エチレン・1−ヘキセン共重合体が好ましい。また、α−オレフィンは1種または2種以上の組み合わせでもよい。2種のα−オレフィンを組み合わせて三元共重合体とする場合は、エチレン・プロピレン・1−ヘキセン三元共重合体、エチレン・1−ブテン・1−ヘキセン三元共重合体、エチレン・プロピレン・1−オクテン三元共重合体、エチレン・1−ブテン・1−オクテン三元共重合体等が挙げられる。
コモノマーとして、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,8−ノナジエン、及び1,9−デカジエン等のジエン化合物を、α−オレフィンに少量配合してもよい。これらのジエン化合物を配合すると、長鎖分岐ができるので、エチレン・α−オレフィン共重合体の結晶性を低下させ、透明性、柔軟性、接着性等が良くなり、分子間の架橋剤ともなるので、機械的強度が増加する。また長鎖分岐の末端基は、不飽和基であるから、有機過酸化物による架橋反応や、酸無水物基含有化合物若しくはエポキシ基含有化合物との共重合反応やグラフト反応を容易におこすことができる。
【0016】
本発明で用いるエチレン・α−オレフィン共重合体は、そのα−オレフィンの含有量が5〜40重量%であり、好ましくは10〜35重量%、より好ましくは15〜30重量%である。この範囲であれば柔軟性と耐熱性が良好である。
ここでα−オレフィンの含有量は、下記の条件の13C−NMR法によって計測される値である。
装置:日本電子製 JEOL−GSX270
濃度:300mg/2mL
溶媒:オルソジクロロベンゼン
【0017】
(ii)成分(A)の重合触媒及び重合法
本発明で用いるエチレン・α−オレフィン共重合体は、チーグラー触媒、バナジウム触媒又はメタロセン触媒等、好ましくはバナジウム触媒又はメタロセン触媒、より好ましくはメタロセン触媒を使用して製造することができる。製造法としては、高圧イオン重合法、気相法、溶液法、スラリー法等が挙げられる。特に、高圧イオン重合法等の高圧法を利用するのが好ましい。
メタロセン触媒としては、特に限定されるわけではないが、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物と助触媒とを触媒成分とする触媒が挙げられる。特に、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物を使用するのが、好ましい。市販品としては、日本ポリエチレン社製のハーモレックス(登録商標)シリーズ、カーネル(登録商標)シリーズ、プライムポリマー社製のエボリュー(登録商標)シリーズ、住友化学社製のエクセレン(登録商標)GMHシリーズ、エクセレン(登録商標)FXシリーズが挙げられる。バナジウム触媒としては、可溶性バナジウム化合物と有機アルミニウムハライドとを触媒成分とする触媒が挙げられる。
【0018】
(iii)成分(A)の特性
(a1)密度
本発明で用いるエチレン・α−オレフィン共重合体は、密度が0.860〜0.920g/cmであり、好ましくは0.870〜0.915g/cm、さらに好ましくは0.875〜0.910g/cmである。エチレン・α−オレフィン共重合体の密度が0.860g/cm未満では、加工後のシートがブロッキングしてしまい、密度が0.920g/cmを超えると加工後のシートの剛性が高すぎて、取り扱い性に欠けるものとなる。
【0019】
ポリマーの密度を調節するには、例えばα−オレフィン含有量、重合温度、触媒量など適宜調節する方法がとられる。なお、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(低密度ポリエチレンの場合)に準拠して測定する(23℃)。
【0020】
(a2)ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレン
本発明で用いるエチレン・α−オレフィン共重合体は、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が特定の範囲でなければならない。ここで、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。
すなわち、本発明においては、エチレン・α−オレフィン共重合体中のビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22(個/total 1000C)以上のものを使用する。合計量は、0.25以上が好ましく、0.30以上がより好ましく、0.40以上がさらに好ましく、0.50以上が特に好ましい。
【0021】
ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレン個々の量は、特に限定されないが、例えば、ビニルは、0.05以上が好ましく、ビニリデンは0.05以上が好ましく、シス−ビニレンとトランス−ビニレンの合計量は0.10以上が好ましく、三置換−ビニレンは0.10以上が好ましい。
これらの基は不飽和結合を有することから、エチレン・α−オレフィン共重合体中に合計で0.22以上存在することにより、架橋性を高めることができる。この作用効果は、分子鎖中の不飽和結合の種類によって大きな差はないが、分子鎖中の三置換−ビニレンが多いと、架橋効率をより高めることが期待できる。
【0022】
ここで、不飽和結合数は、H−NMR法によって測定することができる。
ポリマー中のビニル、ビニリデン、シス・トランス−ビニレンの合計、三置換−ビニレンは、H−NMRにより測定し、主鎖及び側鎖合計1000個の炭素あたりの個数で求める。
具体的には化学シフト0.4〜2.8ppmの間に現れる飽和アルキル鎖由来のピーク面積と4.7ppm付近のビニリデン由来のピーク面積の比から炭素数1000個当たりのビニリデン数を算出した。なお、ビニルについては4.9ppm付近、三置換ビニレンについては5.2ppm付近、シス及びトランス−ビニレンについては5.4ppm付近の各特性ピークの強度を用いる。
【0023】
(a3)Z平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)
本発明で用いるエチレン・α−オレフィン共重合体は、ゲルパーミエーションクロマグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下であり、好ましくは5.0以下、より好ましくは4.0以下である。また、Mz/Mnは、2.0以上、好ましくは2.5以上、より好ましくは3.0以上である。ただし、Mz/Mnが8.0を超えると透明性が悪化する。Mz/Mnを所定の範囲に調整するには、適当な触媒系を選択する方法等によることができる。
【0024】
なお、Mz/Mnの測定は、ゲルパーミエーションクロマトグラフィー(GPC)で行い、測定条件は次のとおりである。
装置:ウオーターズ社製GPC 150C型
検出器:MIRAN社製 1A赤外分光光度計(測定波長、3.42μm)
カラム:昭和電工製AD806M/S 3本(カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似した。また、試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算した。ここでポリスチレンの粘度式の係数は、α=0.723、logK=−3.967であり、ポリエチレンはα=0.733、logK=−3.407である。)
測定温度:140℃
濃度:20mg/10mL
注入量:0.2ml
溶媒:オルソジクロロベンゼン
流速:1.0ml/分
【0025】
なお、Z平均分子量(Mz)は、高分子量成分の平均分子量への寄与が大きいので、Mz/Mnは、Mw/Mnに比べて高分子量成分の存在を確認しやすい。高分子量成分は、透明性に影響を与える要因であり、高分子量成分が多いと透明性は悪化する。また、架橋効率も悪化する傾向が見られる。よって、Mz/Mnは小さい方が好ましい。
【0026】
太陽電池モジュールでは、太陽電池素子の薄膜化に伴い、太陽電池封止材も薄膜化する傾向がある。薄膜化した太陽電池封止材では、上部または下部保護材側から衝撃が加わると、配線が断線しやすいため、封止材の剛性を高くすることが求められる。剛性を高くすると、架橋効率が悪くなるので、高分子鎖の分岐度がある程度高い共重合体を用いて、架橋前の共重合体の流動性を向上させ、成形性に優れた材料として使用する必要がある。本発明では、エチレン・α−オレフィン共重合体の不飽和結合数が0.22(個/total1000C)以上のポリマー構造となっているので、架橋性が大きく良好である。
【0027】
本発明に係るエチレン・α−オレフィン共重合体は、上述した様に、触媒を用いた共重合反応により製造できるが、共重合させる原料単量体の組成比や使用する触媒の種類を選択することにより、その高分子鎖中の不飽和結合数を容易に調整することが可能である。末端ビニル基、末端ビニリデン基等の不飽和結合を多めに残すことができるという点から、シクロペンタジエニル骨格を有する基等が配位したジルコニウム化合物などのメタロセン化合物の使用が好ましい。本発明で用いるエチレン・α−オレフィン共重合体の不飽和結合数が0.22(個/total1000C)以上であるためには、エチレン・α−オレフィン共重合体中のコモノマーは、プロピレン、1−ブテン、又は1−ヘキセンから選択するのが好ましい。また、気相法、高圧法を用いて製造するのが好ましく、特に、高圧法を選択するのがより好ましい。
【0028】
(2)成分(B)
本発明における成分(B)の有機過酸化物は、主に成分(A)を架橋するために用いられる。
