説明

太陽電池用ポリエステルフィルム

【課題】長期の安定した電気絶縁性を有する太陽電池モジュールに適した太陽電池用ポリエステルフィルムを提供する。
【解決手段】アルミニウム及び/又はその化合物とフェノール系化合物を含有し、下記要件(1)および(2)を満足する太陽電池用ポリエステルフィルム。(1)絶縁電圧保持率が80%以上、(2)環状三量体含有量が5000ppm以下

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池モジュールに適した太陽電池用ポリエステルフィルムに関する。より詳しくは、太陽電池用バックシートに用いた際、優れた絶縁破壊電圧の保持率を有する太陽電池用ポリエステルフィルムに関するものである。
【背景技術】
【0002】
近年、地球温暖化の原因となる石油エネルギーに代わる、エネルギー手段として、太陽電池が注目を浴びており、その需要が高まっている。太陽電池は太陽光のエネルギーを直接電気に換える太陽光発電システムであり、その心臓部は半導体からできている。その構造としては、太陽電池素子単体をそのままの状態で使用することはなく、一般的に数枚〜数十枚の太陽電池素子を直列、並列に配線し、長期間(約20年以上)に亘って素子を保護するため種々のパッケージングが行われ、ユニット化されている。このパッケージに組み込まれたユニットを太陽電池モジュールと呼び、一般的に太陽光が当たる面をガラスで覆い、熱可塑性樹脂からなる充填材で間隙を埋め、裏面を耐熱、耐候性プラスチック材料などのバックシートと呼ばれる複数の層構成を有する保護シートで保護された構成になっている。
【0003】
従来、太陽電池用裏面保護シートの部材として、ポリフッ化ビニルフィルム(登録商標:テドラー)が多く用いられていた。しかし、最近ではコストに優れるポリエステルフィルムが多く用いられるようになってきている。太陽電池にはシステム作動時に高い電圧が長期間かかるため、裏面保護シートには電気絶縁性が高いことが望まれる。特に最近では太陽電池システム電圧1000Vに対応した太陽電池用裏面保護シートが提案されており、今後さらなる性能向上のためにシステム電圧の高電圧化が進むものと予想される。このため、漏電による感電や火災の危険度が増すため、太陽電池の電気的な安全性が注目され、太陽電池用裏面保護シートに対する電気絶縁性能向上の要求が高まりつつある。
【0004】
そのため、太陽電池用ポリエステルフィルムとして、以下のように(1)厚みを厚くする、(2)気泡を有する層を設ける、ことにより電気絶縁性を向上させることが提案されている。
【0005】
特許文献1では総厚さ67μmの発泡樹脂層を含み、絶縁破壊電圧14.5kvである太陽電池用裏面保護シートと、総厚さ122μmの発泡樹脂層を含み、絶縁破壊電圧16.2kvである太陽電池用裏面保護シートが例示されている。
【0006】
特許文献2では酢酸亜鉛と三酸価アンチモンを触媒として重合されたPETポリマーを用いて作製された総厚さ250〜325μmの太陽電池モジュール裏面封止シートが例示されている。
【0007】
特許文献3、及び特許文献4ではではアンチモン、ゲルマニウム、チタン化合物から選ばれる重合触媒金属化合物をいずれか一種含むポリエステルで且つ、固相重合により、固有粘度0.6(dl/g)以上、環状三量体の含有量が0. 5重量%以下のPETを用いて作製された総厚さ50〜300μmの太陽電池用裏面保護シ−トが例示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−11923号公報
【特許文献2】特開2008−166338号公報
【特許文献3】特開2006−253264号公報
【特許文献4】特開2008−270238号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
太陽電池は屋外で長期に使用されることから、直射日光下での耐候性劣化、熱による特性低下を起こさない材料が求められる。しかしながら、前述のポリエステルフィルムでは使用初期の絶縁性は向上しても、太陽電池モジュールの使用期間を20年以上として見据えた場合、長期にわたる経年劣化によって絶縁性が低下する場合があった。
【0010】
本発明の目的は、上記課題に鑑み、高い電気絶縁破壊電圧の保持率を有する太陽電池用ポリエステルフィルムを提供するものである。
【課題を解決するための手段】
【0011】
本願発明者は、太陽電池用ポリエステルフィルムの電気絶縁性と密着性について鋭意検討した結果、アルミニウム及び/又はその化合物とフェノール系化合物を含有する重縮合触媒を用いて重合されたポリエステル樹脂からなるポリエステルフィルムであって、さらにフィルム中の環状オリゴマーを特定範囲にすることによって、優れた絶縁破壊電圧の保持率が得られることを見いだし、本願発明に至ったものである。
【0012】
すなわち、前記の課題は、以下の解決手段により達成することができる。
本願の第1の発明は、アルミニウム及び/又はその化合物とフェノール系化合物を含有し、下記要件(1)および(2)を満足する太陽電池用ポリエステルフィルムである。
(1)紫外線照射量400MJ/mの紫外線を72時間照射後の下記式で求められる絶縁電圧保持率が80%以上である
(絶縁破壊電圧保持率)=(紫外線照射後の絶縁破壊電圧)/(未処理時の絶縁破壊電圧)×100
(2)前記ポリエステルフィルム中の環状三量体含有量が該ポリエステルフィルム当り5000ppm以下である
本願の第2の発明は、前記ポリエステルフィルムの少なくとも一方の面におけるフィルム表面の線状オリゴマー量が10μg/m以上、80μg/m以下である前記太陽電池用ポリエステルフィルムである。
本願の第3の発明は、前記ポリエステルフィルムのヘーズが3.0%以下である前記太陽電池用ポリエステルフィルムである。
本願の第4の発明は、前記ポリエステルフィルムが最外層と中心層の少なくとも3層を有し、前記最外層は粒子を含有し、前記中心層は実質的に粒子を含まない前記太陽電池用ポリエステルフィルムである。
【発明の効果】
【0013】
本願の第1の発明の効果は、経時劣化においても絶縁破壊電圧の保持率が高く、長期の使用において優れた電気絶縁性を奏する。
また、本願の第2の発明の効果は、経時劣化においても絶縁破壊電圧保持率が高く、且つ粘着剤層や、防湿塗布層、封止剤等の他の素材との優れた密着性が得られるという効果を奏する。
さらに、本願の第3、第4の発明は、経時劣化においても絶縁破壊電圧保持率が高く、且つ粘着剤層や、防湿塗布層、封止剤等の他の素材との優れた密着性が得られ、さらに高い透明性を奏する。
本願発明は以上の効果を奏するため、太陽電池用ポリエステルフィルムとして長期の安全性に優れる。
【発明を実施するための形態】
【0014】
