説明

密閉型圧縮機の制御装置

【課題】偏心ロータにベーンが当接した状態と離間した状態とを切り替えるための新規な構成を備えた密閉型圧縮機の運転を制御するに際し、その新規な構成に伴う不具合を解消した制御を行う。
【解決手段】本実施形態の密閉型圧縮機の制御装置によれば、シリンダの偏心ロータにベーンが当接した状態と離間した状態とを、筐体内の圧力とアキュームレータ内の圧力との圧力差を利用して切り替える新規な構成の密閉型圧縮機を制御するに際し、密閉型圧縮機の運転周波数と所定周波数とを比較し、室内または室外の雰囲気温度と所定温度とを比較し、密閉型圧縮機の運転周波数が所定周波数以上となり、且つ、雰囲気温度が所定温度以上となってからの運転経過時間と所定時間とを比較し、運転経過時間が所定時間以上となった場合に、切替弁の接続状態を切り替える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、密閉型圧縮機の制御装置に関する。
【背景技術】
【0002】
例えば特許文献1に開示されている空気調和機の密閉型圧縮機は、筐体内の冷媒を圧縮可能なシリンダを2つ備えた密閉型圧縮機である。このような密閉型圧縮機では、例えば通常の運転時には、2つのシリンダによって冷媒を圧縮する制御を行い、例えば省エネルギー運転時には、1つのシリンダによって冷媒を圧縮する制御、つまり、一方のシリンダでは冷媒の圧縮を停止する制御を行っている。
ここで、シリンダは、回転する偏心ロータにベーンが当接した状態では冷媒を圧縮し、一方、回転する偏心ロータからベーンが離間した状態では冷媒を圧縮しないように構成されている。従って、2つのシリンダによって冷媒を圧縮する運転と1つのシリンダによって冷媒を圧縮する運転との切り替えは、偏心ロータにベーンが当接した状態と偏心ロータからベーンが離間した状態とを切り替えることにより実現されている。そして、この種の密閉型圧縮機では、偏心ロータにベーンが当接した状態と偏心ロータからベーンが離間した状態とを切り替えるための新規な構成が求められており、また、新規な構成を採用したとしても、その密閉型圧縮機を不具合を伴うことなく制御することができる制御装置が求められている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−48500号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
そこで、偏心ロータにベーンが当接した状態と偏心ロータからベーンが離間した状態とを切り替えるための新規な構成を備えた密閉型圧縮機の運転を制御するに際し、その密閉型圧縮機の新規な構成に伴う不具合を解消した制御を行うことができる密閉型圧縮機の制御装置を提供する。
【課題を解決するための手段】
【0005】
本実施形態の密閉型圧縮機の制御装置は、次のように構成された密閉型圧縮機を制御するものである。即ち、密閉型圧縮機は、筐体と、第1シリンダと、第2シリンダと、吐出口と、冷媒管路と、アキュームレータと、バイパス管路と、切替弁と、を備える。筐体は、内部に冷媒および潤滑油を有する。第1シリンダは、筐体内に設けられ、第1シリンダ室と、この第1シリンダ室内に回転可能に設けられた第1偏心ロータと、この第1偏心ロータに対して往復動可能に設けられ、且つ、当該第1偏心ロータに常に当接する第1ベーンと、を有し、第1ベーンが第1偏心ロータに常に当接した状態で当該第1偏心ロータが回転することにより筐体内の冷媒を圧縮する。第2シリンダは、筐体内に設けられ、第2シリンダ室と、この第2シリンダ室内に回転可能に設けられた第2偏心ロータと、この第2偏心ロータに対して往復動可能に設けられ、且つ、当該第2偏心ロータに当接および離間可能に設けられた第2ベーンと、を有し、第2ベーンが第2偏心ロータに当接した状態では当該第2偏心ロータが回転することにより筐体内の冷媒を圧縮し、第2ベーンが第2偏心ロータから離間した状態では筐体内の冷媒を圧縮しない。吐出口は、筐体に設けられ、第1シリンダによって、あるいは、第1シリンダおよび第2シリンダによって圧縮された高圧の冷媒を吐出する。冷媒管路は、吐出口と第1シリンダおよび第2シリンダとを接続し、途中に熱交換部を有する。