有機過酸化物としては、分解温度(半減期が1時間である温度)が70〜180℃、とくに90〜160℃の有機過酸化物を用いることができる。このような有機過酸化物として、例えば、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,1−ジ(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、t−ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイドなどが挙げられる。
【0029】
(4)成分(B)の配合割合
成分(B)の配合割合は、成分(A)を100重量部としたときに、好ましくは、0.2〜5重量部であり、より好ましくは、0.5〜3重量部、さらに好ましくは、1〜2重量部である。成分(B)の配合割合が上記範囲よりも少ないと、架橋しないかまたは架橋に時間がかかる。また、上記範囲よりも大きいと、分散が不十分となり架橋度が不均一になりやすい。
【0030】
(5)ヒンダードアミン系光安定化剤(C)
本発明において、樹脂組成物にはヒンダードアミン系光安定化剤を配合することが好ましい。ヒンダードアミン系光安定化剤は、ポリマーに対して有害なラジカル種を補足し、新たなラジカルを発生しないようにするものである。ヒンダードアミン系光安定化剤には、低分子量のものから高分子量のものまで多くの種類の化合物があるが、従来公知のものであれば特に制限されずに用いることができる。
【0031】
低分子量のヒンダードアミン系光安定化剤としては、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロパーオキサイド及びオクタンの反応生成物(分子量737)70重量%とポリプロピレン30重量%からなるもの;ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネート(分子量685);ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート及びメチル−1,2,2,6,6−ペンタメチル−4−ピペリジルセバケート混合物(分子量509);ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(分子量481);テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量791);テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート(分子量847);2,2,6,6−テトラメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900);1,2,2,6,6−ペンタメチル−4−ピペリジル−1,2,3,4−ブタンテトラカルボキシレートとトリデシル−1,2,3,4−ブタンテトラカルボキシレートの混合物(分子量900)などが挙げられる。
【0032】
高分子量のヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”‘−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)、並びに、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−アクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルペリジン、4−メタクリロイルオキシ−1−エチル−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1−ブチル−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−1−プロピル−2,2,6,6−テトラメチルピペリジン等の環状アミノビニル化合物とエチレンとの共重合体などが挙げられる。上述したヒンダードアミン系光安定化剤は、一種単独で用いられてもよく、二種以上を混合して用いてもよい。
【0033】
これらの中でも、ヒンダードアミン系光安定化剤としては、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](分子量2,000〜3,100);コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(分子量3,100〜4,000);N,N’,N”,N”‘−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン(分子量2,286)と上記コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物の混合物;ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物(分子量2,600〜3,400)環状アミノビニル化合物とエチレンとの共重合体を用いるのが好ましい。製品使用時に経時でのヒンダードアミン系光安定剤のブリードアウトが妨げられるからである。また、ヒンダードアミン系光安定化剤は、融点が、60℃以上であるものを用いるのが、組成物の作製しやすさの観点から好ましい。