本願発明者は鋭意検討の結果、長期の劣化試験における絶縁破壊電圧保持率がポリエステルに含まれる触媒種により影響することを見出し本願発明に至ったものである。すなわち、本発明のフィルムの主たる構成成分であるポリエステルを重合する際に使用する重縮合触媒は、アルミニウム及び/又はその化合物とフェノール系化合物を含有する触媒、アルミニウム及び/又はその化合物とリン化合物を含有する重縮合触媒、リン化合物のアルミニウム塩を含有する重縮合触媒である。そのため、本発明のフィルムはアルミニウム及び/又はその化合物とフェノール系化合物を含有する。
【0015】
本発明では、アルミニウム及び/又はその化合物とリン化合物を含有する重縮合触媒を用いることにより、三酸化アンチモン触媒を用いて重合された一般的なポリエステル樹脂を用いた場合より、前記絶縁破壊電圧の保持率は高く維持できるのである。この理由については定かではないがアルミニウム及び/又はその化合物とリン化合物を含有する重縮合触媒はポリエステル樹脂の光劣化を抑制する作用があるものと推察される。
【0016】
本発明のポリエステルフィルムの絶縁破壊電圧保持率は、80%以上、好ましくは83%以上、より好ましくは85%以上である。ここで、絶縁破壊電圧保持率は、(1)紫外線照射量400MJ/mの紫外線を72時間照射後のおける絶縁破壊電圧と、非処理での絶縁破壊電圧を測定し、下記式で求められるものである。
(絶縁破壊電圧保持率)=(紫外線照射後の絶縁破壊電圧)/(未処理時の絶縁破壊電圧)×100
【0017】
前記アルミニウム及び/又はアルミニウム化合物としては、金属アルミニウムのほか、公知のアルミニウム化合物を限定なく使用することができる。
【0018】
アルミニウム化合物としては、具体的には、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、蓚酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムn-プロポキサイド、アルミニウムiso-プロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt−ブトキサイドなどアルミニウムアルコキサイド、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのアルミニウムキレート化合物、トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、酸化アルミニウムなどが挙げられる。これらのうちカルボン酸塩、無機酸塩およびキレート化合物が好ましく、これらの中でもさらに酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムおよびアルミニウムアセチルアセトネートが特に好ましい。
【0019】
前記アルミニウム及び/又はアルミニウム化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して0.001〜0.05モル%が好ましく、さらに好ましくは、0.005〜0.02モル%である。添加量が0.001モル%未満であると触媒活性が十分に発揮されない場合があり、添加量が0.05モル%以上になると、熱安定性や熱酸化安定性の低下、触媒に起因する異物の発生や着色の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なくても本発明の重縮合触媒は十分な触媒活性を示す点に大きな特徴を有する。その結果、光安定性や熱安定性、熱酸化安定性が優れ、触媒に起因する異物や着色を低減することができる。
【0020】
前記重縮合触媒を構成するフェノール系化合物としては、フェノール構造を有する化合物であれば特に限定はされないが、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,6-ジシクロヘキシル-4-メチルフェノール、2,6-ジイソプロピル-4-エチルフェノール、2,6-ジ-tert-アミル-4-メチルフェノール、2,6-ジ-tert-オクチル-4-n-プロピルフェノール、2,6-ジシクロヘキシル-4-n-オクチルフェノール、2-イソプロピル-4-メチル-6-tert-ブチルフェノール、2-tert-ブチル-2-エチル-6-tert-オクチルフェノール、2-イソブチル-4-エチル-6-tert-ヘキシルフェノール、2-シクロヘキシル-4-n-ブチル-6-イソプロピルフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、トリエチレングリコール−ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール−ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4,4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナミド)、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-tert-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス[(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、トリス(4-tert-ブチル−2,6-ジメチル-3-ヒドロキシベンジル)イソシアヌレート、2,4-ビス(n−オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、テトラキス[メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン、ビス[(3,3-ビス(3-tert-ブチル-4-ヒドロキシフェニル)ブチリックアシッド)グリコールエステル、N,N'-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、2,2'-オギザミドビス[エチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル-6-(3-tert-ブチル-5-メチル−2-ヒドロキシベンジル)フェニル]テレフタレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス[1,1-ジメチル2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、2,2-ビス[4-(2-(3,5-ジ-tert-ブチル-4-ヒドロキシシンナモイルオキシ))エトキシフェニル]プロパン、β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸アルキルエステル、テトラキス-[メチル-3-(3',5'-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、チオジエチレンービス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコール-ビス-[-3-(3'-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)]プロピオネート、1,1,3-トリス[2-メチル-4-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-5-tert-ブチルフェニル]ブタンなどを挙げることができる。