アキュームレータは、冷媒管路のうち熱交換部よりも下流側に設けられ、熱交換部を通過した低圧の冷媒が流入する。バイパス管路は、基端部が筐体に接続されている。切替弁は、バイパス管路の先端部を冷媒管路のうち熱交換部よりも下流側であってアキュームレータよりも上流側の部分に接続する第1接続状態、および、バイパス管路の先端部を冷媒管路のうち熱交換部よりも上流側の部分に接続する第2接続状態に切り替える。そして、第1接続状態では、筐体内の圧力とアキュームレータ内の圧力との圧力差によって、第2シリンダの第2ベーンが第2偏心ロータから離間するとともに、筐体内の潤滑油がバイパス管路を介してアキュームレータ内に流れ込む。一方、第2接続状態では、冷媒管路のうち熱交換部よりも上流側の部分を流れる高圧の冷媒の一部がバイパス管路を介して筐体内に流れ込むことによって、第2シリンダの第2ベーンが第2偏心ロータに当接するとともに、第1接続状態にてアキュームレータ内に流れ込んだ潤滑油が、第1シリンダおよび第2シリンダが発生する吸引力によって筐体内に吸引される。
【0006】
そして、本実施形態の密閉型圧縮機の制御装置は、上記のように構成された密閉型圧縮機の運転を制御するに際し、運転周波数比較手段によって、密閉型圧縮機の運転周波数と所定周波数とを比較し、温度比較手段によって、室内または室外の雰囲気温度と所定温度とを比較する。そして、運転経過時間比較手段によって、密閉型圧縮機の運転周波数が所定周波数以上となり、且つ、雰囲気温度が所定温度以上となってから経過した密閉型圧縮機の運転経過時間と所定時間とを比較し、運転経過時間が所定時間以上となった場合に、切替弁制御手段によって、切替弁を第1接続状態から第2接続状態に切り替える。
【図面の簡単な説明】
【0007】
【図1】一実施形態に係る空気調和機の密閉型圧縮機の構成を概略的に示すものであり、第1接続状態を示す図
【図2】第2接続状態を示す図1相当図
【図3】第1シリンダの構成を示す横断平面図
【図4】第2シリンダの構成を示す横断平面図
【図5】圧縮モードを切り替える場合の制御内容を示すフローチャート
【図6】空気調和機の構成を概略的に示すブロック図
【発明を実施するための形態】
【0008】
以下、本実施形態を空気調和機の密閉型圧縮機の運転を制御する制御装置に適用した一実施形態を、図面を参照しながら説明する。なお、図6に示すように、空気調和機100は、室内機201と室外機301とを備える。室内機201は、当該室内機201の動作全般を制御するコントロールユニット202と、このコントロールユニット202に接続された受信ユニット203、送信ユニット204、駆動回路205などを備える。ユーザは、リモートコントローラ206を介して、例えば運転コースや設定温度などの各種の情報を入力可能であり、室内機201のコントロールユニット202は、リモートコントローラ206から入力された各種の情報を受信ユニット203を介して受信し、受信した情報を送信ユニット204および駆動回路205に与える。送信ユニット204は、与えられた情報を室外機301に送信する。駆動回路205は、与えられた情報に基づいて室内ファン207を駆動する。また、室内機201は、室内温度センサ208を備える。
【0009】
室外機301は、当該室外機301の動作全般を制御するコントロールユニット302と、このコントロールユニット302に接続された受信ユニット303、室外温度センサ304、各種の駆動回路305〜309などを備える。この室外機301のコントロールユニット302は、室内機201から各種の情報を受信ユニット303を介して受信し、受信した情報を駆動回路305〜309に与える。駆動回路305は、密閉型圧縮機10を駆動する。即ち、コントロールユニット302は、駆動回路305を介して密閉型圧縮機10の運転を制御する本発明の制御装置に相当するものであり、詳しくは後述するように、密閉型圧縮機10の運転周波数と所定周波数とを比較する本発明の運転周波数比較手段、室内または室外の雰囲気温度と所定温度とを比較する本発明の温度比較手段、密閉型圧縮機10の運転周波数が所定周波数以上となり、且つ、雰囲気温度が所定温度以上となってから経過した密閉型圧縮機10の運転経過時間と所定時間とを比較する本発明の運転経過時間比較手段、運転経過時間が所定時間以上となった場合に、後述する切替弁17を第1接続状態から第2接続状態に切り替える本発明の切替弁制御手段としての機能を備える。駆動回路306は、四方弁310を駆動する。駆動回路307は、後述する熱交換部51の絞り弁51cを駆動する。駆動回路308は、後述する切替弁17を駆動する。駆動回路309は、室外ファン311を駆動する。
