説明

撮像装置

【課題】焦点検出の速度を高めることができる撮像装置を提供する。
【解決手段】デジタルカメラ1は、第1撮像素子110と、第2撮像素子120と、焦点検出部と、を備えている。第1撮像素子110は光を電気信号に変換する第1光電変換部113を有している。第2撮像素子120は、第1光電変換部113から出射する光が入射可能に配置された素子であって、第1光電変換部113から出射する光を電気信号に変換する第2光電変換部123を有している。焦点検出部は、第1撮像素子110で得られる第1画像データおよび第2撮像素子120で得られる第2画像データに基づいて焦点検出を行う。

【発明の詳細な説明】
【技術分野】
【0001】
ここに開示される技術は、焦点検出機能を有する撮像装置に関する。
【背景技術】
【0002】
近年、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの撮像素子を用いて、光学像を電気信号に変換し、電気信号をデジタル化して記録するデジタルカメラが普及している。
デジタル一眼レフカメラとして、位相差検出方式のオートフォーカス機能(AF機能)を採用したカメラが知られている。位相差検出方式のオートフォーカス機能によれば、フォーカスレンズを動かすことなくデフォーカス方向およびデフォーカス量を検出できるため、フォーカスレンズをダイレクトに合焦位置に移動でき、オートフォーカスにかかる時間を短縮することができる(例えば、特許文献1)。従来のデジタル一眼レフカメラでは、位相差検出ユニットに被写体の光学像を導くために、可動ミラーが設けられている。この可動ミラーは、レンズ鏡筒から撮像素子への光路上に挿入および退避可能に設けられている。
【0003】
一方で、デジタルカメラの小型化を実現するために、いわゆるコンパクトデジタルカメラのLCD(Liquid Crystal Display)やEVF(Electronic View Finder)によるファインダ機能および撮像素子を用いたコントラスト検出方式のオートフォーカス機能(コントラストAFともいう)が採用されている(例えば、特許文献2)。このコントラストAFは、撮像面におけるピントを直接検出するため、一般的に、位相差検出方式のオートフォーカスに比して精度が高い利点がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−163545号公報
【特許文献2】特開2007−135140号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献2に記載のコントラストAFでは、撮像素子で生成される画像データから評価値を算出し、評価値が最大となるフォーカスレンズの位置を合焦位置としている。
しかし、1枚の撮像素子から得られる評価値のみを基準としているので、評価値の増減を判定するためにフォーカスレンズを比較的長い時間、駆動する必要がある。そのため、コントラストAFに要する時間を比較的長く確保する必要があり、焦点検出に時間を要する。
【課題を解決するための手段】
【0006】
ここに開示される撮像装置は、第1撮像素子と、第2撮像素子と、焦点検出部と、を備えている。第1撮像素子は光を電気信号に変換する第1光電変換部を有している。第2撮像素子は、第1光電変換部から出射する光が入射するように配置された素子であって、第1光電変換部から出射する光を電気信号に変換する第2光電変換部を有している。焦点検出部は、第1撮像素子で得られる第1画像データおよび第2撮像素子で得られる第2画像データに基づいて焦点検出を行う。
ここで、「焦点検出」には、デフォーカス判定、フォーカスレンズの駆動方向の決定、あるいは、合焦状態に対応するフォーカスレンズの位置の特定などの動作が含まれる。
この撮像装置では、第1撮像素子に入射する光が第1光電変換部で電気信号に変換される。さらに、第1光電変換部から出射する光が第2光電変換部で電気信号に変換される。この結果、第1光電変換部および第2光電変換部により、第1画像データおよび第2画像データを取得することができる。第1画像データおよび第2画像データに基づいてコントラストAF用の2つの評価値を算出することで、1つのAF評価値の増減を監視する場合に比べて、AF評価値の信頼性を高めることができ、焦点検出に関する様々な判定を2つのAF評価値を用いて短時間で行うことができる。