【0034】
本発明において、ヒンダードアミン系光安定化剤の含有量は、前記エチレン・α−オレフィン共重合体100重量部に対して、0.01〜2.5重量部とし、好ましくは0.01〜1.0重量部、より好ましくは0.01〜0.5重量部、さらに好ましくは0.01〜0.2重量部、最も好ましくは0.03〜0.1重量部とするのがよい。
前記含有量を0.01重量部以上とすることにより安定化への効果が十分に得られ、2.5重量部以下とすることによりヒンダードアミン系光安定化剤の過剰な添加による樹脂の変色を抑えることができる
また、本発明において、前記有機過酸化物(B)と前記ヒンダードアミン系光安定化剤(C)との重量比(B:C)を、1:0.01〜1:10とし、好ましくは1:0.02〜1:6.5とする。これにより、樹脂の黄変を顕著に抑制することが可能となる。
【0035】
(6)架橋助剤
また、本発明の樹脂組成物には架橋助剤を配合することができる。架橋助剤は、架橋反応を促進させ、エチレン・α−オレフィン共重合体の架橋度を高めるのに有効であり、その具体例としては、ポリアリル化合物やポリ(メタ)アクリロキシ化合物のような多不飽和化合物を例示することができる。
より具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物、ジビニルベンゼンなどを挙げることができる。架橋助剤は、成分(A)100重量部に対し、0〜5重量部程度の割合で配合することができる。
【0036】
(7)紫外線吸収剤
本発明の樹脂組成物には、紫外線吸収剤を配合することができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
ベンゾフェノン系紫外線吸収剤としては、例えば、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどを挙げることができる。
【0037】
ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジメチルフェニル)ベンゾトリアゾール、2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−メチル−5−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、などを挙げることができる。またトリアジン系紫外線吸収剤としては、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシルオキシ)フェノールなどを挙げることができる。サリチル酸エステル系としては、フェニルサリチレート、p−オクチルフェニルサリチレートなどを挙げることができる。
これら紫外線吸収剤は、エチレン・α−オレフィン共重合体100重量部に対し0〜2.0重量部配合し、好ましくは0.05〜2.0重量部、より好ましくは0.1〜1.0重量部、さらに好ましくは0.1〜0.5重量部、最も好ましくは0.2〜0.4重量部配合するのがよい。
【0038】
本発明の樹脂組成物には、主に太陽電池の上部保護材や太陽電池素子との接着力を向上させる目的でシランカップリング剤を用いることができる。
本発明におけるシランカップリング剤としては、例えばγ−クロロプロピルトリメトキシシラン;ビニルトリクロルシラン;ビニルトリエトキシシラン;ビニルトリメトキシシラン;ビニル−トリス−(β−メトキシエトキシ)シラン;γ−メタクリロキシプロピルトリメトキシシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン;γ−グリシドキシプロピルトリメトキシシラン;ビニルトリアセトキシシラン;γ−メルカプトプロピルトリメトキシシラン;γ−アミノプロピルトリメトキシシラン;N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン等を挙げることができる。好ましくは、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシランである。
これらのシランカップリング剤は、エチレン・α−オレフィン共重合体100重量部に対して0〜5重量部使用し、好ましくは0.01〜5重量部、より好ましくは0.01〜2重量部、さらに好ましくは、0.05〜1重量部で使用される。