【0010】
次に、この空気調和機100が備える密閉型圧縮機10の構成について詳細に説明する。図1および図2に示すように、空気調和機100の密閉型圧縮機10は、筐体11と、複数、この場合、第1シリンダ12および第2シリンダ13の2つのシリンダと、冷媒管路14と、アキュームレータ15と、バイパス管路16と、切替弁17とを備える。
筐体11は、密閉された容器状の部材からなり、密閉型圧縮機10の本体を構成する。この筐体11の内部には、冷媒および潤滑油を有している。また、この筐体11には、詳しくは後述するようにして第1シリンダ12によって、あるいは、第1シリンダ12および第2シリンダ13の双方によって圧縮された高圧の冷媒を吐出する吐出口11aが設けられている。
【0011】
第1シリンダ12および第2シリンダ13は、何れも筐体11の内部の底部に設けられている。そのうち、第1シリンダ12は、第1シリンダ室21と、第1偏心ロータ22と、第1ベーン23と、を有する。第1シリンダ室21は、中空の部材であり、吸引口21aと、吐出口21bと、図3に示すベーン収容部21cとを有する。この場合、吸引口21aおよび吐出口21bは、第1シリンダ室21の内部と外部とを連通しているが、ベーン収容部21cは、内側が開放し、外側が閉塞している。第1偏心ロータ22は、この第1シリンダ室21内に回転可能に設けられている。この第1偏心ロータ22は、中心から偏った位置に回転軸31が取り付けられている。この回転軸31は、筐体11内に設けられた図示しない駆動部によって回転駆動される。第1ベーン23は、第1シリンダ室21のベーン収容部21cに収容され、図3に矢印aで示すように、第1偏心ロータ22に対して往復動可能に設けられている。この第1ベーン23は、例えばスプリング32からなる付勢部材によって第1偏心ロータ22の回転軸31に向かって付勢されている。
【0012】
この第1ベーン23が第1偏心ロータ22に当接した状態では、第1シリンダ室21内は、当該第1ベーン23によって2つのスペースに仕切られる。この状態で第1偏心ロータ22が回転することにより、第1シリンダ室21内の冷媒が圧縮され、圧縮された冷媒は、第1シリンダ室21の吐出口21bから筐体11内に吐出される。なお、この第1シリンダ12は、スプリング32による付勢力によって第1ベーン23が常に第1偏心ロータ22に当接する構成である。そのため、第1ベーン23は、第1偏心ロータ22から離間しないようになっている。
【0013】
第2シリンダ13は、この場合、第1シリンダ12の下部に設けられており、第2シリンダ室41と、第2偏心ロータ42と、第2ベーン43と、を有する。第2シリンダ室41は、中空の部材であり、吸引口41aと、吐出口41bと、図4に示す背圧口41cとを有する。この場合、吸引口41a、吐出口41b、および、背圧口41cは、何れも第2シリンダ室41の内部と外部とを連通している。第2偏心ロータ42は、この第2シリンダ室41内に回転可能に設けられている。この第2偏心ロータ42は、中心から偏った位置に、上記した第1偏心ロータ22と共通の回転軸31が取り付けられている。この場合、第2偏心ロータ42は、その偏心する方向が上記した第1偏心ロータ22が偏心する方向と異なるように取り付けられている。第2ベーン43は、第2シリンダ室41の背圧口41cに収容され、図4に矢印bで示すように、第2偏心ロータ42に対して往復動可能に設けられている。即ち、この背圧口41cは、後述するようにして筐体11内の圧力を排出する機能のほか、第2ベーン43を収容するベーン収容部としての機能も備えている。
【0014】