【0021】
これらは、同時に二種以上を併用することもできる。これらのうち、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチル-3-(3',5'-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、チオジエチレンービス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]が好ましい。
【0022】
これらのフェノール系化合物をポリエステルの重合時に添加することによって、アルミニウム化合物の触媒活性が向上するとともに、重合したポリエステルの熱安定性も向上する。
【0023】
前記フェノール系化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して5×10−7〜0.01モルが好ましく、更に好ましくは1×10−6〜0.005モルである。また、本発明では、フェノール系化合物にさらにリン化合物をともに用いても良い。
【0024】
前記重縮合触媒を構成するリン化合物としては特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
【0025】
前記の重縮合触媒を構成するリン化合物としては、芳香環構造を有する基である化合物が特に好ましい。
【0026】
前記の重縮合触媒を構成するリン化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン酸ジフェニル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジエチル、ジフェニルホスフィン酸、ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸フェニル、フェニルホスフィン酸、フェニルホスフィン酸メチル、フェニルホスフィン酸フェニル、ジフェニルホスフィンオキサイド、メチルジフェニルホスフィンオキサイド、トリフェニルホスフィンオキサイドなどが挙げられる。これらのうちで、フェニルホスホン酸ジメチル、ベンジルホスホン酸ジエチルが特に好ましい。
【0027】
前記のリン化合物の添加量としては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ユニットのモル数に対して5×10−7〜0.01モルが好ましく、更に好ましくは1×10−6〜0.005モルである。
【0028】
前記の重縮合触媒を構成するフェノール部を同一分子内に有するリン化合物としては、フェノール構造を有するリン化合物であれば特に限定はされないが、フェノール部を同一分子内に有する、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上のフェノール部を同一分子内に有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。本発明は触媒活性向上効果を有する上記リン化合物を併用するため、金属化合物である前記アルミニウム及び/またはアルミニウム化合物の添加量をさらに少量にすることができる。そのため、後述の絶縁破壊電圧を抑制することに有効である。
【0029】
本発明で用いるポリエステルの触媒は、重合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。従来、ポリエステルの重合触媒として用いられているアンチモン化合物などは、重合反応には高い触媒能を有するものの、エステル化反応については殆ど活性を示さない。ところが、本発明で用いるアルミニウム化合物は重合反応について高い触媒能を有しつつ、エステル化反応も高い活性を有している。例えば、テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応による重合は、通常チタン化合物や亜鉛化合物などのエステル交換触媒の存在下で行われるが、これらの触媒に代えて、もしくはこれらの触媒に共存させて本発明の請求項に記載の触媒を用いることもできる。また、前記の触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有しており、いずれの方法によっても太陽電池用ポリエステルフィルムの製造に適したポリエステル樹脂を製造することが可能である。そのため、ポリエステル中のオリゴマー量の低減を好適に行なうことができる。
【0030】
尚、本発明で用いるポリエステル中には、他の任意の重縮合体や制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤が使用可能である。
【0031】
本発明のポリエステルフィルムは環状三量体含有量が5000ppm以下であることが好ましい。4000ppm以下であることがさらに好ましく、特に好ましくは3500ppm以下である。前記環状三量体含有量が5000ppm以下であると、フィルムの加水分解が抑制され、絶縁破壊電圧を保持する効果を得やすく、さらに太陽電池用バックシート部材としての良好な耐久性を奏する。
【0032】
前記耐久性は105℃、100%RH、0.03MPa下、192時間後における破断伸度保持率で評価することができる。この破断伸度保持率は好ましくは65%以上、より好ましくは70%以上である。係る範囲にあることにより、本発明の太陽電池用ポリエステルフィルムは、屋外での長期使用に耐えうる高い耐加水分解性を奏することができる。
【0033】
ポリエステルフィルムの環状三量体の含有量を上記範囲にするためには、固相重合法によってオリゴマー低減処理を行ったポリエステル樹脂を原料に用いることが好ましい。
【0034】
本発明で言う固相重合法とは、固相状態で減圧下あるいは不活性ガス気流下でポリエステル樹脂を加熱し、さらに重縮合を進める方法である。また、固相状態にて減圧下で加熱する方法と不活性ガス気流下で熱処理する方法を組み合わせてもよい。固相重合反応は、溶融重縮合反応と同様、回分式装置や連続式装置で行うことが出来る。溶融重縮合と固相重縮合は連続で行っても良いし、分割して行ってもよい。また、該ポリエステル樹脂中に含まれている環状三量体等のオリゴマーやアセトアルデヒド等の副生成物を除去する等の手段を取ることも何ら制約を受けない。さらに、例えば、超臨界圧抽出法等の抽出法でポリエステル樹脂を精製し前記の副生成物等の不純物を除去する等の処理を行うことを取り入れても良い。
