説明

成形用金型の冷却方法及び成形用金型

【課題】圧縮気体の金型冷却用通路に流す気体温度度をクーラーなどを利用しないで下げて、冷却能力を向上する点である
【解決手段】スライドコア14の内部に圧縮空気の金型冷却用通路20を配設し、圧縮空気の金型冷却用通路20の一次側21側にノズル33を設ける。そして一次側21側の通路断面積より二次側23側の通路断面積が広い圧縮空気の膨張室34を設ける。ノズル33から噴出する圧縮空気を膨張室34で膨張させることで、その二次側23側空気温度を、一次側21側空気温度よりも低くして金型冷却用通路20に通してスライドコア14を冷却させる。クーラーなどの機器を利用しなくともスライドコア14の冷却効率を上げることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧縮気体の金型冷却用通路を備えた成形用金型の冷却方法及び成形用金型に関するものである。
【背景技術】
【0002】
従来、アンダーカットを有する成形品の成形用金型、例えば自動車のバンパ等の樹脂成形品には、成形用金型からの離型を阻害するアンダーカットが存在する場合が多い。これは車体にバンパを装着する際、バンパの車体側、すなわち内側に内面がアンダーカットに形成される凹面となっているボス状部が成形され、そして車体側の取付けブラケットがボス状部に連結できるようになっている。
【0003】
このようなアンダーカットが存在する成形品をアンダーカット処理し得る成形用金型としては、ピンなどによって金型内でスライドできるスライドコアを設けたものが代表的である。そして、スライドコアを有する射出成形用金型は、固定側金型と可動側金型とを備えて、これら金型を型締めするときにスライドコアがアンダーカット箇所に挿入された状態で、キャビティ内に溶融樹脂を射出して冷却・固化し、所定形状の成形品を得る。一方、型開のときは、スライドコアがアンダーカット箇所より抜け出た後に、成形品をエジェクタピンにより突き出すものである。
【0004】
尚、前記固定側金型と可動側金型には通常冷却水路が形成されており、この冷却水路に冷却水を通すことで、固定側金型と可動側金型がそれぞれ水冷されるようになっている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−52384号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前記従来技術においては、スライドコアによってキャビティの一部を形成するものであり、したがってスライドコアの一部によって成形品、従来技術ではバンパの内面の一部を成形することなる。このため、スライドコアに可動側金型のような冷却手段が設けられていないと、可動側金型とスライドコアとの間に比較的大きい温度差が生じてしまい、この結果、成形品の冷却時における樹脂の収縮状態の相違に伴って、成形品(バンパ)の裏面にヒケがあらわれるのみならず、このヒケの影響によって成形品(バンパ)の表面にまでヒケがあらわれ、仮に塗装やめっきなどを施したとしても美観がやや劣るという問題を有する。
【0007】
このような問題を解決するため、従来技術においては固定側金型と可動側金型は水冷されるものの、スライドコアに水冷構造を採用することが考えられる。しかしながら、スライドコアに水路を形成したとしてもスライドコアはアンダーカット箇所に出し入れする可動式の為、水路の継ぎ手を確実に水密にしなければならない。このため継ぎ手の構造は複雑になり小型化しにくく、比較的小型形状なスライドコアには採用しにくい。
【0008】
一方、スライドコアに水冷に代えて空冷を採用することが考えられる。空冷では継ぎ手などにおいて多少の空気漏れがあっても成形品に悪影響を与える可能性は低くなる。しかしながら、空冷の場合、水冷よりも冷却能力が低く、このため例えばモータ、ポンプを使って熱媒体を循環させるようなクーラーを採用して、クーラーにより空気路の1次空気温度を下げることなども考えられる。確かにクーラーを利用して空気温度を下げることは有効であるが、比較的小型形状なスライドコアが複数個あったとしてもその冷却容量は比較的小さいものであり、専用のクーラーを配置することは既設の射出成形機を改造しなければならない。
【0009】