この第2ベーン43が第2偏心ロータ42に当接した状態では、第2シリンダ室41内は、当該第2ベーン43によって2つのスペースに仕切られる。この状態で第2偏心ロータ42が回転することにより、第2シリンダ室41内の冷媒が圧縮され、圧縮された冷媒は、第2シリンダ室41の吐出口41bから筐体11内に吐出される。筐体11内は、このようにして第1シリンダ12および第2シリンダ13の双方から吐出された冷媒の圧力によって高圧に維持される。一方、第2ベーン43が第2偏心ロータ42から離間した状態では、第2シリンダ室41内は、当該第2ベーン43によって2つのスペースに仕切られず、1つのスペースとなる。この状態で第2偏心ロータ42が回転したとしても、その回転は空回転となり、従って、第2シリンダ室41内の冷媒が圧縮されないようになっている。従って、このとき、筐体11内の圧力は若干低下するようになっている。
【0015】
冷媒管路14は、筐体11の吐出口11aと、第1シリンダ12の吸引口21aおよび第2シリンダ13の吸引口41aとの間を接続する。この冷媒管路14の途中には、空気調和機100を構成する熱交換部51が設けられている。この熱交換部51は、コンデンサ51a、エバポレータ51b、および、これらコンデンサ51aとエバポレータ51bとの間に設けられた絞り弁51cを備える。
【0016】
アキュームレータ15は、密閉された容器状の部材からなり、筐体11の側部に位置して、冷媒管路14のうち熱交換部51よりも下流側に設けられている。このアキュームレータ15には、冷媒管路14の熱交換部51を通過した低圧の冷媒が流入する。このアキュームレータ15の内部には、冷媒管路14の一部である最下流部を構成する吸入冷媒管路14aが延びており、この吸入冷媒管路14aのうちアキュームレータ15の底部近傍の部分には、潤滑油戻し孔14bが形成されている。このように構成されたアキュームレータ15は、冷媒管路14から流入した冷媒を気液分離し、ガス化している冷媒を吸入冷媒管路14aから排出する。これにより、ガス化していない冷媒は、アキュームレータ15内に残留するようになり、冷媒が液状のまま筐体11に吸入されてしまうことが防止されるようになっている。
【0017】
バイパス管路16は、冷媒管路14とは異なる管路であり、基端部が筐体11の側部の下部を通過して、上記した第2シリンダ13の第2シリンダ室41の背圧口41cに接続されている。
切替弁17は、バイパス管路16の先端部に設けられており、上部に第1接続口17aを有し、下部に第2接続口17bおよび第3接続口17cを有する。第1接続口17aには、冷媒管路14のうち熱交換部51よりも上流側の部分から分岐した上流側分岐冷媒管路14cが接続されている。第2接続口17bには、冷媒管路14のうち熱交換部51よりも下流側であってアキュームレータ15よりも上流側の部分から分岐した下流側分岐冷媒管路14dが接続されている。第3接続口17cには、バイパス管路16の先端部が接続されている。
【0018】
この切替弁17は、図1に示す第1連通状態と図2に示す第2連通状態とに切り替えられる。第1連通状態では、第2接続口17bと第3接続口17cとが連通した状態となる。一方、第2連通状態では、第1接続口17aと第3接続口17cとが連通した状態となる。第1連通状態に切り替えられた切替弁17は、密閉型圧縮機10の管路構成を、図1に示す第1接続状態に切り替える。この第1接続状態では、バイパス管路16の先端部は、下流側分岐冷媒管路14dを介して、冷媒管路14のうち熱交換部51よりも下流側であってアキュームレータ15よりも上流側の部分に接続する。また、第2連通状態に切り替えられた切替弁17は、密閉型圧縮機10の管路構成を、図2に示す第2接続状態に切り替える。この第2接続状態では、バイパス管路16の先端部は、上流側分岐冷媒管路14cを介して、冷媒管路14のうち熱交換部51よりも上流側の部分に接続する。
【0019】
以上のように構成された空気調和機100の密閉型圧縮機10において、室外機301のコントロールユニット302は、空気調和機100が例えば省エネルギー運転を実行する場合には、密閉型圧縮機10を1シリンダ運転モードで運転する。この1シリンダ運転モードは、第2シリンダ13による冷媒の圧縮を停止し、1つの第1シリンダ12によって冷媒を圧縮する運転モードである。この1シリンダ運転モードでは、密閉型圧縮機10は、その管路構成を図1に示す第1接続状態に切り替える。