【0039】
(8)他の添加成分
本発明の樹脂組成物には、本発明の目的を著しく損なわない範囲で、他の付加的任意成分を配合することができる。このような任意成分としては、通常のポリオレフィン系樹脂材料に使用される酸化防止剤、結晶核剤、透明化剤、滑剤、着色剤、分散剤、充填剤、蛍光増白剤、紫外線吸収剤、光安定剤等を挙げることができる。
【0040】
また、本発明の樹脂組成物には、柔軟性等を付与するため、本発明の目的を損なわない範囲で、チーグラー系又はメタロセン系触媒によって重合された結晶性のエチレン・α−オレフィン共重合体及び/又はEBR、EPR等のエチレン・α−オレフィンエラストマー若しくはSEBS、水添スチレンブロック共重合体等のスチレン系エラストマー等のゴム系化合物を3〜75重量部配合することもできる。さらに、溶融張力等を付与するため、高圧法低密度ポリエチレンを3〜75重量部配合することもできる。
【0041】
2.太陽電池封止材
本発明の太陽電池封止材(以下、単に封止材ともいう)は、上記樹脂組成物をペレット化し、あるいはシート化したものである。
この太陽電池封止材を用いれば、太陽電池素子を上下の保護材とともに固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。例えば上部透明保護材/封止材/太陽電池素子/封止材/下部保護材のように太陽電池素子の両側から封止材で挟む構成のもの、下部基板保護材の内周面上に形成させた太陽電池素子上に封止材と上部透明保護材を形成させるような構成のもの、上部透明保護材の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材と下部保護材を形成させるような構成のものなどを挙げることができる。
【0042】
太陽電池素子としては、特に制限されず、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム−砒素、銅−インジウム−セレン、カドミウム−テルルなどのIII−V族やII−VI族化合物半導体系等の各種太陽電池素子を用いることができる。本発明においては、基板としてガラスを用いたものが好ましい。
【0043】
太陽電池モジュールを構成する上部保護材としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。
また、下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートであり、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層の保護材を例示することができる。このような上部及び/又は下部の保護材には、封止材との接着性を高めるためにプライマー処理を施すことができる。本発明においては、上部保護材としてガラスが好ましい。
【0044】
本発明の太陽電池封止材は、ペレットとして使用してもよいが、通常、0.1〜1mm程度の厚みのシート状に成形して使用される。0.1mmよりも薄いと強度が小さく、接着が不十分となり、1mmよりも厚いと透明性が低下して問題になる場合がある。好ましい厚さは、0.1〜0.8mmである。
【0045】
シート状太陽電池封止材は、T−ダイ押出機、カレンダー成形機などを使用する公知のシート成形法によって製造することができる。例えばエチレン・α−オレフィン共重合体に、架橋剤を添加し、必要に応じて、ヒンダードアミン系光安定化剤、さらには架橋助剤、シランカップリング剤、紫外線吸収剤、酸化防止剤、光安定剤等の添加剤を予めドライブレンドしてT−ダイ押出機のホッパーから供給し、80〜150℃の押出温度において、シート状に押出成形することによって得ることができる。これらドライブレンドに際して、一部又は全部の添加剤は、マスターバッチの形で使用することができる。またT−ダイ押出やカレンダー成形において、予め非晶性α−オレフィン系共重合体に一部又は全部の添加剤を、一軸押出機、二軸押出機、バンバリーミキサー、ニーダーなどを用いて溶融混合して得た樹脂組成物を使用することもできる。
【0046】
太陽電池モジュールを製造するに当たっては、本発明の封止材のシートを予め作っておき、封止材の樹脂組成物が溶融する温度、例えば150〜200℃で圧着するという方法によって、前記のような構成のモジュールを形成することができる。また本発明の封止材を押出コーティングすることによって太陽電池素子や上部保護材あるいは下部保護材と積層する方法を採用すれば、わざわざシート成形することなく一段階で太陽電池モジュールを製造することが可能である。したがって本発明の封止材を使用すれば、モジュールの生産性を格段に改良することができる。
【0047】