解決しようとする問題点は、金型の内部に圧縮気体の金型冷却用通路を配設する成形用金型の冷却方法及びその成形用金型において、圧縮気体の金型冷却用通路に流す気体温度度をクーラーを利用しないで下げることで、冷却能力を向上する点である。
【課題を解決するための手段】
【0010】
請求項1の成形用金型の冷却方法は、熱可塑性樹脂製の成形品を成形するために用いられる金型の内部に圧縮気体の金型冷却用通路を配設した成形用金型の冷却方法であって、前記金型冷却用通路において前記圧縮気体を膨張させて該気体の温度を下げて、この低温の気体を前記金型冷却用通路に通過させることを特徴とする。
【0011】
請求項2の成形用金型は、熱可塑性樹脂製の成形品を成形するために用いられる金型の内部に圧縮気体の金型冷却用通路を配設した成形用金型であって、前記金型冷却用通路に、前記圧縮気体の膨張室を設けたことを特徴とする。
【0012】
請求項3の成形用金型は、熱可塑性樹脂製の成形品を成形するために用いられる金型に配設されるスライドコア又は入れ子の内部に圧縮気体の金型冷却用通路を配設した成形用金型であって、前記金型冷却用通路の一次側に、該一次側の通路断面積より二次側の通路断面積が広い前記圧縮気体の膨張室を設けたことを特徴とする。
【発明の効果】
【0013】
請求項1の発明によれば、圧縮空気を膨張させることで、ボイル・シャルルの原理によって気体温度を下げた状態で、金型冷却用通路に流すことができる冷却方法とすることができる。
【0014】
請求項2の発明によれば、圧縮空気を膨張させることで、ボイル・シャルルの原理によって気体温度を下げた状態で、金型冷却用通路に流すことができる成形用金型とすることができる。
【0015】
請求項3の発明によれば、圧縮空気を膨張させることで、ボイル・シャルルの原理によって気体温度を下げた状態で、金型冷却用通路に流すことができるスライドコア又は入れ子とすることができる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施例1を示すバンパの斜視図である。
【図2】同金型の斜視図である。
【図3】同スライドコアまわりの断面図である。
【図4】同スライドコアの分解斜視図である。
【図5】同スライドコアの断面図である。
【図6】本発明の実施例2を示す断面図である。
【発明を実施するための形態】
【0017】
本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。
【実施例1】
【0018】
図1〜図5は実施例1を示しており、実施例は自動車のバンパの成形用金型の場合を示しており、図1に示すようにバンパ1の内側には内面がアンダーカットに形成される凹面2となっているボス状部3が成形されている。このボス状部3に車体側の取付けブラケット(図示せず)が連結できるようになっている。
【0019】
図2,3に示すように、成形用金型は固定側金型4と、この固定側金型4に接離可能な可動側金型5とを備えており、これらの固定側成形面6と可動側成形面7との間に、バンパ成形用のキャビティ8が形成されるようになっている。そして、可動側金型5は可動側成形面7を形成する可動側型板9、この可動側型板9の後ろ側に支持材10を介して設けられる射出成形機(図示せず)との取り付け板11と備え、可動側型板9と取り付け板11との間には支持壁10に沿って摺動する突き出し板などとも称される摺動板12が設けられている。可動側型板9には水冷用冷却路(図示せず)が孔によって形成されている。また摺動板12には可動側成形面7に先端があらわれる突き出しピン(図示せず)の基端が接続されている。尚、固定側金型4にも同様に水冷用冷却路が設けられる。
【0020】
前記可動側成形面7の凹部13にはボス状部3を成形するためのスライドコア14が嵌合している。このスライドコア14は、型閉時においてはその先端側にある天面15側が可動側成形面7よりやや突設しており、この天面15側の一側にアンダーカットに形成される凹面2の成形面部が形成される突部16が形成されるようになっている。そして、スライドコア14の天面15側と反対側、すなわち取り付け板11側にある底面17にピン18の先端18Fが接続されると共に、可動側型板9の貫通孔19を摺動可能に貫通したピン18の基端18Bは摺動板12側に回動自在に接続されており、このピン18の中心軸線方向は可動側金型5の固定側金型4との接離方向に対して斜めに設けられている。したがって、型閉状態から型開状態に移行するとき、摺動板12が可動側型板9に向かって進むことで、ピン18が貫通孔19を摺動案内されて基端18Bを中心としてピン18が回動し、この結果スライドコア14が後退できるようになっている。尚、型開状態から型閉状態に移行するときは、逆に前進して成形状態となるようにセットされる。