【0020】
この第1接続状態では、高圧の冷媒が存在する筐体11の内部が、第2シリンダ13の背圧口41cに接続されたバイパス管路16を介して、低圧の冷媒が存在するアキュームレータ15の内部に接続される。そのため、高圧の筐体11の内部と低圧のアキュームレータ15の内部との圧力差によって、当該筐体11内の圧力が第2シリンダ13の背圧口41cからバイパス管路16を介してアキュームレータ15内に排出、つまり、排圧されるようになり、これにより、バイパス管路16には、図1に矢印Aで示す方向、つまり、高圧の筐体11から低圧のアキュームレータ15に向かう方向に吸引力が発生する。この吸引力によって、第2シリンダ13の背圧口41cに収容された第2ベーン43がバイパス管路16側、つまり、径方向外側に向かって吸引されるようになり、第2偏心ロータ42から離間する。これにより、第2シリンダ13では冷媒が圧縮されないようになり、従って、熱交換部51での熱交換作用を抑えて省エネルギー運転が実行されるようになる。
【0021】
しかしながら、このように密閉型圧縮機10が1シリンダ運転モードで運転される場合、つまり、密閉型圧縮機10が第1接続状態で運転される場合には、上記したように、バイパス管路16に高圧の筐体11から低圧のアキュームレータ15に向かう方向の吸引力が発生する。そのため、この吸引力によって、筐体11内の潤滑油もバイパス管路16を介してアキュームレータ15に流れ込んでしまい、筐体11内の潤滑油が不足してしまうおそれがある。ここで、筐体11内のシリンダ12,13は、その耐久性および信頼性を確保すべく、潤滑油に浸漬された状態に維持する必要がある。そのため、本実施形態は、密閉型圧縮機10を1シリンダ運転モードで運転する場合には、所定条件の下、その管路構成を第2接続状態に切り替え、これにより、上記のようにしてアキュームレータ15に流れ込んだ潤滑油を筐体11内に回収するように構成されている。
【0022】
即ち、図2に示す第2接続状態では、筐体11の内部は、低圧のアキュームレータ15に接続されるのではなく、バイパス管路16および上流側分岐冷媒管路14cを介して、高圧の冷媒が流れる冷媒管路14の上流側に接続される。そのため、冷媒管路14を流れる高圧の冷媒の一部が、図2に矢印Bで示す方向に流れ、上流側分岐冷媒管路14cおよびバイパス管路16を介して筐体11内の第2シリンダ13に流れ込むようになる。これにより、第2シリンダ13の背圧口41cに収容された第2ベーン43が第2偏心ロータ42側、つまり、径方向内側に押し込まれて、当該第2偏心ロータ42に当接する。これにより、2つのシリンダ12,13によって筐体11内の冷媒が圧縮されるようになる。つまり、密閉型圧縮機10は、2シリンダ運転モードで駆動される。そして、これら2つのシリンダ12,13による圧縮動作に伴い、吸入冷媒管路14aには、図2に矢印Cで示す方向に吸引力が発生する。この吸引力によって、第1接続状態にてアキュームレータ15内に流れ込んだ潤滑油が、吸入冷媒管路14aを介して筐体11内に吸引されるようになり、これにより、アキュームレータ15内の潤滑油を筐体11内に回収することができる。
【0023】
次に、上記構成の密閉型圧縮機10において、1シリンダ運転モードと2シリンダ運転モードとを切り替える場合の制御内容について図5を参照しながら説明する。
即ち、室外機301のコントロールユニット302は、空気調和機100の電源がオンされると、通常は、密閉型圧縮機10を2シリンダ運転モードで運転する(ステップS1)。しかし、例えば空気調和機100にて省エネルギー運転が設定(ステップS2:YES)されると、コントロールユニット302は、密閉型圧縮機10の管路構成を切替弁17によって第1接続状態に切り替え(ステップS3)、密閉型圧縮機10を1シリンダ運転モードで運転する(ステップS4)。
【0024】