一方、太陽電池モジュールを製造する際、有機過酸化物が実質的に分解せず、かつ本発明の封止材料が溶融するような温度で、太陽電池素子や保護材に該封止材を仮接着し、次いで昇温して充分な接着とエチレン・α−オレフィン共重合体の架橋を行うこともできる。この場合は、封止材層の融点(DSC法)が85℃以上、150℃の貯蔵弾性率が10Pa以上の耐熱性が良好な太陽電池モジュールを得るために、封止材層におけるゲル分率(試料1gをキシレン100mlに浸漬し、110℃、24時間加熱した後、20メッシュ金網で濾過し未溶融分の質量分率を測定)が50〜98%、好ましくは70〜95%程度になるように架橋するのがよい。
【0048】
なお、前記特許文献2では、非晶質又は低結晶性エチレン・ブテン共重合体100重量部に、有機過酸化物として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンを1.5重量部および架橋助剤としてトリアリルイソシアヌレートを2重量部混合した混合物を、異型押出機を用いて加工温度100℃で厚み0.5mmのシートを作製している(実施例3)。しかしながら、このような組成物を選択したのでは、加工温度が低いため十分な生産性を得ることはできない。
【0049】
太陽電池素子の封止作業では、太陽電池素子を上記本発明の封止材でカバーした後、有機過酸化物が分解しない程度の温度に数分から10分程度加熱して仮接着し、次に、オーブン内において有機過酸化物が分解する150〜200℃程度の高温で5分から30分間加熱処理して接着させる等の方法がある。
【実施例】
【0050】
以下、本発明を実施例によって、具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例、比較例で用いた評価方法及び使用樹脂は、以下の通りである。
【0051】
1.樹脂物性の評価方法
(1)メルトフローレート(MFR):エチレン・α−オレフィン共重合体のMFRは、JIS−K6922−2:1997附属書(190℃、21.18N荷重)に準拠して測定した。
(2)密度:前述の通り、エチレン・α−オレフィン共重合体の密度は、JIS−K6922−2:1997附属書(23℃、低密度ポリエチレンの場合)に準拠して測定した。
(3)Mz/Mn:前述の通り、GPCにより測定した。
(4)溶融粘度:JIS−K−7199−1999に準拠して、東洋精機製作所製キャピログラフ1−Bを用い、設定温度:100℃、D=1mm、L/D=10のキャピラリーを用いて、せん断速度2.43×10sec−1での溶融粘度(η)、せん断速度2.43×10sec−1での溶融粘度(η)の測定を行う。
【0052】
(5)不飽和結合数:
ポリマー中のビニル、ビニリデン、シス・トランス−ビニレンの合計、三置換−ビニレンは、H−NMRにより測定し、主鎖及び側鎖合計1000個の炭素あたりの個数で求めた。
具体的には化学シフト0.4〜2.8ppmの間に現れる飽和アルキル鎖由来のピーク面積と4.7ppm付近のビニリデン由来のピーク面積の比から炭素数1000個当たりのビニリデン数を算出した。なお、ビニルについては4.9ppm付近、三置換ビニレンについては5.2ppm付近、シス及びトランス−ビニレンについては5.4ppm付近の各特性ピークの強度を用いた。
装置:ブルカー・バイオスピン(株) AVANCE III cryo−400MHz
溶媒:o−ジクロロベンゼン/重化ブロモベンゼン = 8/2混合溶液
10mmφのNMR試料管を使用し、濃度は460mg/2.3mlとした。
<H−NMR測定条件>
積算回数:1400scan
フリップ角:1.03°
AQ(取り込み時間)=1.8s D1(待ち時間)=0.01s
【0053】
2.押出成形物(シート)の評価方法
(1)HAZE
厚み0.7mmのプレスシートを用いて、JIS−K7136−2000に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。HAZE値は、小さいほど良い。
【0054】
(2)光線透過率
厚み0.7mmのプレスシートを用いて、JIS−K7361−1−1997に準拠して測定した。プレスシート片を関東化学製特級流動パラフィンを入れたガラス製セルにセットし測定した。プレスシートは、160℃の条件で熱プレス機に30分間保管し、架橋させ準備した。
光線透過率は、80%以上であり、好ましくは、85%以上、さらに好ましくは90%以上である。
【0055】
(3)引張弾性率
160℃で30分架橋した厚み0.7mmのプレスシートを用いて、ISO1184−1983に準拠して測定した。尚、引張速度1mm/min、試験片幅10mm、つかみ具間を100mmとし、伸び率1%のときの引張弾性率を求めた。この値が小さい程、柔軟性に優れていることを示す。