【0021】
図4,5に示すように、スライドコア14の内部に圧縮気体、実施例では圧縮空気の金型冷却用通路20が設けられる。金型冷却用通路20の圧縮空気の一次側21となる入口22、圧縮空気の二次側23となる出口24はスライドコア14の底面17に設けられており、これら入口22、出口24の中心軸線は前記接離方向とほぼ一致している。そして、入口22に可撓性パイプ状の気体供給路25が設けられると共に、出口23にも気体排出路26が接続される。この気体排出路26は可撓性パイプ状によって形成してもよい。尚、入口22に気体供給路25の可撓性の保護パイプ27が接続されており、この保護パイプ27に内部に気体供給路25が内蔵されている。
【0022】
前記圧縮空気の金型冷却用通路20は、一次側21側に配置され気体供給路25の先端25Fから圧縮空気の噴出方向Xと同軸線状、すなわち圧縮空気の流れが前記接離方向と平行となる往路部28と、往路部28に接続されこの往路部28と直交方向に交差するように天面15とほぼ平行となる中間部29と、中間部29に接続されこの中間部と直交方向に交差して往路部28と平行となって二次側23側に配置される復路部30とを備えており、往路部28の途中から中間部29、さらには復路部30の途中まで圧縮空気の金型冷却用通路20は分岐されて形成されている。実施例では圧縮空気の金型冷却用通路20は5つの分岐路31が形成されて、この分岐路31相互間にはスライドコア14の材料により肉薄なフィン状部32が形成されている。
【0023】
尚、往路部28の通気総断面積と、中間部29の通気総断面積(すなわち、複数の分岐路31の通気面積の合計面積)と、復路部30の通気総断面積とはほぼ同じ面積に形成されている。
【0024】
そして、気体供給路25の先端25Fは、分岐路31の始端31Fに対向するように、噴出方向Xに直交するように端面状に配置されると共に、気体供給路25の先端25Fは先細となって通気断面積が次第に狭くなる丸孔のノズル33に形成されていることで、このノズル33が臨む噴出方向Xの箇所には、このノズル33よりも通気断面積が大きい圧縮空気の膨張室34が往路部28の一次側21によって形成される。すなわち、ノズル33と分岐路31の始端31Fとの間の気体供給路25、つまり気体供給路25の往路部28の一次側21に、ノズル33から噴出した圧縮空気が膨張する膨張室34が形成されて、ノズル33から噴出される圧縮空気は先端25Fにおいて直ちに膨張できるようになっている。このため、それぞれの通気断面積は、ノズル33、気体供給路25、膨張室34の順に大きく形成されているもので、その比率は、1:2〜5:4〜13程度に形成されている。また、膨張室34の通気長さL、すなわちノズル33から分岐路31の始端31Fまでの長さLは、膨張室34が円筒形である場合、その直径Dの0.5〜5倍程度に形成されている。尚、前記比率が前記数値より外れるときには膨張に伴い温度低下がやや劣ることがある。
【0025】
さらに、図2に示すように可動側金型5に、型閉検知手段35を設ける。この型閉検知手段35は、支持壁10又は取り付け板11に固定したリミットスイッチ36と、摺動板12に設けられ型閉時にリミットスイッチ36を押圧作動するための作動片37とで構成されている。また、型閉検知手段35による型閉検知時に気体供給路25の基端25Bにはタンク付き空気圧縮機や圧縮空気タンクなどの圧縮空気源38を接続すると共に、気体供給路25の先端25F側と基端25B側との間に、電磁開閉弁などの自動開閉弁39が介在しており、型閉検知手段35、自動開閉弁39などは制御装置(図示せず)に電気コード(図示せず)を介して接続している。
【0026】
尚、スライドコア14の製作は、図4に示すように二分割された金型冷却用通路20などを形成した一方と、突部16、入口22、出口24などを形成した他方を突き合わせて一体化したものを示している。
【0027】
