説明

撮像装置及び撮像装置のノイズ低減方法

【課題】動作ノイズのみを適確に低減することができる撮像装置及び撮像装置のノイズ低減方法を提供する。
【解決手段】本発明の撮像装置は、集音装置と、集音装置により集音した音情報と、撮像装置内の駆動部又は操作部の動作情報と、の組み合わせにより駆動部又は操作部から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出部と、ノイズタイミング検出部の検出結果に基づいて、動作ノイズの低減処理を行うノイズ低減処理部と、を備えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮影時に入力される音情報から動作ノイズを低減処理する撮像装置及び撮像装置のノイズ低減方法に関するものである。
【背景技術】
【0002】
撮像装置において、オートフォーカスレンズの駆動部の動作開始時及び動作終了時に衝撃音が発生する。この衝撃音は動画撮影時に、動作ノイズとしてマイク等の集音装置により集音される。これらのノイズは、被写体の発する音声等の目的音に混入し、目的音の品質を損なうことがある。
このため、発生時間が所定の時間以下、且つ、パワーが所定の範囲内となる音を検出し、その音についてノイズ低減処理を行なう方法が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−77707号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1によるノイズ低減処理の場合、集音装置により集音された音情報からのみ動作ノイズであると判定している。このため、例えば、撮影場所の周辺に衝撃音に近似した音が発生し、この音を集音したような場合も動作ノイズであると誤検出してノイズ低減処理が行われる。その結果、目的音の音質低下という問題がある。
【0005】
本発明の課題は、動作ノイズのみを適確に低減することができる撮像装置及び撮像装置のノイズ低減方法を提供することである。
【課題を解決するための手段】
【0006】
本発明は、以下のような解決手段により前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
【0007】
請求項1に記載の発明は、集音装置(131)と、前記集音装置(131)により集音した音情報と、撮像装置(100)内の駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより前記駆動部(113)又は操作部(120)から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出(135)と、前記ノイズタイミング検出(135)の検出結果に基づいて、前記動作ノイズの低減処理を行うノイズ低減処理部(133)と、を備えること、を特徴とする撮像装置(100)である。
請求項2に記載の発明は、請求項1に記載の撮像装置(100)であって、前記ノイズタイミング検出(135)は、前記集音装置(131)により集音された連続音圧サンプルの音圧差の情報と、前記駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、を特徴とする撮像装置(100)である。
請求項3に記載の発明は、3請求項1または2に記載の撮像装置(100)であって、前記ノイズタイミング検出(135)は、前記集音装置(131)により集音された連続音情報の音圧レベルと、連続音圧サンプルの音圧差の情報と、前記駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、を特徴とする撮像装置(100)である。
請求項4に記載の発明は、請求項1から3のいずれか1項に記載の撮像装置(100)であって、前記駆動部(113)又は操作部(120)の動作情報は、オートフォーカス駆動情報若しくはズーム駆動情報又は操作ボタンの操作情報であること、を特徴とする撮像装置(100)である。