【0035】
上記の固相重合は、180℃以上、融点未満の温度で行うことが望ましく、特に195〜235℃が好ましい。融点以上では、ポリエステル樹脂が溶融するので実用的でなく、また、180℃未満では環状三量体の減少速度が著しく遅いので好ましくない。さらに、固相重合は、不活性気体流通下又は減圧下で行う必要がある。この不活性気体とは、固相重合後に得られるポリエステル樹脂の劣化を生じないような気体を意味し、一般には安価な窒素を用いるのが好ましい。不活性気体中の水分量は、固相重合中にポリエステル樹脂の極限粘度が低下しない範囲であればよく、通常、500ppm以下である。減圧下で固相重合する場合には、通常、真空度は0.1KPa以下、さらに好ましくは0.05KPa以下である。
【0036】
固相重合の装置は、回転式固相重合装置、塔式静置固相重合装置、流動床式固相重合装置、種々の撹拌翼を有する固相重合装置等のペレット状樹脂を均一に加熱できるものが好ましい。
【0037】
ポリエステルフィルムの耐久性の点からは、固相重合により高分子量化したポリエステルや、低酸価のポリエステルを用いることも好ましい。これによりポリエステルフィルムの耐加水分解性をより向上させることができる。固相重合によりポリエステルを高分子量化する場合、固有粘度は0.65〜0.80dl/gであることが高度な耐熱性、耐加水分解性を得るためには好ましく、より好ましくは0.70〜0.75dl/gである。なお、ポリエステルの固有粘度は、ポリエステルをパラクロロフェノール(6質量部)と、1,1,2,2−テトラクロルエタン(4質量部)の混合溶媒に溶解し、30℃で測定することができる。
【0038】
このように、本願発明では、太陽電池システムの長期間使用において、漏電による感電や火災の原因となりうる太陽電池用裏面保護シート部材の絶縁性低下を低減するためには、アルミニウム及び/又はその化合物とフェノール系化合物を含有する重縮合触媒を用いて重合されたポリエステル樹脂を用い、さらにフィルム中の環状オリゴマーの含有量を特定の範囲にすることを見出した点が本発明の重要な点である。
【0039】
また、太陽電池の絶縁防止や発電素子の劣化防止のため、太陽電池用ポリエステルフィルムに接着剤層を介して防湿層が設けることで、高度な防湿処理を施す場合がある。しかしながら、太陽電池モジュールの使用期間を20年以上として見据えた場合、長期にわたる防湿性を維持するには未だ不十分な場合があった。すなわち、太陽電池用ポリエステルフィルムに接着剤(特に水系接着剤)を塗布した場合にフィルム表面に生じる微小なハジキが生じ、長期での密着性の低下する場合があった。そこで、検討の結果、フィルム表面に生じる微小なハジキがフィルム表面の線状オリゴマーにより抑制されることを見出された。
【0040】
すなわち、本発明においては少なくとも一方の面のフィルム表面の線状オリゴマー量が10μg/m以上、80μg/m以下であることが好ましく、より好ましくは20μg/m以上、75μg/m以下である。フィルム表面の線状オリゴマーが10μg/m以上ではフィルム表面に粘着剤を塗布した場合の密着が優れるため好ましい。また、フィルム表面に存在するオリゴマー量が多い場合は、親水性が増し、加水分解を誘発するため絶縁破壊電圧保持率が低下する場合がある。そのため、フィルム表面の線状オリゴマー量は80μg/m以下であることが望ましい。
【0041】
ここで、線状オリゴマー量とはフィルム原料となるポリエステル樹脂に由来する線状二量体、線状三量体、線状四量体の合計量をいう。線状二量体、線状三量体、線状四量体とは、例えばテレフタル酸とエチレングリコールを原料とするエチレンテレフタレートを主繰返し単位とするポリエステルの場合、線状二量体とは、一分子中にテレフタル酸単位を二つ有し、かつカルボン酸末端あるいは水酸基末端を持つオリゴマーを意味する。また、同様に線状三量体とは一分子中にテレフタル酸単位を三つ有し、線状四量体は四つ有する以外は線状二量体と同様の末端基を有するものを意味する。
【0042】
従来、太陽電池用ポリエステルフィルムとしては耐久性の点から環状三量体を低減させたものを用いられていたが、このようなポリエステルフィルムでは線状オリゴマーの含有量も低下するので、粘着剤を代表とする他素材との接着性向上には逆効果の場合がある。本願発明は、太陽電池用途として好適な接着性を奏するために、環状三量体含有量を低減させながら、フィルム表面に存在する線状オリゴマー量を上記範囲にするために、フィルム製膜における表面線状オリゴマー生成処理を行なうことが好ましい。
【0043】
製膜中における表面線状オリゴマー生成処理としては、具体的に、以下の手段が挙げられ、これらの手段を適宜選択もしくは組み合わせることにより、フィルム表面の表面線状オリゴマー量を前述の範囲に制御することが好ましい。
(1)熱処理工程、冷却工程後の表面処理
(2)表面処理の強度の調整
(3)熱処理工程、冷却工程後の空気湿度調整
(3)溶融工程における滞留時間の制御
(4)熱個定後の冷却速度の制御
これらについての具体的態様についてはさらに後述する。
【0044】
太陽電池としてシースルー型など、意匠性を要する用途においては、高い透明性が求められる場合がある。このような場合、本発明のフィルムのヘーズは3.0%以下が好ましく、2.8%以下がさらに好ましく、2.5%以下がよりさらに好ましい。これにより、透明性の高いフィルムを得ることができ、シースルー型太陽電池など透明性が求められる分野にも好適である。
【0045】
次に本発明のフィルムの製膜方法について説明する。
本発明のポリエステルフィルムは、単層ポリエステルフィルムであっても良いし、最外層と中心層を有する、少なくとも3層からなる積層ポリエステルフィルムであっても良い。特に、生産性の点から最外層と中心層の3層構成を有することが好ましい。3層構成における層構成として、表裏の最外層の構成は同組成であっても異組成であっても構わないが、2種3層(A層/B層/A層)が平面性の点から好適である。
【0046】
本発明において3層構成とする場合、最外層(上記2種3層の場合はA層)に粒子を含有し、中心層(上記2種3層の場合はB層)には実質的に粒子を含まないことが好ましい。A層に粒子を含有させる理由は、金属又は金属酸化物系薄膜層や塗布層等の防湿機能層を積層するなど後加工工程でのハンドリング性付与及び表面積を大きくすることによって前記機能層との密着性を向上させるためである。最外層に粒子を添加する場合は、加工性に適した十分なハンドリング性が得られる。本発明の積層フィルムのハンドリング性は、積層フィルム面同士の動摩擦係数(μd)により評価することができる。この場合、加工性の点から動摩擦係数(μd)が0.7以下であることが好ましい。
【0047】