次に前記構成につきその作用を説明する。型開状態にあっては、固定側金型4に対して可動側金型5が離間していると共に、可動側金型5においてはスライドコア14が可動側型板9の可動側成形面7よりも可動側金型5側に突設している。
【0028】
次に、射出成形機により可動側金型5を前進せしめる。この際、可動側金型5が固定側金型4に接して型閉状態になる途中で、取り付け板11側が前進して摺動板12が相対的に取り付け板11に近づくことで、ピン18が可動側金型5に斜めに設けられている貫通孔19に摺動し基端18B側を中心として回動して、型閉状態において可動側型板9にスライドコア14がセットされる。このセット状態では図3に示すように突部16と可動側成形面7との間には、凹面2となっているボス状部3が成形される空間部Sが形成されるようになっている。また、冷却水路には冷却水が供給されて可動側型板9などが所定温度に冷却されている。
【0029】
そして、型閉状態のキャビティ8に溶融樹脂は充填され、この溶融樹脂が固化することで、アンダーカット箇所を有するボス状部3を一体成形したバンパ1が成形される。
【0030】
このような取り付け板11側が前進して摺動板12が相対的に取り付け板11側に近づくとき、型閉検知手段35のリミットスイッチ36に作動片37が接触して作動することで制御装置を介して、自動開閉弁39が開弁し空気源38から圧縮空気が気体供給路25を通ってその先端25Fのノズル33より膨張室34に噴出する。そしてこのように一次側21側の往路部28から導入され圧縮空気は金型冷却用通路20の中間部29を通って二次側23側の復路部30から気体排出路26へ排出され、この気体排出路26から最終的には空気は大気に開放される。この際、ノズル33の口径の小さい先端25Fから圧縮空気が口径の大きい空間を有する膨張室34に噴出することで、圧縮空気は膨張し、この結果空気温度が低下し、この低下した空気が金型冷却用通路20の分岐路31を通ることにより、空気とフィン状部32との間出で熱交換し、天面15が溶融樹脂と接して加熱されるスライドコア14を冷却することができる。尚、圧縮空気が膨張するとその温度が低下することは、理想気体の体積と圧力、温度に関係するボイル・シャルルの法則に基く。
【0031】
このようにして成形がなされると、可動側金型5が後退する型開状態に移行する。この型開移行のときには、取り付け板11が後退することで、摺動板12は取り付け板11より相対的に離れるので、可動側型板9が後退するときに、ピン18が斜めの貫通孔19を摺動し、ピン18は基端18Bを回転中心として突部16とは反対方向に回動することで、突部16がボス状部3の凹面2より抜き出る。引き続き可動側金型5が後退すると可動側成形面7より突き出しピンが突出することで、成形品であるバンパ1が可動側成形面7より突き出され離型して取り出される。また、型開に伴ってリミットスイッチ36より作動片37が離れ型閉検知手段35が型開を検知することに応動して、制御装置を介して自動開閉弁39が閉弁して、圧縮空気の供給を停止する。
【0032】
以下に、実験例について説明する。前提条件として気温20℃で、空気源の圧縮空気の温度20℃、圧力0.4MPaで、第一の空間部の空気通路断面積30mmとしたとき、先端にノズルを設けないでそのままの圧縮空気を気体供給路25に供給した場合のスライドコア14の天面15部の温度が76℃であったのに対して、先端にノズルを設け、そのノズル状の気体供給路25の口径を(a)2mm(空気通過断面積3.14mm)、(b)3mm(空気通過断面積7.07mm)、(c)4mm(空気通過断面積12.56mm)、(d)5mm(空気通過断面積19.63mm)のそれぞれとしたとき、第一の空間部での膨張した空気の冷えた温度はほぼ12℃程度となり、スライドコア14の天面15部の温度を51〜65度程度に低下でき、11〜25℃も温度低下を図ることができた。
【0033】
このように、ノズル状の気体供給路25の口径の空気通過断面積が、第一の空間部の空気通過断面積の2/3(≒19.63/30)より小さい場合には、空気温度を下げて圧縮気体の金型冷却用通路20に流すことができるようになっている。
【0034】