請求項5に記載の発明は、請求項1から4のいずれか1項に記載の撮像装置(100)であって、前記ノイズ低減処理部(133)は、前記ノイズタイミング検出(135)が、ノイズタイミングであると検出された時より前又は後の第1の周波数スペクトルとノイズタイミングであると検出された時の第2の周波数スペクトルとを比較して求めた第3の周波数スペクトルを、前記第2の周波数スペクトルと置き換えること、を特徴とする撮像装置(100)である。
請求項6に記載の発明は、請求項3に記載の撮像装置(100)であって、前記ノイズタイミング検出(135)でノイズタイミングであると検出された時、前記音圧レベル及び音圧差を、非ノイズタイミング時の音圧レベル及び音圧差と比較し、その結果に基づいて、ノイズ低減処理を行なうか否かを判定すること、を特徴とする撮像装置(100)である。
請求項7に記載の発明は、集音装置(131)と、前記集音装置(131)により集音した音情報と、撮像装置(100)内の駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより前記駆動部(113)又は操作部(120)から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出(135)と、ノイズ低減処理部(133)と、を備え、前記ノイズタイミング検出(135)の検出結果に基づいて、前記動作ノイズの低減処理を行うこと、を特徴とする撮像装置(100)のノイズ低減方法である。
請求項8に記載の発明は、請求項7に記載の撮像装置(100)のノイズ低減方法であって、前記ノイズタイミング検出(135)は、前記集音装置(131)により集音された連続音圧サンプルの音圧差の情報と、前記駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、を特徴とする撮像装置(100)のノイズ低減方法である。
請求項9に記載の発明は、請求項7または8に記載の撮像装置(100)のノイズ低減方法であって、前記ノイズタイミング検出(135)は、前記集音装置(131)により集音された連続音情報の音圧レベルと、連続音圧サンプルの音圧差の情報と、前記駆動部(113)又は操作部(120)の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、を特徴とする撮像装置(100)のノイズ低減方法である。
請求項10に記載の発明は、請求項7から9のいずれか1項に記載の撮像装置(100)のノイズ低減方法であって、前記駆動部(113)又は操作部(120)の動作情報は、オートフォーカス駆動情報若しくはズーム駆動情報又は操作ボタンの操作情報であること、を特徴とする撮像装置(100)のノイズ低減方法である。
請求項11に記載の発明は、請求項7から10のいずれか1項に記載の撮像装置(100)のノイズ低減方法であって、前記ノイズ低減処理部(133)は、前記ノイズタイミング検出(135)が、ノイズタイミングであると検出された時より前又は後の第1の周波数スペクトルとノイズタイミングであると検出された時の第2の周波数スペクトルとを比較して求めた第3の周波数スペクトルを、前記第2の周波数スペクトルと置き換えること、を特徴とする撮像装置(100)のノイズ低減方法である。
請求項12に記載の発明は、請求項9に記載の撮像装置(100)のノイズ低減方法であって、前記ノイズタイミング検出(135)でノイズタイミングであると検出された時、前記音圧レベル及び音圧差を、非ノイズタイミング時の音圧レベル及び音圧差と比較し、その結果に基づいて、ノイズ低減処理を行なうか否かを判定すること、を特徴とする撮像装置(100)のノイズ低減方法である。
なお、符号を付して説明した構成は、適宜改良してもよく、また、少なくとも一部を他の構成物に代替してもよい。
【発明の効果】
【0008】
本発明によれば、動作ノイズのみを適確に低減することができる撮像装置及び撮像装置のノイズ低減方法を提供することができる。
【図面の簡単な説明】
【0009】
【図1】本発明の第1実施形態の撮像装置の構成を示すブロック図である。
【図2】AF駆動用モータから発生する動作ノイズの発生状況を説明する図である。
【図3】AF駆動時間範囲の設定に関するケース1の場合の説明図である。
【図4】AF駆動時間範囲の設定に関するケース2の場合の説明図である。
【図5】AF動作中に集音される衝撃ノイズの音圧波形を示す図である。
【図6】AF動作中に集音される音声等の目的音の音圧波形を示す図である。