【発明の効果】
【0007】
したがって、この撮像装置であれば、コントラストAFでありながら焦点検出の速度を速めることができる。
【図面の簡単な説明】
【0008】
【図1】デジタルカメラの概略構成図
【図2】デジタルカメラの概略ブロック図
【図3】撮像素子ユニットの概略構成図
【図4】(A)第1撮像素子の概略断面図、(B)第2撮像素子の概略断面図
【図5】第1および第2撮像素子の概略断面図
【図6】(A)図4のVIA−VIA断面図、(B)図4のVIB−VIB断面図
【図7】(A)第1後ピン状態、(B)合焦状態、(C)前ピン状態、(D)第2後ピン状態
【図8】(A)前ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させない場合)、(B)前ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させる場合)
【図9】(A)第1後ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させない場合)、(B)第1後ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させる場合)
【図10】(A)第2後ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させない場合)、(B)第2後ピン状態での焦点検出タイムチャート(フォーカスレンズの駆動方向を反転させる場合)
【図11】AFのフローチャート
【図12】AFのフローチャート
【図13】AFのフローチャート
【図14】コンティニュアスAFのタイムチャート
【図15】コンティニュアスAFのフローチャート
【図16】タイムチャート(参考例)
【図17】(A)第1撮像素子の概略断面図、(B)第2撮像素子の概略断面図(第2実施形態)
【図18】(A)図16のXVIIIA−XVIIIA断面図、(B)図16のXVIIIB−XVIIIB断面図
【図19】撮像素子ユニットの概略斜視図(第3実施形態)
【図20】撮像素子ユニットの概略断面図(第3実施形態)
【図21】タイムチャート(第3実施形態)
【図22】フローチャート(第3実施形態)
【図23】フローチャート(第3実施形態)
【図24】撮像素子ユニットの概略断面図(他の実施形態)
【発明を実施するための形態】
【0009】
〔第1実施形態〕
<デジタルカメラの構成>
図1を用いて第1実施形態に係るデジタルカメラ1について説明する。
デジタルカメラ1は、レンズ交換式のデジタルカメラであり、交換レンズユニット2と、カメラ本体3と、を有している。
(1)交換レンズユニット
図1に示すように、交換レンズユニット2は、レンズマウント95と、光学系Oと、絞り調節ユニット73と、レンズコントローラ40と、ズームリングユニット83と、フォーカスリングユニット88と、フォーカス調節ユニット72と、を有している。
レンズマウント95は、カメラ本体3のボディーマウント4に装着可能に設けられており、レンズ側接点91を有している。光学系Oは、例えばズームレンズ系であり、フォーカスレンズLを有している。
【0010】
絞り調節ユニット73は、絞りユニット62と、絞り駆動制御部42と、を有している。絞りユニット62は、絞り羽根を有する絞り機構(図示せず)と、絞り機構を駆動する絞り駆動モータ(図示せず)と、を含んでおり、光学系Oの絞り値を変更可能に設けられている。絞り駆動制御部42はレンズコントローラ40から送られる指令に基づいて絞りユニット62を制御する。
レンズコントローラ40は、CPU(図示せず)、ROM40bおよびRAM40aを有しており、ROM40bに格納されているプログラムがCPUに読み込まれることで、様々
な機能を実現し得る。例えば、レンズコントローラ40は、位置検出センサ67の検出信号によりフォーカスレンズLの絶対位置を把握することができる。ROM40bは、不揮発性メモリであり、電力供給が停止している状態でも記憶している情報を保持できる。ROM40bには、例えば交換レンズユニット2に関する情報(レンズ情報)が格納されている。レンズコントローラ40はレンズ側接点91を介してボディーコントローラ10と情報の送受信が可能である。