以上のように、前記実施例においては、バンパ1を成形するために用いられる金型に配設されるスライドコア14の内部に圧縮空気の金型冷却用通路20を配設し、圧縮空気の金型冷却用通路20の一次側21側に、該一次側21側の通路断面積より二次側23側の通路断面積が広い圧縮空気の膨張室34を設けたことにより、一次側21側において、膨張室34で圧縮空気を膨張させることで、その二次側23側空気温度を、一次側21側空気温度よりも低くして金型冷却用通路20に通してスライドコア14を冷却させることで、圧縮空気源38から供給される圧縮空気の温度よりも低い温度の空気を金型冷却用通路20に流すことで、スライドコア14の冷却効率を上げることができる。また、金型冷却用通路20を通す空気の温度を、クーラーなどの機器を利用しなくとも済むので、射出成形機まわりが大型化することもない。
【0035】
さらに、前記スライドコア14の天面15は、可動側金型5に設けられるキャビティ8の一部を構成することにより、天面15によりバンパ1の一部を成形することになるが、スライドコア14の金型冷却用通路20に流す空気の温度を下げておくことで、天面15の温度を、例えば可動側成形面7と同程度に下げておくことができ、この結果、キャビティ8内の成形品における全体の冷却状態を均一にすることができ、成形面におけるヒケ跡などがあらわれない良質な成形面を成形することができる。
【実施例2】
【0036】
図6は実施例2を示しており、前記実施例1と同一部分には同一符号を付し、その詳細な説明を省略する。実施例2は、可動側型板9´に入れ子41を設けたものであり、この入れ子41の天面15´が可動側成形面7´と並んで、この天面15´には凹凸42が形成されて成形面部が設けられる。そして、入れ子41の底面17´には圧縮空気の入口22´である一次側21´と、熱交換された空気の出口24´である二次側23´が設けられ、これら一次側21´と二次側23´との間に、往路部28´、フィン状部32´で仕切られて分岐された中間部29´及び復路部30´からなる圧縮空気の金型冷却用通路20´が設けられている。
【0037】
そして、往路部28´には、ノズル33´が設けられており、このノズル33´の二次側23´には圧縮空気の膨張室34´が設けられている。ノズル33´は入れ子41自体に形成されており、気体供給路25´の先端25F´は、噴出方向X´と直交している。
【0038】
したがって、型閉時において、圧縮空気が供給されると、ノズル33´から噴出した圧縮空気は膨張室34´で膨張することで空気温度が低下する。そして温度低下した空気が中間部29を通ることで、入れ子全体、ひいては天面15´の温度を低下させることができる。
【産業上の利用可能性】
【0039】
以上のように本発明に係る成形用金型は、各種の用途に適用できる。
【符号の説明】
【0040】
1 バンパ(成形品)
5 可動側金型
14 スライドコア
20 20´ 金型冷却用通路
21 一次側
23 二次側
34 34´ 膨張室


【特許請求の範囲】
【請求項1】
熱可塑性樹脂製の成形品を成形するために用いられる金型の内部に圧縮気体の金型冷却用通路を配設した成形用金型の冷却方法であって、前記金型冷却用通路において前記圧縮気体を膨張させ該気体の温度を下げて、この低温の気体を前記金型冷却用通路に通過させることを特徴とする成形用金型の冷却方法。
【請求項2】
熱可塑性樹脂製の成形品を成形するために用いられる金型の内部に圧縮気体の金型冷却用通路を配設した成形用金型であって、前記金型冷却用通路に、前記圧縮気体の膨張室を設けたことを特徴とする成形用金型。
【請求項3】
熱可塑性樹脂製の成形品を成形するために用いられる金型に配設されるスライドコア又は入れ子の内部に圧縮気体の金型冷却用通路を配設した成形用金型であって、前記金型冷却用通路の一次側に、該一次側の通路断面積より二次側の通路断面積が広い前記圧縮気体の膨張室を設けたことを特徴とする成形用金型。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−131114(P2012−131114A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2010−285013(P2010−285013)
【出願日】平成22年12月21日(2010.12.21)
【出願人】(510336554)株式会社北辰金型工業所 (1)
【Fターム(参考)】