【図7】衝撃ノイズと音声等の目的音とが加算(重畳)された連続音の音圧レベルの変化を示す波形図である。
【図8】衝撃ノイズと音声等の目的音が重畳された連続音の音圧差分の絶対値の変化を示す波形図である。
【図9】図2に示す各区間から取得した周波数スペクトル図である。第1の処理対象音の区間Cのスペクトルを示す図である。
【図10】衝撃ノイズ発生区間における衝撃ノイズの低減処理方法を説明するための周波数スペクトル図である。
【図11】衝撃ノイズの発生している区間におけるノイズの低減処理の様子を示す概略図である。
【図12】第2実施形態による衝撃ノイズ低減処理の実行の要否を判断するための動作フローを示すフローチャートである。
【発明を実施するための形態】
【0010】
以下、図面等を参照して、本発明の実施形態について説明する。図1は、本発明の第1実施形態の撮像装置としてのカメラの構成を示すブロック図である。
【0011】
図1に示すように、カメラ100は、レンズ鏡筒110と、カメラ本体160と、を有する。
カメラ本体160の内部には、レンズ鏡筒110を通過した被写体光を撮像してA/D変換すると共に、画像処理して画像データを生成する画像処理部(図示省略)と、集音された音情報をA/D変換すると共に、ノイズ低減処理する音情報処理部130と、画像処理部で得られた画像データ及び音情報処理部130で得られた音声信号を記録する記録部140と、操作部としてのマルチセレクター120と、CPU150と、を備える。
【0012】
レンズ鏡筒110は、焦点調整レンズ(以下、AF(Auto Focus)レンズ、手振れ補正レンズ(以下、VR(Vibration Reduction)レンズ、ズームレンズ等を備える光学系(図示省略)と、ズームエンコーダ111と、AFエンコーダ112と、AF駆動用モータ113と、を備える。
【0013】
AFエンコーダ112は、光学系のAFレンズの位置を検出してCPU150に出力する。AF駆動用モータ113には、AFレンズの位置を制御するための駆動制御信号がCPU150から入力され、その駆動制御信号に応じて、AFレンズの位置が制御される。
【0014】
CPU150は、設定された撮像条件(例えば、絞り値、露出値等)に応じてレンズ鏡筒110を制御する。CPU150は、ズームレンズ駆動部(図示省略)及びAF駆動用モータ113を駆動する駆動制御信号を生成し、ズームレンズ駆動部及びAF駆動用モータ113に出力する。
【0015】
音情報処理部130は、集音装置であるマイク131と、集音されA/D変換された音情報を処理する音信号処理部132と、ノイズ低減処理部133と、を備える。
【0016】
音信号処理部132は、マイク131により集音した音情報と、AF駆動用モータ113の動作情報と、の組み合わせにより、AF駆動用モータ113から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出部135を備える。
【0017】
図2は、AF駆動用モータ113から発生する動作ノイズの発生状況を説明する図である。図2に示すように、AF駆動用モータ113の動作時には、動作開始時から動作終了時まで連続して動作ノイズが発生する。AF駆動用モータ113の動作開始時及び動作終了時には、AF駆動系の質量や慣性力の影響を受ける関係から、大きな衝撃音(以下、衝撃ノイズという)N1、N3を発生する。また、動作開始後から動作終了直前までの間は、略一定した駆動音(以下、駆動ノイズという)N2を発生する。さらに、AF動作中にAF駆動用モータ113が増速、減速される際も、衝撃ノイズ(不図示)を発生する。
なお、実際のAF動作時においては、被写体の音声等の目的音に動作ノイズ(衝撃ノイズN1+駆動ノイズN2+衝撃ノイズN3)が重畳した音信号がマイク131から出力されるが、説明を簡略にするため、図2では、音声等の目的音は省略し、AF動作時に発生する動作ノイズのみを示している。
【0018】
ノイズ低減処理部133は、AF動作時に発生する衝撃ノイズN1、駆動ノイズN2及び衝撃ノイズを低減処理する。
ノイズタイミング検出部135は、AF駆動用モータ113の動作情報と、マイク131により集音される音情報と、の組み合わせによって、動作ノイズの発生するタイミングを検出する。