【0056】
(4)耐熱性
160℃で架橋したシート及び150℃で30分架橋したシートのゲル分率で評価した。ゲル分率が高いほど架橋が進行しており、耐熱性が高いと評価できる。ゲル分率が70wt%以上のものを、耐熱性評価「○」とした。尚、ゲル分率は、当該シートを、約1gを切り取り精秤して、キシレン100ccに浸漬し110℃で24時間処理し、ろ過後残渣を乾燥し精秤して、処理前の重量で割りゲル分率を算出する。
【0057】
3.使用原料
(1)成分(A): エチレン・α−オレフィン共重合体
下記の<製造例1>で重合したエチレンと1−ヘキセンの共重合体(PE−1)、<製造例2>で重合したエチレンと1−ヘキセンの共重合体(PE−2)、市販のエチレン・1−ブテン共重合体「三井化学社製 タフマーA35070S」(PE−3)、エチレン・1−オクテン共重合体「ダウ社製 エンゲージ8400」(PE−4)を用いた。物性を表1に示す。
(2)有機過酸化物:2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)
(3)ヒンダードアミン系光安定化剤:コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)
(4)紫外線吸収剤:2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製、CYTEC UV531)
【0058】
<製造例1>
(i)触媒の調製
エチレンと1−ヘキセンの共重合体を製造するための触媒は、特表平7−508545号公報に記載された方法で調製した。即ち、錯体ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ハフニウムジメチル2.0mモルに、トリペンタフルオロフェニルホウ素を上記錯体に対して等モル加え、トルエンで10リットルに希釈して触媒溶液を調製した。
(ii)重合
内容積1.5リットルの撹拌式オートクレーブ型連続反応器を用い、反応器内の圧力を130MPaに保ち、エチレンと1−ヘキセンとの混合物を1−ヘキセンの組成が75重量%となるように40kg/時の割合で原料ガスを連続的に供給した。また、上記触媒溶液を連続的に供給し、重合温度が150℃を維持するようにその供給量を調整した。1時間あたりのポリマー生産量は約4.3kgであった。反応終了後、1−ヘキセン含有量が24重量%、MFRが35g/10分、密度が0.880g/cm、Mz/Mnが3.7であるエチレン・1−ヘキセン共重合体(PE−1)を得た。
また、PE−1を160℃−0kg/cm 3分予熱、160℃−100kg/cm 5分加圧、その後、30℃に設定された冷却プレスに100kg/cmの条件で、10分間冷却することで、厚み0.7mmのプレスシートを得た。その引張弾性率を、ISO1184−1983に準拠し、測定を行った結果、17MPaであった。
このエチレン・1−ヘキセン共重合体(PE−1)の特性を表1に示す。
【0059】
<製造例2>
製造例1において、重合時の1−ヘキセンの組成を71重量%にし、重合温度を157℃に代えた以外は製造例1と同様の製法で重合を行った。1時間あたりのポリマー生産量は約4.0kgであった。反応終了後、1−ヘキセン含有量=19重量%、MFR=30g/10分、密度=0.890g/cm、Mz/Mn=3.7であるエチレン・1−ヘキセン共重合体(PE−2)を得た。製造例1と同様に引張弾性率測定を行った結果、34MPaであった。このエチレン・1−ヘキセン共重合体(PE−2)の特性を表1に示す。
【0060】
【表1】

【0061】
(実施例1)
エチレンと1−ヘキセンの共重合体(PE−1)100重量部に対して、有機過酸化物として、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(アルケマ吉富社製、ルペロックス101)を1.5重量部と、ヒンダードアミン系光安定化剤として、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物(BASF社製、TINUVIN 622LD)0.05重量部配合した。これを十分に混合し、40mmφ単軸押出機を用いて設定温度130℃、押出量(17kg/時)の条件でペレット化した。
得られたシートを、160℃−0kg/cmの条件で、3分予熱した後、160℃−100kg/cmの条件で27分加圧(160℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。
また、別に耐熱性評価用に、150℃−0kg/cmの条件で、3分予熱した後、150℃−100kg/cmの条件で27分加圧(150℃で30分間プレス成形)し、その後、30℃に設定された冷却プレスに100kg/cmの加圧の条件で、10分間冷却することで、厚み0.7mmのシートを準備した。