【0011】
ズームリングユニット83は、ズームリング84と、リニアポジションセンサ87と、を有している。リニアポジションセンサ87は、ユーザーによるズームリング84の回転位置および回転方向を検出し、検出結果を所定の周期でレンズコントローラ40に送信する。レンズコントローラ40は、リニアポジションセンサ87の検出結果に基づいて光学系Oの焦点距離を算出し、算出した焦点距離情報をボディーコントローラ10に送信する。このように、ボディーコントローラ10は光学系Oの焦点距離を把握することができる。
フォーカスリングユニット88は、フォーカスリング89と、フォーカスリング角度検出部90と、を有している。フォーカスリング角度検出部90は、フォーカスリング89の回転角度および回転方向を検出し、検出結果をレンズコントローラ40に送信する。マニュアルフォーカスモードでは、レンズコントローラ40はフォーカスリング角度検出部90の検出結果をフォーカス駆動制御部41に送信し、フォーカス駆動制御部41はこの検出結果に基づいてフォーカスモータ64(後述)を制御する。
【0012】
フォーカス調節ユニット72は、フォーカスリング89の操作に応じて、あるいは、デフォーカス量に応じて、フォーカスレンズLを駆動する。フォーカス調節ユニット72は、フォーカスモータ64と、位置検出センサ67と、フォーカス駆動制御部41と、を有している。フォーカスモータ64はフォーカスレンズLを光軸AZに沿った方向に駆動する。以下、フォーカスレンズLが駆動される方向をD1方向(被写体側)およびD2方向(撮像素子ユニット100側)とする。位置検出センサ67はフォーカスレンズLの位置を検出する。フォーカス駆動制御部41はレンズコントローラ40からの指令に基づいてフォーカスモータ64を制御する。
(2)カメラ本体
図1および図2に示すように、カメラ本体3は、ボディーマウント4と、画像取得部35と、表示ユニット36と、ファインダユニット38と、操作ユニット39と、ボディーコントローラ10と、画像記録部18と、画像記録制御部19と、表示制御部21と、を備えている。
【0013】
図1に示すように、ボディーマウント4は、交換レンズユニット2のレンズマウント95が装着される部分であり、レンズ側接点91と電気的に接続可能なボディー側接点92を有している。ボディーマウント4およびレンズマウント95を介して、カメラ本体3は交換レンズユニット2とデータの送受信が可能である。例えば、ボディーコントローラ10は、ボディーマウント4およびレンズマウント95を介して露光同期信号などの制御信号をレンズコントローラ40に送信する。また、レンズコントローラ40は、ボディーマウント4およびレンズマウント95を介して交換レンズユニット2に関するレンズ情報をボディーコントローラ10に送信する。
図1に示すように、操作ユニット39は、例えば、電源スイッチ25と、レリーズボタン30と、撮影モード切り換えダイヤル26と、を有している。電源スイッチ25はデジタルカメラ1あるいはカメラ本体3の電源の入切を行うために設けられている。レリーズボタン30は、半押し操作と全押し操作が可能な2段式のスイッチであり、撮影の際にユーザーによって操作される。ボディーコントローラ10はレリーズボタン30の半押しおよび全押し操作を検出することができる。ユーザーがレリーズボタン30を半押し操作すると、例えば、測光処理、測距処理および焦点検出処理を開始する。ユーザーがレリーズボタン30を全押し操作すると、画像取得部35で被写体の画像データが取得される。
【0014】
撮影モード切り換えダイヤル26は、いわゆるライブビューモードで撮影するか否かを切り換えるために設けられている。撮影モード切り換えダイヤル26を操作することで、ファインダ接眼窓9をのぞいて撮影するのか、あるいは、液晶モニタ20を見ながら撮影するのか、を選択することができる。
図1および図2に示すように、画像取得部35は、撮像素子ユニット100と、シャッターユニット33と、シャッター制御部31と、第1画像処理部11aと、第2画像処理部11bと、第1タイミングジェネレータ12aと、第2タイミングジェネレータ12bと、を有している。