ノイズタイミング検出部135による動作ノイズN(衝撃ノイズN1+駆動ノイズN2+衝撃ノイズN3)の発生タイミングの検出に採用されるAF駆動用モータ113の動作情報としては、AF駆動時間範囲が用いられる。AF駆動時間範囲は、CPU150にAF駆動用モータ113に対する駆動制御信号を出力するように指示するAF駆動コマンド及びAFエンコーダ112からの出力を用いて検出(推定)する。
【0019】
AF駆動時間範囲は、カメラ100における光学系の種類の異なりに対応して、ケース1又はケース2のように設定される。
図3は、ケース1の場合のAF駆動時間範囲の設定に関する説明図である。図4は、ケース2の場合のAF駆動時間範囲の設定に関する説明図である。
【0020】
ケース1の場合(図3)
カメラ本体160からレンズ鏡筒110にAF駆動コマンドが送られてAF駆動用モータ113が動作開始する。この動作開始時刻t1と同時にAFエンコーダ112からパルスの出力が開始する。マイク131には、動作開始時刻t1と同時に、被写体の音声等の目的音に動作ノイズが重畳された音情報が集音され、動作ノイズNを含む音情報がマイク131から出力されて、動作開始時刻t1に衝撃ノイズN1が現れる。また、AF動作が終了すると、その動作終了時刻t3と同時にAFエンコーダ112からのパルスの出力が停止し、動作終了時刻t3と略同時にマイク131からの出力に衝撃ノイズN3が現れる。
ここで、AFエンコーダ112からのパルスの出力開始及びパルスの出力停止のタイミングと衝撃ノイズN1、N3の出現タイミングとがずれる可能性があるため、ケース1の場合のAF駆動時間範囲は、t1からt3までの時間幅より少し広めのt1´からt3´に設定する。
【0021】
ケース2の場合(図4)
カメラ本体160からレンズ鏡筒110にAF駆動コマンドが送られてAF駆動用モータ113が動作開始する。この動作開始時刻t1から僅かに遅れた時刻から、マイク131に被写体の音声等の目的音に動作ノイズNが重畳された音情報が集音され、動作ノイズNを含む音情報がマイク131から出力されて、動作開始時刻t1に衝撃ノイズN1が現れる。一方、AFエンコーダ112からは、駆動方向の反転時においてAF駆動系のギア列で起きるバックラッシュ等の影響を受けて、AF駆動用モータ113の動作開始時刻t1よりも遅れた時刻t2からパルスの出力が開始し、また、パルスの出力停止から僅かに遅れた時刻において、マイク131からの出力に衝撃ノイズN1が現れる。
このケース2の場合は、駆動コマンドが出力されるタイミングを動作開始時刻t1とし、AFエンコーダ112からのパルスの出力停止のタイミングを動作終了時刻t3とした方が衝撃ノイズN1、N3の出現を正確に検出することが可能である。そこで、ケース2の場合のAF駆動時間範囲は、t1からt3までの時間幅より終了時刻を少し広めにとってt1からt3´に設定する。
【0022】
なお、AF動作時においてマイク131から実際に出力される音信号は、目的音に動作ノイズNが重畳した信号であるが、説明を簡略にするため、図3及び図4では、図2と同様に、音声等の目的音は省略し、動作ノイズNのみを示している。
【0023】
ノイズタイミング検出部135による動作ノイズNの発生タイミングの検出に採用されるAF駆動用モータ113の動作情報としてのAF駆動時間範囲の検出は、上述したとおり、カメラ100における光学系の種類や使用する信号出力の種類によって異なり、ケース1とケース2の2通りである。どちらのケースでも、AF駆動時間範囲の最初と最後に衝撃音が発生することが推測できる。しかし、例えばケース2の場合では、AF駆動コマンドが出力されてからカメラ内の通信および信号処理に要する時間、およびモータが駆動してから衝撃音が発生するまでの時間によってずれが生じる。さらに、AF駆動時間範囲を用いるだけでは、AF動作中にAF駆動用モータ113を増速あるいは減速する場合に発生する衝撃ノイズN3の発生タイミングは検出することができない。
【0024】
そのため、ノイズタイミング検出部135による動作ノイズNの発生タイミングの検出には、AF駆動時間範囲に対して、さらにマイク131により集音される音情報を利用する。この音情報の利用形態について、図5から図8を参照しながら説明する。