空気調和機100は、室内機201が設置された室内の温度を検出する図6に示す室内温度センサ208、および、室外の温度を検出する図6に示す室外温度センサ304を備えており、冷房運転時は、室外温度センサ304によって室外温度を検知し、この室外温度センサ304が検出する室外の温度と空気調和機100に設定された設定温度とを比較し、また、暖房運転時は、室内温度センサ208によって室内の温度を検知し、この室内温度センサ208が検出する室内の温度と空気調和機100に設定された設定温度とを比較し、それぞれの運転時において、その比較結果に基づいて密閉型圧縮機10の運転周波数を調整しながら運転する。
【0025】
そして、コントロールユニット302は、密閉型圧縮機10の1シリンダ運転モードによる運転を開始した場合には、密閉型圧縮機10の運転周波数が所定周波数H以上となったか否か(ステップS5)を判断する。このステップS5の処理が、本発明の運転周波数比較手段に相当する。なお、この所定周波数Hは、冷房運転時では例えば10.8Hzに設定され、暖房運転時では例えば18.0Hzに設定される。
【0026】
また、コントロールユニット302は、密閉型圧縮機10の1シリンダ運転モードによる運転を開始した場合には、冷房運転時では室外の雰囲気温度が所定温度Tc以上となったか否か、暖房運転時では室内の雰囲気温度が所定温度Th以上となったか否かを判断する(ステップS6)。このステップS6の処理が、本発明の温度比較手段に相当する。なお、この冷房運転時における所定温度Tcは例えば32℃に設定され、暖房運転時における所定温度Thは例えば20℃に設定される。そして、コントロールユニット302は、密閉型圧縮機10の運転周波数が所定周波数H以上(ステップS5:YES)となり、且つ、冷房運転時にて室外の雰囲気温度が所定温度Tc以上、あるいは、暖房運転時にて室内の雰囲気温度が所定温度Th以上(ステップS6:YES)となった場合には、図示しないタイマーによるカウントを開始し、そのカウント値、つまり、密閉型圧縮機10の運転周波数が所定周波数H以上となり、且つ、冷房運転時にて室外の温度が所定温度Tc以上、あるいは、暖房運転時にて室内の温度が所定温度Th以上となってから経過した密閉型圧縮機10の運転経過時間が所定時間C以上となったか否か(ステップS7)を判断する。このステップS7の処理が、本発明の運転経過時間比較手段に相当する。なお、この所定時間Cは例えば60分に設定される。
【0027】
コントロールユニット302は、タイマーによるカウント値が所定時間C以上となる前(ステップS7:NO)に、密閉型圧縮機10の運転周波数が所定周波数Hよりも小さくなった場合(ステップS5:NO)、あるいは、冷房運転時にて室外の温度が所定温度Tcよりも低くなった場合、または、暖房運転時にて室内の温度が所定温度Thよりも低くなった場合(ステップS6:NO)には、タイマーによるカウント値をリセット(ステップS8)して、1シリンダ運転モードを継続する(ステップS4)。一方、コントロールユニット302は、タイマーによるカウント値が所定時間C以上となった場合(ステップS7:YES)には、密閉型圧縮機10の管路構成を切替弁17によって第1接続状態から第2接続状態に切り替え(ステップS9)、密閉型圧縮機10を2シリンダ運転モードで運転する(ステップS10)。このステップS9の処理が、本発明の切替弁制御手段に相当する。コントロールユニット302は、以上の制御を空気調和機100の電源がオフされるまで繰り返し実行する。
【0028】
以上に説明した一実施形態に係る密閉型圧縮機の制御装置は、次のように構成された密閉型圧縮機を制御するものである。即ち、密閉型圧縮機は、筐体と、第1シリンダと、第2シリンダと、吐出口と、冷媒管路と、アキュームレータと、バイパス管路と、切替弁と、を備える。筐体は、内部に冷媒および潤滑油を有する。第1シリンダは、筐体内に設けられ、第1シリンダ室と、この第1シリンダ室内に回転可能に設けられた第1偏心ロータと、この第1偏心ロータに対して往復動可能に設けられ、且つ、当該第1偏心ロータに常に当接する第1ベーンと、を有し、第1ベーンが第1偏心ロータに常に当接した状態で当該第1偏心ロータが回転することにより筐体内の冷媒を圧縮する。