また、B層には実質的に粒子を含まないことが好ましいとした理由は、滑剤粒子、特に無機粒子の凝集体による突起の生成確率を低減させるためである。また係る構成をとることで、透明性の高いフィルムを得ることができ、シースルー型太陽電池など透明性が求められる分野にも好適である。
【0048】
なお、「不活性粒子が実質上含有されていない」とは、例えば、無機粒子の場合、蛍光X線分析で粒子に由来する元素を定量分析した際に、50ppm未満、好ましくは10ppm未満、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。
【0049】
これらの各層には、必要に応じて、ポリエステル中に各種添加剤を含有させることができる。添加剤としては、例えば、酸化防止剤、耐光剤、ゲル化防止剤、有機湿潤剤、帯電防止剤、紫外線吸収剤、界面活性剤などが挙げられる。
【0050】
最外層に含まれる粒子の種類及び含有量は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、シリカ、二酸化チタン、タルク、カオリナイト等の金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウムなどのポリエステルに対し不活性な無機粒子が例示される。これらの不活性な無機粒子は、いずれか一種を単独で用いてもよく、また2種以上を併用してもよい。
【0051】
前記の粒子は、平均粒子径が0.1〜3.5μmであることが好ましい。前記平均粒子径の下限は、0.5μmがより好ましく、0.8μmがさらに好ましく、1.0μmがよりさらに好ましい。また、前記平均粒子の上限は、3.0μmであることがより好ましく、2.8μmであることがよりさらに好ましい。平均粒子径が0.1μm未満では十分なハンドリング性が得られない。3.5μmを越えると粗大突起が生成しやすくなる。
【0052】
また、これらの粒子は多孔質粒子、特に多孔質シリカが好ましい。多孔質粒子はフィルム製膜工程での延伸時に扁平型に変型しやすく、粗大突起を生成しにくいためである。
【0053】
最外層の無機粒子の含有量は最外層を構成するポリエステルに対し、0.01〜0.20質量%であることが好ましい。前記濃度の下限は、0.02質量%がより好ましく、0.03質量%がさらに好ましい。また前記濃度の上限は、0.15質量%がより好ましく、0.10質量%がさらに好ましい。0.01質量%未満では十分なハンドリング性が得られない。0.2質量%を越えると粗大突起が生成しやすくなる。
【0054】
前記粒子の平均粒子径の測定は下記方法によって求めることができる。
粒子を電子顕微鏡または光学顕微鏡で写真を撮り、最も小さい粒子1個の大きさが2〜5mmとなるような倍率で、300〜500個の粒子の最大径(多孔質シリカの場合は凝集体の粒径)を測定し、その平均値を平均粒子径とする。
【0055】
ポリエステルに上記粒子を配合する方法としては、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めてもよい。またベント付き混練押出機を用いエチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行うことができる。
【0056】
中でも、本発明ではポリエステル原料の一部となるモノマー液中に凝集体無機粒子を均質分散させた後、濾過したものを、エステル化反応前、エステル化反応中、又はエステル化反応後のポリエステル原料の残部に添加する方法が好ましい。この方法によると、モノマー液が低粘度のため、粒子の均質分散やスラリーの高精度な濾過が容易に行えると共に、原料の残部に添加する際に、粒子の分散性が良好で、新たな凝集体も発生しにくい。かかる観点より、特に、エステル化反応前の低温状態の原料の残部に添加することが好ましい。また、予め粒子を含有するポリエステルを得た後、そのペレットと粒子を含有しないペレットとを混練押出し等する方法(マスターバッチ法)により、更に滑剤凝集物を低減することができ、表面の粗大突起数も少なくすることができるため好適である。
【0057】
本発明で用いるフィルムの厚さは、特に制限しないが、高い電気絶縁性を奏するには厚みは厚い方が好ましい。すなわち、本発明のフィルムの厚みは30〜300μmの範囲で、使用する規格に応じて任意に決めることができる。基材フィルムの厚みの上限は、250μmが好ましく、特に好ましくは200μmである。一方、フィルム厚みの下限は、50μmが好ましく、さらに好ましくは75μmであり、特に好ましくは100μmである。フィルム厚みが30μm未満では、剛性や電気絶縁性が不十分となりやすい。一方、フィルム厚みが300μmを超えると、コスト高となる。
【0058】
本発明で用いるフィルムとしては、前記ポリエステルを溶融押出し、または溶液押出して得た未配向シートを、必要に応じ、長手方向または幅方向の一軸方向に延伸し、あるいは二軸方向に逐次二軸延伸または同時二軸延伸し、熱固定処理を施した、二軸配向ポリエステルフィルムが好適である。
【0059】
ポリエステルペレットを十分に真空乾燥した後、最外層、および中心層を構成する各ポリエステルを共押出し機に供給し、270〜295℃でシート状に溶融押出しし、冷却固化せしめて未配向のキャストフィルムを得る。得られたキャストフィルムを、80〜120℃に加熱したロールで長手方向に2.5〜5.0倍延伸して、一軸配向ポリエステルフィルムを得る。
【0060】
その後、フィルムの両端部をクリップで把持して、80〜180℃に加熱された熱風ゾーンに導き、乾燥後幅方向に2.5〜5.0倍に延伸する。引き続き220〜240℃の熱処理ゾーンに導き、熱固定処理、冷却を行い、結晶配向を完了させる。この熱処理工程中で、必要に応じて、幅方向あるいは長手方向に1〜12%の弛緩処理を施してもよい。
【0061】
また、本発明のフィルムを製造する際には、突起の原因となる、原料のポリエステル中に含まれている異物を除去することが好ましい。ポリエステル中の異物を除去するために、溶融押出しの際に溶融樹脂が約280℃に保たれた任意の場所で高精度濾過を行う。溶融樹脂の高精度濾過に用いられる濾材は、特に限定はされないが、ステンレス焼結体の濾材の場合のSi、Ti、Sb、Ge、Cuを主成分とする凝集物、及び高融点有機物が除去性能に優れ好適である。
【0062】
溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率:95%)は、25μm以下が好ましい。濾材の濾過粒子サイズが25μmを超えると、20μm以上の異物の除去が不十分となりやすい。濾過粒子サイズ(初期濾過効率:95%)が25μm以下の濾材を使用して溶融樹脂の高精度濾過を行うことにより生産性が低下する場合があるが、突起の少ないフィルムを得るには重要である。押し出し機内における溶融樹脂の滞留時間は環状三量体生成の観点からはできるだけ短くすることが好ましい。比較的厚みの薄いフィルムを製膜する際、溶融樹脂の吐出量を小さくすることがあるために滞留時間が長くなる場合があるが、その場合でも20分間以内にすることが好ましい。より好ましくは15分以内、さらに好ましくは10分以内である。