【0025】
図5は、AF動作中に集音される衝撃ノイズN1の音圧波形を示す図である。図6は、AF動作中に集音される音声等の目的音の音圧波形を示す図である。図7は、衝撃ノイズN1と音声等の目的音とが加算(重畳)された連続音の音圧レベルの変化を示す波形図である。図8は、衝撃ノイズN1と音声等の目的音が重畳された連続音の音圧差分の絶対値の変化を示す波形図である。
【0026】
図5に示すように、衝撃ノイズN1は、図6に示す音声等の目的音と比べて、音圧差分が大きいが、これらを単に加算しただけでは、図7に示すように、衝撃ノイズN1の波形が音声等の目的音の波形の中に埋もれてしまう。
そこで、図8に示すような音圧差分の絶対値を求め、求めた音圧差分の絶対値が、所定の閾値以上であるか否かを判定して、音圧差分の絶対値が、所定の閾値以上の場合を衝撃ノイズN1と判断することにより、衝撃ノイズN1の発生タイミングを検知することが可能となる。
衝撃ノイズN3の発生タイミングもN1と同様に検知することができる。
【0027】
図8に示す例においては、閾値を0.1パスカル(Ps)とし、閾値0.1Ps以上の音圧差分の絶対値を検知することにより、衝撃ノイズの発生するタイミングを検出する。
【0028】
次に、図9から図11に基づいて、ノイズタイミング検出部135により動作ノイズNの発生タイミングが検出された場合におけるノイズ低減処理部133による動作ノイズの低減処理方法の詳細について説明する。
【0029】
図9は、図2に示す各区間AからFそれぞれから取得した周波数スペクトル図である。なお、本実施形態においてこれらの区間はオーバラップしていないが、互いに半分ずつオーバラップするように区間を設けてもよい。図10は、区間Bにおける衝撃ノイズN1の低減処理方法を説明するための周波数スペクトル図である。図11は、動作ノイズNの発生している区間BからEにおけるノイズの低減処理の様子を示す概略図である。
【0030】
なお、図2及び図11における区間Bは、前述したAF駆動時間範囲で、AF動作開始時刻t1に衝撃ノイズN1を発生する区間、区間Aは区間Bの直前の区間、区間D、EはAF動作終了時刻t3に衝撃ノイズN1を発生する区間、区間Fは区間Eの直後の区間、区間BからEは、駆動ノイズN2を発生する区間である。
【0031】
まず、ノイズ低減処理部133による衝撃ノイズN1の低減処理について説明する。この衝撃ノイズN1の低減処理は、スペクトルの置き換えを基本としている。
図2に示すように、区間Aの音声等の目的音と区間Bの音声等の目的音とは連続としており、AF動作時の動作ノイズ(N1+N2+N3)以外の音声等の目的音の成分は近似している。しかし、目的音は時間的に連続して変化しているため、区間Bのスペクトルを区間Aのスペクトルに全面的に置き換えると、区間Bと区間Cの音声等の目的音の連続性が失われて、再生時に不自然な音になってしまう。
【0032】
そこで、区間Aのスペクトル及び区間Bのスペクトルを、図10に示すように、それぞれ高周波成分f3からf9と低周波成分f1、f2に分ける。そして、低周波成分f1、f2は置き換えることなく、高周波成分f3からf9については、区間Aのスペクトルと区間Bのスペクトルとを比較する。比較の結果、区間Aの高周波成分スペクトルよりも区間Bの高周波成分スペクトルが大きい場合、区間Bの高周波成分スペクトルを区間Aの高周波成分スペクトルに置き換える。これによって、図11に示すように、区間Bのスペクトルは、区間Aのスペクトルに近似する新しい第3の周波数スペクトルに置き換える。
また、上述と同様に、区間Eのスペクトルは、区間Fのスペクトルに近似する新しい第3の周波数スペクトルに置き換え、区間Dのスペクトルは、区間Cのスペクトルに近似する新しい第3の周波数スペクトルに置き換える。
区間Bの処理には区間Bの近傍で、かつAF駆動音が含まれない区間Aのスペクトルを使用し、同様の理由で区間Eの処理には区間Fのスペクトルを使用する。区間Dの近傍のスペクトルは区間Cと区間Eがあるが、区間Eには衝撃音が含まれるため、区間Cのスペクトルを使用する。
【0033】