第2シリンダは、筐体内に設けられ、第2シリンダ室と、この第2シリンダ室内に回転可能に設けられた第2偏心ロータと、この第2偏心ロータに対して往復動可能に設けられ、且つ、当該第2偏心ロータに当接および離間可能に設けられた第2ベーンと、を有し、第2ベーンが第2偏心ロータに当接した状態では当該第2偏心ロータが回転することにより筐体内の冷媒を圧縮し、第2ベーンが第2偏心ロータから離間した状態では筐体内の冷媒を圧縮しない。吐出口は、筐体に設けられ、第1シリンダによって、あるいは、第1シリンダおよび第2シリンダによって圧縮された高圧の冷媒を吐出する。冷媒管路は、吐出口と第1シリンダおよび第2シリンダとを接続し、途中に熱交換部を有する。アキュームレータは、冷媒管路のうち熱交換部よりも下流側に設けられ、熱交換部を通過した低圧の冷媒が流入する。バイパス管路は、基端部が筐体に接続されている。切替弁は、バイパス管路の先端部を冷媒管路のうち熱交換部よりも下流側であってアキュームレータよりも上流側の部分に接続する第1接続状態、および、バイパス管路の先端部を冷媒管路のうち熱交換部よりも上流側の部分に接続する第2接続状態に切り替える。そして、第1接続状態では、筐体内の圧力とアキュームレータ内の圧力との圧力差によって、第2シリンダの第2ベーンが第2偏心ロータから離間するとともに、筐体内の潤滑油がバイパス管路を介してアキュームレータ内に流れ込む。一方、第2接続状態では、冷媒管路のうち熱交換部よりも上流側の部分を流れる高圧の冷媒の一部がバイパス管路を介して筐体内に流れ込むことによって、第2シリンダの第2ベーンが第2偏心ロータに当接するとともに、第1接続状態にてアキュームレータ内に流れ込んだ潤滑油が、第1シリンダおよび第2シリンダが発生する吸引力によって筐体内に吸引される。
【0029】
そして、本実施形態の密閉型圧縮機の制御装置は、上記のように構成された密閉型圧縮機の運転を制御するに際し、運転周波数比較手段によって、密閉型圧縮機の運転周波数と所定周波数とを比較し、温度比較手段によって、室内または室外の雰囲気温度と所定温度とを比較する。そして、運転経過時間比較手段によって、密閉型圧縮機の運転周波数が所定周波数以上となり、且つ、雰囲気温度が所定温度以上となってから経過した密閉型圧縮機の運転経過時間と所定時間とを比較し、運転経過時間が所定時間以上となった場合に、切替弁制御手段によって、切替弁を第1接続状態から第2接続状態に切り替える。
【0030】
本実施形態の密閉型圧縮機10の構成は、第2シリンダの第2偏心ロータに第2ベーンが当接した状態と第2偏心ロータから第2ベーンが離間した状態とを、筐体内の圧力とアキュームレータ内の圧力との圧力差を利用して切り替える構成、つまり、筐体からアキュームレータへの背圧を利用して切り替える新規な構成である。そして、本実施形態の密閉型圧縮機の制御装置によれば、その密閉型圧縮機の新規な構成に伴う不具合、即ち、筐体からアキュームレータへの背圧に伴い筐体内の潤滑油もアキュームレータに流れ込み、筐体内の潤滑油が不足してしまうという不具合を解消した制御を行うことができる。
【0031】
なお、本実施形態は、2つ以上のシリンダを備える密閉型圧縮機の運転を制御する制御装置にも適用することができる。その場合、密閉型圧縮機は、少なくとも何れか1つのシリンダのベーンを、筐体からアキュームレータへの背圧を利用して往復動させるように構成すればよい。
1シリンダ運転モードと2シリンダ運転モードとの切り替え制御において、所定周波数H、所定温度Tc、所定温度Th、および、所定時間Cは、適宜の値を設定することができる。
本実施形態の制御装置を室内機側の制御装置で構成し、室外機側に備えられる密閉型圧縮機の運転を遠隔で制御するように構成してもよい。
2シリンダ運転モードと1シリンダ運転モードとを切り替える条件は、空気調和機にて省エネルギー運転が設定された場合に限られるものではなく、種々の条件を設定することができる。
【0032】
本実施形態は、空気調和機の密閉型圧縮機の運転を制御する制御装置に限らず、その他の密閉型圧縮機の運転を制御する制御装置にも適用することができる。
本実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0033】