【0063】
本発明のポリエステルフィルムは他素材との接着性を付与するために、フィルム製膜工程、特に前記熱処理工程、冷却工程の後でフィルム表面に線状オリゴマー生成処理を行なうことが好ましい。前記熱処理工程、冷却工程の前に線状オリゴマーを生成させても熱処理工程で減少するため好ましくない。線状オリゴマーを付与させるための表面処理方法は特に限定されないが、例えばコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理が挙げられる。中でもコロナ放電処理は比較的容易にできるため特に好ましい。
【0064】
コロナ放電処理を行う場合、ワット密度は3〜30w/m/min、好ましくは5〜20w/m/minである。ワット密度は3w/m/min未満では十分な線状オリゴマーが生成できない場合がある。また、30w/m/minを越えるとフィルム表面の環状三量体が増加する場合がある。フィルム表面の環状三量体量が増加すると表面突起が形成され、防湿層を積層した際の長期防湿維持が低下する場合がある。
【0065】
さらに、コロナ放電処理環境において、気温は20℃から35℃、相対湿度50〜80%で処理することが好ましい。相対湿度を比較的高く維持することでフィルム表面の環状三量体生成を低く保ちながら、線状オリゴマーを適度に生成させることができる。これは空気中の水分と反応し線状オリゴマーが生成しやすいためと推察する。一般に製膜工程中の湿度は設備の腐食低減のため比較的低い湿度に保たれる場合が多いが、本は発明では相対湿度を上記範囲内に保つことが好ましい。相対湿度80%以上では結露や設備の腐食の観点から好ましくない。
【0066】
本発明の太陽電池用ポリエステルフィルムには、水蒸気バリア性を付与する目的で、水蒸気バリア性を有するコーティングやフィルム、無機酸化物層、アルミ箔などを積層することができる。
【0067】
コーティング層としては、ポリフッ化ビニル溶液などフッ素樹脂溶液をコーティングすることにより付与することができる。また、バリア性フィルムとしては、ポリフッ化ビニリデンコートフィルム、酸化ケイ素蒸着フィルム、酸化アルミニウム蒸着フィルム、アルミニウム蒸着フィルムなどをもちいることができる。無機酸化物層は、酸化アルミニウム、酸化珪素、酸化錫、酸化マグネシウム、あるいは、それらの混合物等の無機酸化物からなる層であり、真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマ気相成長法(CVD)等により積層することができる。これらは、本発明の太陽電池用ポリエステルフィルムに被覆層や接着層を介して、または直接積層したり、サンドイッチ構造をとる形態で用いることができる。
【実施例】
【0068】
以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法を以下に説明する。
【0069】
1.ポリエステルフィルム中の環状三量体の含有量
ポリエステルフィルム中の環状三量体の含有量は以下の方法で測定した。細砕したフィルム試料100mgを精秤し、ヘキサフルオロイソプロパノ−ル/クロロホルム混合液(容量比=2/3)3mlに溶解し、さらにクロロホルム20mlを加えて希釈する。これにメタノ−ル10mlを加えてポリマ−を沈殿させた後、濾過する。濾液を蒸発乾固し、ジメチルフォルムアミド10mlで定容とした。次いで下記の高速液体クロマトグラフ法で環状三量体を定量した。
【0070】
(測定条件)
装置:L−7000(日立製作所製)
カラム:μ−Bondasphere C18 5μ 100オングストローム 3.9mm×15cm(Waters製)
溶媒:溶離液A:2%酢酸/水(v/v)
溶離液B:アセトニトリル
グラジエントB%:10→100%(0→55分)
流速:0.8ml/分
温度:30℃
検出器:UV−258nm
【0071】
2.フィルム表面の線状オリゴマー量
フィルム2枚の抽出したい面同士を向かい合わせ、1枚につき25.2cm×12.4cm面積を抽出できるようスペーサーをはさんで枠に固定した。エタノール30mlを抽出面間に注入し、25℃で3分間、フィルム表面の線状オリゴマーを抽出した。抽出液を蒸発乾固した後、得られた抽出液の乾固残渣をジメチルホルムアミド200μlに定容した。次いで高速液体クロマトグラフィーを用いて下記に示す方法で予め求めておいた検量線から線状オリゴマーを定量した。尚、線状オリゴマーは二量体、三量体、四量体の合計値とし、環状三量体換算で定量を行なった。
【0072】
(測定条件)
装置:ACQUITY UPLC(Waters製)
カラム:BEH−C18 2.1×150mm(Waters製)
移動相:溶離液A:0.1%ギ酸(v/v)
溶離液B:アセトニトリル
グラジエントB%:10→98→98%(0→25→30分)
流速:0.2ml/分
カラム温度:40℃
検出器:UV−258nm
【0073】
3.平均粒子径
不活性粒子を走査型電子顕微鏡(日立製作所製、S−51O型)で観察し、粒子の大きさに応じて適宜倍率を変え、写真撮影したものを拡大コピーした。次いで、ランダムに選んだ少なくとも300個の粒子について各粒子の外周をトレースし、画像解析装置にてこれらのトレース像から粒子の円相当径を測定し、これらの平均を平均粒子径とした。
【0074】
4.ポリエステルの固有粘度
ポリエステルをパラクロロフェノール/1,1,2,2−テトラクロロエタンの6/4(重量比)混合溶媒を使用して溶解し、温度30℃にて測定した。
【0075】
5.ヘーズの測定
JIS K7136に準拠し、ヘーズメーター(日本電色製、NDH2000)を用いて、フィルム試料の異なる箇所3ヶ所についてヘーズを測定し、その平均値を用いた。
【0076】
6.粘着剤層の密着性
酢酸エチル中に、モノマーベースで35%となるように2−エチルヘキシルアクリレート100部およびアクリル酸3部を共重合して重量平均分子量50万(ポリスチレン換算)のアクリル系ポリマーを含有する溶液を得た。この溶液に、アクリル系ポリマー(乾燥重量)100部に対してエポキシ系架橋剤(三菱ガス化学(株)製,テトラッドC)4部およびイソシアネート系架橋剤(日本ポリウレタン工業(株)製,コロネートL)1部を配合し、さらに酢酸エチルを加え固形分濃度を20%に調整した粘着剤溶液を調製した。当該粘着剤溶液を、実施例及び比較例で得たポリエステルフィルムの片面に乾燥膜厚が5μmになるように塗布し、140℃で2分間乾燥して、粘着剤層を形成して、積層フィルムを得た。
次いで、JIS−Z−0237法に準拠し、対SUS板に前記積層フィルムの粘着面を貼合わせ、貼り付け時に界面に残った空気を消しゴムで押して、完全に密着させた後、手動により180°引きはがし試験を行い、SUS板上の状態を目視観察し、下記の基準で判断した。