上記のように、区間Aと区間B、区間Cと区間D及び区間Fと区間Eの高周波成分f3ないしf9のスペクトルを比較して、区間B、区間D及び区間Eの高周波成分スペクトルが区間A、区間C及び区間Fの高周波成分スペクトルより大きい場合、区間B、区間D及び区間Eの高周波成分スペクトルを区間A、区間C及び区間Fの高周波成分スペクトル又はそれに近似する第3のスペクトルに置き換えることによって、区間Bと区間C及び区間Dと区間Eとに繋がる音声等の目的音の連続性を保ちつつ、衝撃ノイズN1、N3を低減することができる。
【0034】
次に、ノイズ低減処理部133による区間Bから区間Eにおける駆動ノイズN2の低減処理について説明する。この駆動ノイズN2の低減処理は、周波数領域でのスペクトル減算法を基本としている。
例えば、予め記憶している動作ノイズ情報又は過去に集音した音情報から推定した動作ノイズ情報を利用して、動作ノイズが含まれるフレーム毎にスペクトル減算処理を行い、その後、IFFT処理により時間領域の音情報に変換する。これにより、区間Bから区間Eに含まれる駆動ノイズN2を低減処理することができる。
【0035】
以上、本第1実施形態によると、以下の効果を有する。
(1)AF駆動用モータ113の動作情報と、マイク131により集音される音情報と、の組み合わせによって、AF動作の開始時及び終了時に発生する衝撃ノイズN1、N3のタイミングを検出する。そのため、例えば、撮影場所の周辺に衝撃ノイズに類似あるいは近似した音が発生しているような場合でも、それをノイズ発生タイミングであると誤検出するおそれがない。従って、衝撃ノイズ発生タイミングを正しく検出することが可能となり、目的音の劣化や消失等の音声品質を損なうことなく、衝撃ノイズN1、N3のみを適確に低減することができる。
(2)衝撃ノイズ発生時のスペクトルを、衝撃ノイズ発生前又は発生後の衝撃ノイズを含まないスペクトルに置き換えて衝撃ノイズを低減処理するに際して、音声等の目的音が持つ所定の周波数以下のスペクトルは置き換えず、所定の周波数以上のスペクトルのみを衝撃ノイズ発生前又は発生後のスペクトルと比較し、比較の結果、大きい場合のスペクトルを置き換える。そのため、音声等の目的音の連続性を保ちつつ、衝撃ノイズN1、N3を低減することができる。
【0036】
次に、本発明の第2実施形態について説明する。
第1実施形態は、マイク131により集音される音情報等を利用して衝撃ノイズN1、N3を低減処理することを前提(必須)としている。しかし、衝撃ノイズN1、N3の低減処理は、音声等の目的音の品質の劣化を伴う。そのため、目的音に対して衝撃ノイズN1、N3が小さい時や、撮影場所の周辺が騒々しい時などは、衝撃ノイズN1、N3の低減を行う必要がない場合や、行わない方が好ましい場合がある。
【0037】
第2実施形態は、上述のような環境条件等に応じて衝撃ノイズ低減処理の実行の要否を判断して、実際に低減処理が必要な場合や低減処理が好ましい場合に限り、衝撃ノイズの低減処理を行なう。この衝撃ノイズ低減処理の実行の要否の判断にも音情報を活用する。
図12は、第2実施形態による衝撃ノイズ低減処理の実行の要否を判断するための動作フローを示すフローチャートである。
【0038】
まず、ステップST1において、ノイズタイミング検出部135による動作ノイズの発生タイミングの検出により得た図7の波形を用いて、衝撃ノイズN1の発生区間の音圧の絶対値の最大値P1を求める(検出する)。
続いて、ステップST2において、動作ノイズの発生タイミングの検出により得た図8の波形を用いて、衝撃ノイズN1の発生区間の音圧差分の絶対値の最大値D1を求める(検出する)。
【0039】
次に、ステップST3において、ノイズタイミング検出部135による動作ノイズの発生タイミングの検出により得た図7の波形を用いて、衝撃ノイズN1の発生直前の音圧の絶対値の最大値P0を求める(検出する)。
続いて、ステップST4において、動作ノイズの発生タイミングの検出により得た図8の波形を用いて、衝撃ノイズN1の発生直前の音圧差分の絶対値の最大値D0を求める(検出する)。
【0040】
次に、ステップST5において、衝撃ノイズN1の発生区間の音圧の絶対値の最大値P1と衝撃ノイズN1の発生直前の音圧の絶対値の最大値P0とを比較する。比較の結果、P1>P0の場合(YES)は、低減処理が必要と判断して、ステップST7に進み、P1<P0の場合(NO)は、撮影場所の周辺が騒々しくて、衝撃ノイズN1が余り目立たない環境であると判断して、ステップST6に進む。