評価結果を表2に示す。
【0062】
(実施例2)
実施例1において、PE−1に替えて、PE−2を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価した。評価結果を表2に示す。
【0063】
(実施例3)
実施例1において、さらに、紫外線吸収剤として、2−ヒドロキシ−4−n−オクトキシベンゾフェノン(サンケミカル社製 CYTEC UV531)0.3部を添加した以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
【0064】
(比較例1)
エチレンと1−ヘキセンの共重合体(PE−1)の代わりに、PE−3(エチレン・1−ブテン共重合体、三井化学社製 タフマーA35070S)を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
【0065】
(比較例2)
PE−1の代わりに、PE−4(エチレン・1−オクテン共重合体、ダウ社製 エンゲージ8400)を用いた以外は、実施例1と同様にシートを作製した。シートのHAZE、光線透過率、引張弾性率、耐熱性を測定、評価を行った。評価結果を表2に示す。
【0066】
【表2】

【0067】
「評価」
この結果、表2から明らかなように、実施例1〜3では、本発明の樹脂組成物を用いているために、これを押出成形して得られたシートは、架橋特性が良く、HAZEが小さく、光線透過率が大きく、耐熱性も優れている。
これに対して、比較例1では、本発明とは異なり、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22未満のエチレン・1−ブテン共重合体を含む樹脂組成物を用いているために、架橋効率が悪く、得られたシートは耐熱性が劣る結果となった。比較例2も、本発明から外れるエチレン・1−オクテン共重合体を含む樹脂組成物を用いたために、架橋効率が悪く、得られたシートは耐熱性が劣る結果となった。
【産業上の利用可能性】
【0068】
本発明の太陽電池封止材用樹脂組成物は、架橋特性が高く、しかも透明性、柔軟性、耐熱性等に優れるので太陽電池封止材として好ましく利用される。特に薄膜太陽電池やIC(集積回路)の封止材、太陽電池モジュールとして有用である。


【特許請求の範囲】
【請求項1】
下記の成分(A)及び成分(B)を含有することを特徴とする太陽電池封止材用樹脂組成物。
成分(A):下記(a1)〜(a2)の特性を有するエチレン・α−オレフィン共重合体
(a1)密度が0.860〜0.920g/cm
(a2)エチレン・α−オレフィン共重合体中のビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの合計量が0.22(個/total1000C)以上
(ただし、ビニル、ビニリデン、シス−ビニレン、トランス−ビニレン、三置換−ビニレンの個数は、NMRで測定した主鎖、側鎖の合計1000個の炭素数あたりの数である。)
成分(B):有機過酸化物
【請求項2】
成分(A)が、さらに下記(a3)の特性を有するエチレン・α−オレフィン共重合体であることを特徴とする請求項1に記載の太陽電池封止材用樹脂組成物。
(a3)ゲルパーミエーションクロマトグラフィー(GPC)により求めたZ平均分子量(Mz)と数平均分子量(Mn)との比(Mz/Mn)が8.0以下
【請求項3】
成分(B)の含有量が、成分(A)100重量部に対して、0.2〜5重量部であることを特徴とする請求項1または2に記載の太陽電池封止材用樹脂組成物。
【請求項4】
さらに、下記の成分(C)を含有することを特徴とする請求項1〜3のいずれかに記載の太陽電池封止材用樹脂組成物
成分(C):ヒンダードアミン系光安定化剤
【請求項5】
成分(C)の含有量が、成分(A)100重量部に対して、0.01〜2.5重量部であることを特徴とする請求項4に記載の太陽電池封止材用樹脂組成物。
【請求項6】
成分(A)が、エチレン・1−ブテン、又はエチレン・1−ヘキセン共重合体であることを特徴とする請求項1〜5のいずれかに記載の太陽電池封止材用樹脂組成物。
【請求項7】
請求項1〜6のいずれかに記載の太陽電池封止材用樹脂組成物からなる太陽電池封止材。
【請求項8】
請求項7に記載の太陽電池封止材を用いた太陽電池モジュール。

【公開番号】特開2012−9688(P2012−9688A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−145281(P2010−145281)
【出願日】平成22年6月25日(2010.6.25)
【出願人】(303060664)日本ポリエチレン株式会社 (233)
【Fターム(参考)】