図2に示すように、撮像素子ユニット100は、第1撮像素子110と、第2撮像素子120と、を有している。第1撮像素子110および第2撮像素子120は、例えばCMOSイメージセンサであり、光学系Oにより形成される光学像を電気信号に変換する。なお、第1撮像素子110および第2撮像素子120はCCDイメージセンサでもよい。撮像素子ユニット100の詳細については後述する。
【0015】
図1に示すように、シャッターユニット33は撮像素子ユニット100の露光状態を調節する。シャッター制御部31はボディーコントローラ10からの指令に基づいてシャッターユニット33を制御する。シャッターユニット33およびシャッター制御部31により露光時間が調節される。
図2に示すように、第1画像処理部11aは第1撮像素子110から出力される電気信号に所定の画像処理を施す。第2画像処理部11bは第2撮像素子120から出力される電気信号に所定の画像処理を施す。以下、第1画像処理部11aから出力される1フレームの画像データを第1画像データ、第2画像処理部11bから出力される1フレームの画像データを第2画像データとする。第1画像処理部11aおよび第2画像処理部11bの詳細については後述する。第1タイミングジェネレータ12aは第1撮像素子110を駆動するためのタイミング信号を生成する。第2タイミングジェネレータ12bは第2撮像素子120を駆動するためのタイミング信号を生成する。本実施形態では、第1撮像素子110および第2撮像素子120のフレームレートは30〔fps〕とする。また、第1撮像素子110および第2撮像素子120は、同じタイミングで電荷を出力するように同期している。
【0016】
なお、デジタルカメラ1では、オートフォーカス方式として、撮像素子ユニット100で生成された画像データを利用するコントラスト検出方式(コントラストAFともいう)が採用されている。コントラスト検出方式を用いることにより、高精度なフォーカス調節を実現することができる。
ボディーコントローラ10は、カメラ本体3の中枢を司る制御装置であり、操作ユニット39に入力された操作情報に応じて、デジタルカメラ1の各部を制御する。具体的には図2に示すように、ボディーコントローラ10にはCPU10c、ROM10b、RAM10aが搭載されており、ROM10bに格納されたプログラムがCPUに読み込まれることで、ボディーコントローラ10は様々な機能を実現することができる。例えば、ボディーコントローラ10は、オートフォーカスのための演算処理機能を有している。
【0017】
具体的には図2に示すように、ボディーコントローラ10は、第1評価値算出部51a、第2評価値算出部51b、第1評価値判定部52a、第2評価値判定部52b、状態判定部53、合焦演算部54および合焦予測部55を有している。これら各部は、プログラムにより実現される機能ブロックを示している。
第1評価値算出部51aは第1撮像素子110で得られる第1画像データに基づいて第1評価値EV1を算出する。第1評価値EV1はコントラストAFで用いられるAF評価値である。ここで、AF評価値とは、画像データの空間周波数成分のうち高周波成分を積分して得られた数値である。第1画像データは第1バッファメモリ16aに記憶されるデータが用いられる。第1評価値算出部51aは第1撮像素子110のフレームレートと同じ周期で第1評価値EV1を算出する。算出された第1評価値EV1は、同じタイミングで検出されたフォーカスレンズLの位置情報と関連付けられて、ボディーコントローラ10のRAM10aに一時的に記憶される。
【0018】
第2評価値算出部51bは第2撮像素子120で得られる第2画像データに基づいて第2評価値EV2を算出する。第1評価値EV1と同様に、第2評価値EV2はコントラストAFで用いられるAF評価値である。第2画像データは第2バッファメモリ16bに記憶されるデータが用いられる。第2評価値算出部51bは第2撮像素子120のフレームレートと同じ周期で第2評価値EV2を算出する。算出された第2評価値EV2は、同じタイミングで検出されたフォーカスレンズLの位置情報と関連付けられて、ボディーコントローラ10のRAM10aに一時的に記憶される。