【0041】
ステップST6においては、衝撃ノイズN1の発生区間の音圧差分の絶対値の最大値D1と衝撃ノイズN1の発生直前の音圧差分の絶対値の最大値D0×nとを比較する。ここで、nは、2以上のD0の倍数であって、ノイズ低減処理の強弱を撮影者によって調整できるように可変としている。
【0042】
ステップST6での比較の結果、D1>D0×nの場合(YES)は、衝撃ノイズN1の音圧差分の絶対値が異常に大きく、低減処理が必要と判断して、ステップST7に進み、D1<D0×nの場合(NO)、衝撃ノイズN1が余り目立たない環境であり、且つ、衝撃ノイズN1の音圧差分の絶対値も小さいと判断して、ノイズ低減処理を行わずに終了する。
【0043】
そして、ステップST7においては、衝撃ノイズN1の低減処理を実行する。この衝撃ノイズN1の低減処理は、第1実施形態において説明したと同様に、所定の周波数以下のスペクトルは置き換えず、所定の周波数以上のスペクトルを置き換えることにより行なわれる。
衝撃ノイズN3も同様に低減処理することができる。
【0044】
以上の第2実施形態によると、第1実施形態による効果に加えて、以下の効果を有する。
(1)マイク131により集音された音情報から衝撃ノイズN1、N3の発生タイミングの音圧の絶対値及び音圧差分の絶対値と、衝撃ノイズN1、N3の発生タイミングの直前又は直後の音圧の絶対値及び音圧差分の絶対値と、を検出し、それら両種の絶対値を比較して低減処理の要否を判断している。そのため、音声等の目的音に対して衝撃ノイズN1、N3が小さい時や、撮影場所の周辺が騒々しい時などは、あえて低減処理を行わず、低減処理に伴う音声等の目的音の品質の劣化を抑制することができる。
【0045】
以上、説明した実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)前述の実施形態では、AF駆動用モータ113の動作時に発生する衝撃ノイズN1、N3及び駆動ノイズN2の低減処理について説明したが、これに限らず、カメラ100が備えるマルチセレクター(操作部)120を操作した時に発生するクリック音(ノイズ)を低減処理することも可能である。
この場合は、マルチセレクター120を操作すると、電気的な信号(操作情報)がCPU150に入力されるので、その信号の捕捉と、マイク131により集音した音情報と、により操作タイミングの検出が可能であり、検出したタイミングでクリック音(ノイズ)を適切に低減処理することができる。
(2)また、ズームエンコーダ111の駆動情報と、マイク131により集音した音情報と、によりズーム駆動用モータ(図示せず)の動作開始時及び動作終了時に発生する衝撃ノイズの発生タイミングを検出して、上述の第1実施形態と同様なノイズ低減処理を行なうこともできる。
(3)更に、前述の第2実施形態においては、衝撃ノイズの低減処理の要否の判断に、音圧の絶対値及び音圧差分の絶対値の最大値を用いたが、音圧の分散及び音圧差の分散を用いてもよい。この場合、比較するときの倍数は、適宜可変できるようにすることが好ましい。
なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
【符号の説明】
【0046】
100:撮像装置、131:マイク(集音装置)、133:ノイズ低減処理部、135:ノイズタイミング検出部、N:動作ノイズ(N1:衝撃ノイズ、N2:駆動ノイズ、N3:衝撃ノイズ)

【特許請求の範囲】
【請求項1】
集音装置と、
前記集音装置により集音した音情報と、撮像装置内の駆動部又は操作部の動作情報と、の組み合わせにより前記駆動部又は操作部から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出部と、
前記ノイズタイミング検出部の検出結果に基づいて、前記動作ノイズの低減処理を行うノイズ低減処理部と、を備えること、
を特徴とする撮像装置。
【請求項2】
請求項1に記載の撮像装置であって、
前記ノイズタイミング検出部は、
前記集音装置により集音された連続音圧サンプルの音圧差の情報と、前記駆動部又は操作部の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、