◎ :SUS板上に付着物が全く観察されない。
○ :SUS板上に付着物がわずかに観察される。
× :SUS板上に明確に付着物が観察される。
【0077】
7.電気絶縁破壊電圧保持率
A4サイズの試験片を下記の条件で紫外線照射処理を行った。
(紫外線照射条件)
耐候試験器:UVCON(ALTAS社製)
紫外線発光ランプ:Q−PANEL社製 UVA351(主波長351nm)
紫外線照射量:400MJ/m
試験環境 :50℃、 50%RH
紫外線照射時間:72時間
【0078】
次いで、未処理の試験片、および上記紫外線照射処理を行なった試験片について、IEC−60243−1に準拠した下記条件で絶縁破壊電圧を測定し、5回の測定値の平均値を求めた。そして、下記式より絶縁破壊電圧保持率を求めた。
(絶縁破壊電圧保持率)=(紫外線照射後の絶縁破壊電圧)/(未処理時の絶縁破壊電圧)×100
【0079】
(電気絶縁破壊電圧)
試験条件:短時間法、空気中
試験環境:23℃、50%RH
試験装置:YST−243−100RHO(ヤマヨ試験器有限会社製)
試験電極:φ25円柱/φ25円柱
昇圧速度:0.5KV/秒
【0080】
8.破断伸度保持率(耐加水分解性評価)
耐加水分解性評価として、JIS−60068−2−66で規格化されているHAST(Highly Accelerated temperature and humidity Stress Test)を行った。機器はエスペック社製EHS−221を用い、105℃、100%RH、0.03MPa下の条件で行った。
フィルムを70mm×190mmにカットし、治具を用いてフィルムを設置した。各フィルムは各々が接触しない距離を保ち設置した。105℃、100%RH、0.03MPaの条件下で192時間処理を行った。処理前、処理後の破断伸度をJIS−C−2318−1997 5.3.31(引張強さ及び伸び率)に準拠して測定し、下記式に従い破断伸度保持率を算出した。
破断伸度保持率(%)=[(処理後の破断伸度(MPa))/(処理前の破断伸度(MPa))]×100
【0081】
(1)ポリエステル樹脂(a)の重合
高純度テレフタル酸とエチレングリコールから常法に従って製造したビス(2−ヒドロキシエチル)テレフタレート及びオリゴマーの混合物に対し、重縮合触媒として塩化アルミニウムの13g/lのエチレングリコール溶液をポリエステル中の酸成分に対してアルミニウム原子として0.015mol%とIrganox 1425(チバ・スペシャルティーケミカルズ社製)の10g/lエチレングリコール溶液を酸成分に対してIrganox 1425として0.02mol%を加えて、窒素雰囲気下、常圧にて245℃で10分間撹拌した。次いで50分間を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(1Torr)としてさらに275℃、13.3Paで固有粘度が0.65dl/gに到達するまで重縮合反応を行った。重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。 この際溶融樹脂が約275℃に保たれ状態で濾過粒子サイズ(初期濾過効率95%)は20μmステンレス焼結体フィルターで樹脂中に含まれる異物を除去するために高精度濾過を行った。
【0082】
(2)ポリエステル(b)樹脂の重合
平均粒子径が2.5μmの多孔質シリカ粒子をエチレングリコール中に仕込み、さらに95%カット径が30μmのビスコースレーヨン製フィルターで濾過処理を行ない、多孔質シリカ粒子のエチレングリコールスラリーを得た。
高純度テレフタル酸とエチレングリコールから常法に従って製造したビス(2-ヒドロキシエチル)テレフタレート及びオリゴマーの混合物に対し、重縮合触媒として塩化アルミニウムの13g/lのエチレングリコール溶液をポリエステル中の酸成分に対してアルミニウム原子として0.015mol%とIrganox 1425(チバ・スペシャルティーケミカルズ社製)の10g/lエチレングリコール溶液を酸成分に対してIrganox 1425として0.02mol%と前記シリカ粒子のエチレングリコールスラリーを、生成PETに対し、2000ppmとなるよう添加した。次いで、窒素雰囲気下、常圧にて245℃で10分間撹拌した。次いで50分間を要して275℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(1Torr)としてさらに275℃、13.3Paで固有粘度が0.65dl/gに到達するまで重縮合反応を行った。重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。この際、溶融樹脂が約275℃に保たれ状態で濾過粒子サイズ(初期濾過効率95%)は20μmステンレス焼結体フィルターで樹脂中に含まれる異物を除去するために高精度濾過を行った。
【0083】
(3)ポリエステル樹脂(c)の重合
エステル化反応缶を昇温し、200℃に到達した時点で、高純度テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.03質量部、トリエチルアミンを0.16質量部添加した。次いで、加圧昇温を行いゲージ圧3.5kg/cm、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻した。
15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃の減圧下で固有粘度が0.65dl/gに到達するまで重縮合反応を行った。
重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。この際、溶融樹脂が約275℃に保たれ状態で濾過粒子サイズ(初期濾過効率95%)は5μmステンレス焼結体フィルターで樹脂中に含まれる異物を除去するために高精度濾過を行った。
【0084】
(4)ポリエステル樹脂(d)の重合
エステル化反応缶を昇温し、200℃に到達した時点で、高純度テレフタル酸を86.4質量部及びエチレングリコールを64.4質量部からなるスラリーを仕込み、攪拌しながら触媒として三酸化アンチモンを0.03質量部、トリエチルアミンを0.16質量部と平均粒径2.5μmのシリカ粒子のエチレングリコールスラリーを、生成PETに対し、2000ppmとなるよう添加した。次いで、加圧昇温を行いゲージ圧3.5kg/cm、240℃の条件で、加圧エステル化反応を行った。その後、エステル化反応缶内を常圧に戻した。
15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃の減圧下で固有粘度が0.65dl/gに到達するまで重縮合反応を行った。
重縮合にて得られたポリエチレンテレフタレートを常法に従ってチップ化しポリエステルを得た。この際、溶融樹脂が約275℃に保たれ状態で濾過粒子サイズ(初期濾過効率95%)は20μmステンレス焼結体フィルターで樹脂中に含まれる異物を除去するために高精度濾過を行った。