図面中、10は空気調和機の密閉型圧縮機、11は筐体、11aは吐出口、12は第1シリンダ、13は第2シリンダ、14は冷媒管路、15はアキュームレータ、16はバイパス管路、17は切替弁、21は第1シリンダ室、22は第1偏心ロータ、23は第1ベーン、41は第2シリンダ室、42は第2偏心ロータ、43は第2ベーン、51は熱交換部、100は空気調和機、302はコントロールユニット(制御装置)を示す。

【特許請求の範囲】
【請求項1】
内部に冷媒および潤滑油を有する筐体と、
前記筐体内に設けられ、第1シリンダ室と、この第1シリンダ室内に回転可能に設けられた第1偏心ロータと、この第1偏心ロータに対して往復動可能に設けられ、且つ、当該第1偏心ロータに常に当接する第1ベーンと、を有し、前記第1ベーンが前記第1偏心ロータに常に当接した状態で当該第1偏心ロータが回転することにより前記筐体内の前記冷媒を圧縮する第1シリンダと、
前記筐体内に設けられ、第2シリンダ室と、この第2シリンダ室内に回転可能に設けられた第2偏心ロータと、この第2偏心ロータに対して往復動可能に設けられ、且つ、当該第2偏心ロータに当接および離間可能に設けられた第2ベーンと、を有し、前記第2ベーンが前記第2偏心ロータに当接した状態では当該第2偏心ロータが回転することにより前記筐体内の前記冷媒を圧縮し、前記第2ベーンが前記第2偏心ロータから離間した状態では前記筐体内の前記冷媒を圧縮しない第2シリンダと、
前記筐体に設けられ、前記第1シリンダによって、あるいは、前記第1シリンダおよび前記第2シリンダによって圧縮された高圧の前記冷媒を吐出する吐出口と、
前記吐出口と前記第1シリンダおよび前記第2シリンダとを接続し、途中に熱交換部を有する冷媒管路と、
前記冷媒管路のうち前記熱交換部よりも下流側に設けられ、前記熱交換部を通過した低圧の前記冷媒が流入するアキュームレータと、
基端部が前記筐体に接続されたバイパス管路と、
前記バイパス管路の先端部を前記冷媒管路のうち前記熱交換部よりも下流側であって前記アキュームレータよりも上流側の部分に接続する第1接続状態、および、前記バイパス管路の先端部を前記冷媒管路のうち前記熱交換部よりも上流側の部分に接続する第2接続状態に切り替える切替弁と、
を備え、
前記第1接続状態では、前記筐体内の圧力と前記アキュームレータ内の圧力との圧力差によって、前記第2シリンダの前記第2ベーンが前記第2偏心ロータから離間するとともに、前記筐体内の前記潤滑油が前記バイパス管路を介して前記アキュームレータ内に流れ込み、
前記第2接続状態では、前記冷媒管路のうち前記熱交換部よりも上流側の部分を流れる高圧の前記冷媒の一部が前記バイパス管路を介して前記筐体内に流れ込むことによって、前記第2シリンダの前記第2ベーンが前記第2偏心ロータに当接するとともに、前記第1接続状態にて前記アキュームレータ内に流れ込んだ前記潤滑油が、前記第1シリンダおよび前記第2シリンダが発生する吸引力によって前記筐体内に吸引されるように構成した空気調和機の密閉型圧縮機を制御する制御装置であって、
前記密閉型圧縮機の運転周波数と所定周波数とを比較する運転周波数比較手段と、
室内または室外の雰囲気温度と所定温度とを比較する温度比較手段と、
前記密閉型圧縮機の運転周波数が前記所定周波数以上となり、且つ、前記雰囲気温度が前記所定温度以上となってから経過した前記密閉型圧縮機の運転経過時間と所定時間とを比較する運転経過時間比較手段と、
前記運転経過時間が前記所定時間以上となった場合に、前記切替弁を前記第1接続状態から前記第2接続状態に切り替える切替弁制御手段と、
を備えることを特徴とする密閉型圧縮機の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−76377(P2013−76377A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2011−216907(P2011−216907)
【出願日】平成23年9月30日(2011.9.30)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(502285664)東芝コンシューマエレクトロニクス・ホールディングス株式会社 (2,480)
【出願人】(503376518)東芝ホームアプライアンス株式会社 (2,436)
【Fターム(参考)】