を特徴とする撮像装置。
【請求項3】
請求項1または2に記載の撮像装置であって、
前記ノイズタイミング検出部は、
前記集音装置により集音された連続音情報の音圧レベルと、連続音圧サンプルの音圧差の情報と、前記駆動部又は操作部の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、
を特徴とする撮像装置。
【請求項4】
請求項1から3のいずれか1項に記載の撮像装置であって、
前記駆動部又は操作部の動作情報は、
オートフォーカス駆動情報若しくはズーム駆動情報又は操作ボタンの操作情報であること、
を特徴とする撮像装置。
【請求項5】
請求項1から4のいずれか1項に記載の撮像装置であって、
前記ノイズ低減処理部は、
前記ノイズタイミング検出部が、ノイズタイミングであると検出された時より前又は後の第1の周波数スペクトルとノイズタイミングであると検出された時の第2の周波数スペクトルとを比較して求めた第3の周波数スペクトルを、前記第2の周波数スペクトルと置き換えること、
を特徴とする撮像装置。
【請求項6】
請求項3に記載の撮像装置であって、
前記ノイズタイミング検出部でノイズタイミングであると検出された時、前記音圧レベル及び音圧差を、非ノイズタイミング時の音圧レベル及び音圧差と比較し、その結果に基づいて、ノイズ低減処理を行なうか否かを判定すること、
を特徴とする撮像装置。
【請求項7】
集音装置と、
前記集音装置により集音した音情報と、撮像装置内の駆動部又は操作部の動作情報と、の組み合わせにより前記駆動部又は操作部から発生する動作ノイズの発生タイミングを検出するノイズタイミング検出部と、
ノイズ低減処理部と、を備え、
前記ノイズタイミング検出部の検出結果に基づいて、前記動作ノイズの低減処理を行うこと、
を特徴とする撮像装置のノイズ低減方法。
【請求項8】
請求項7に記載の撮像装置のノイズ低減方法であって、
前記ノイズタイミング検出部は、
前記集音装置により集音された連続音圧サンプルの音圧差の情報と、前記駆動部又は操作部の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、
を特徴とする撮像装置のノイズ低減方法。
【請求項9】
請求項7または8に記載の撮像装置のノイズ低減方法であって、
前記ノイズタイミング検出部は、
前記集音装置により集音された連続音情報の音圧レベルと、連続音圧サンプルの音圧差の情報と、前記駆動部又は操作部の動作情報と、の組み合わせにより動作ノイズの発生タイミングを検出すること、
を特徴とする撮像装置のノイズ低減方法。
【請求項10】
請求項7から9のいずれか1項に記載の撮像装置のノイズ低減方法であって、
前記駆動部又は操作部の動作情報は、
オートフォーカス駆動情報若しくはズーム駆動情報又は操作ボタンの操作情報であること、
を特徴とする撮像装置のノイズ低減方法。
【請求項11】
請求項7から10のいずれか1項に記載の撮像装置のノイズ低減方法であって、
前記ノイズ低減処理部は、
前記ノイズタイミング検出部が、ノイズタイミングであると検出された時より前又は後の第1の周波数スペクトルとノイズタイミングであると検出された時の第2の周波数スペクトルとを比較して求めた第3の周波数スペクトルを、前記第2の周波数スペクトルと置き換えること、
を特徴とする撮像装置のノイズ低減方法。
【請求項12】
請求項9に記載の撮像装置のノイズ低減方法であって、
前記ノイズタイミング検出部でノイズタイミングであると検出された時、前記音圧レベル及び音圧差を、非ノイズタイミング時の音圧レベル及び音圧差と比較し、その結果に基づいて、ノイズ低減処理を行なうか否かを判定すること、
を特徴とする撮像装置のノイズ低減方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−185268(P2012−185268A)
【公開日】平成24年9月27日(2012.9.27)
【国際特許分類】
【出願番号】特願2011−47383(P2011−47383)
【出願日】平成23年3月4日(2011.3.4)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】