【0085】
(実施例1)
ポリエステル樹脂(a)及びポリエステル樹脂(b)をそれぞれ回転型真空重合装置を用い、0.5mmHgの減圧下、220℃で固相重合を行い、固有粘度0.75dl/gのポリエステル樹脂(A)及びポリエステル樹脂(B)を得た。
【0086】
基材フィルムの中間層用原料としてポリエステル樹脂(A)を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層B層用)に、ポリエステル樹脂(A)とポリエステル樹脂(B)を平均粒径2.5μmのシリカ粒子濃度が0.06質量%になるように配合し、押出機1(外層A層用)にそれぞれ供給し、285℃で溶解した。この2つのポリエステル樹脂を、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、A層/B層/A層の厚さの比は1.5:7:1.5となるように各押し出し機の吐出量を調整した。次にこの未延伸フィルムを加熱されたロール群及び赤外線ヒーターで100℃に加熱し、その後、周速差のあるロール群で長手方向に3.5倍延伸して一軸配向PETフィルムを得た。
【0087】
引き続き、フィルムの端部をクリップで把持しながら、温度120℃の熱風ゾーンに導き、幅方向に4.3倍に延伸した。次に、幅方向に延伸された幅を保ったまま、最高温度235℃で熱固定処理し、30℃の冷却工程で幅方向に3%の緩和処理を行なった。引き続きフィルムの両面をワット密度10w/m/min、処理面−電極間距離:2mm、気温20℃、相対湿度55%でコロナ処理し、フィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0088】
(実施例2)
気温20℃、相対湿度75%の環境下でコロナ処理を行った以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
(実施例3)
コロナ処理において、ワット密度を20w/m/minとした以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0089】
(実施例4)
押し出し機の吐出量を調整し、フィルム厚さ188μmとした以外は実施例1と同様にして太陽電池用ポリエステルフィルムを得た。
【0090】
(実施例5)
コロナ処理において、ワット密度を30w/m/minとした以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0091】
(実施例6)
コロナ処理において、ワット密度を5w/m/minとした以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0092】
(実施例7)
基材フィルムの原料としてポリエステル樹脂(A)およびポリエステル樹脂(B)をそれぞれ135℃で6時間減圧乾燥(1Torr)した後、ポリエステル樹脂(A)とポリエステル樹脂(B)を平均粒径2.5μmのシリカ粒子濃度が0.06質量%になるように配合し、押出機1、及び押出機2に供給した以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0093】
(実施例8)
コロナ処理を行わなかった以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0094】
(比較例1)
ポリエステル樹脂(a)及びポリエステル樹脂(b)をそれぞれポリエステル樹脂(c)及びポリエステル樹脂(d)に替え、それぞれのポリエステル樹脂を実施例1と同様に固相重合を行い、ポリエステル樹脂(C)及びポリエステル樹脂(D)を得た。
ポリエステル樹脂(C)及びポリエステル樹脂(D)を用いた以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0095】
(比較例2)
コロナ処理において、ワット密度を5w/m/minとした以外は比較例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0096】
(比較例3)
固相重合を行っていないポリエステル樹脂(a)及びポリエステル樹脂(b)を用いた以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0097】
(比較例4)
コロナ処理を行わなかった以外は比較例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0098】
(比較例5)
気温20℃、相対湿度35%の環境下でコロナ処理を行った以外は比較例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0099】
(比較例6)
コロナ処理において、ワット密度を40w/m/minとした以外は実施例1と同様にしてフィルム厚さ50μmの太陽電池用ポリエステルフィルムを得た。
【0100】
【表1】

【産業上の利用可能性】
【0101】
本発明の太陽電池用ポリエステルフィルムは、絶縁破壊電圧保持率に優れるため長期の安定した電気絶縁性を有する。そのため、太陽電池バックシートの構成部材として有用である。

【特許請求の範囲】
【請求項1】
アルミニウム及び/又はその化合物とフェノール系化合物を含有し、下記要件(1)および(2)を満足する太陽電池用ポリエステルフィルム。
(1)紫外線照射量400MJ/mの紫外線を72時間照射後の下記式で求められる絶縁電圧保持率が80%以上である
(絶縁破壊電圧保持率)=(紫外線照射後の絶縁破壊電圧)/(未処理時の絶縁破壊電圧)×100
(2)前記ポリエステルフィルム中の環状三量体含有量が該ポリエステルフィルム当り5000ppm以下である
【請求項2】
前記ポリエステルフィルムの少なくとも一方の面におけるフィルム表面の線状オリゴマー量が10μg/m以上、80μg/m以下である請求項1に記載の太陽電池用ポリエステルフィルム。
【請求項3】
前記ポリエステルフィルムのヘーズが3.0%以下である請求項1または2に記載の太陽電池用ポリエステルフィルム。
【請求項4】
前記ポリエステルフィルムが最外層と中心層の少なくとも3層を有し、
前記最外層は粒子を含有し、
前記中心層は実質的に粒子を含まない請求項1〜3のいずれかに記載の太陽電池用ポリエステルフィルム。

【公開番号】特開2011−97040(P2011−97040A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2010−216878(P2010−216878)
【出願日】平成22年9月28日(2010.9.28)
【出願人】(000003160)東洋紡績株式会社 (3,622)
【Fターム(参考)】