第1評価値判定部52aは所定の周期で算出される第1評価値EV1の変動を監視する。具体的には、第1評価値判定部52aは、第1評価値EV1の増減を所定の周期で判定し、第1評価値EV1の増減を示す第1判定結果を所定の周期で生成する。例えば、第1評価値判定部52aは最新の第1評価値EV1と1つ前の第1評価値EV1とを比較し、最新の第1評価値EV1が1つ前の第1評価値EV1よりも増加しているか減少しているかを判定する。この第1判定結果はRAM10aに一時的に記憶される。
【0019】
第2評価値判定部52bは所定の周期で算出される第2評価値EV2の変動を監視する。具体的には、第2評価値判定部52bは、第2評価値EV2の増減を所定の周期で判定し、第2評価値EV2の増減を示す第2判定結果を所定の周期で生成する。例えば、第2評価値判定部52bは最新の第2評価値EV2と1つ前の第2評価値EV2とを比較し、最新の第2評価値EV2が1つ前の第2評価値EV2よりも増加しているか減少しているかを判定する。この第2判定結果はRAM10aに一時的に記憶される。
状態判定部53は、第1判定結果および第2判定結果に基づいて、光学系Oの光束の結像位置、第1光電変換部113および第2光電変換部123の位置関係を判定する。より詳細には、状態判定部53は、第1判定結果および第2判定結果の組み合わせに基づいて、結像位置、第1光電変換部113および第2光電変換部123の位置関係を判定する。つまり、状態判定部53は、合焦させるためにフォーカスレンズLをどちらに駆動すればよいかを判定することができる。状態判定部53での判定方法については後述する。
【0020】
合焦演算部54は第1評価値EV1に基づいて合焦状態に対応するフォーカスレンズLの位置を算出する。具体的には、合焦演算部54は、第1判定結果および第2判定結果に基づいて第1評価値EV1および第2評価値EV2のピークを判定する。さらに、合焦演算部54は、ピークに対応する第1評価値EV1を選択し、選択された第1評価値EV1と関連付けられている位置情報を選択する。選択された位置情報が図7(B)に示す合焦状態でのフォーカスレンズLの位置を表している。
合焦予測部55は、第2評価値EV2のピークが第1評価値EV1のピークよりも先に検出された場合に、ピークに対応する第2評価値EV2を選択し、選択された第2評価値EV2を基準に合焦状態に対応するフォーカスレンズLの位置を予測する。合焦予測部55の予測演算については後述する。
【0021】
以上のように、ボディーコントローラ10は焦点検出に関する様々な機能を有している。第1評価値算出部51a、第2評価値算出部51b、第1評価値判定部52a、第2評価値判定部52b、状態判定部53、合焦演算部54および合焦予測部55は、第1撮像素子110で得られる第1画像データおよび第2撮像素子120で得られる第2画像データに基づいて焦点検出を行う焦点検出部を構成している。
図1および図2に示すように、表示ユニット36は、液晶モニタ20と、表示制御部21と、を有している。液晶モニタ20は、表示制御部21からの指令に基づいて、第1画像記録部18aあるいは第1バッファメモリ16aに記録された画像信号を可視画像として表示する。つまり、液晶モニタ20には、第1撮像素子110で生成された電気信号に基づく画像が表示される。液晶モニタ20での表示形態としては、画像信号のみを可視画像として表示する表示形態や、画像信号と撮影時の情報とを可視画像として表示する表示形態が考えられる。
【0022】
図1に示すように、ファインダユニット38は、第1撮像素子110により取得された画像を表示する液晶ファインダ8と、背面に設けられたファインダ接眼窓9と、を有している。ユーザーは、ファインダ接眼窓9を覗くことで液晶ファインダ8に表示された画像を視認することができる。
図2に示すように、画像記録部18は、画像記録制御部19の命令に基づいて、第1画像データと記録すべき所定の情報とを関連付けて静止画ファイルまたは動画ファイルを作成する。そして、画像記録部18は、画像記録制御部19の命令に基づいて、静止画ファイルまたは動画ファイルを記録する。画像記録部18は、例えば内部メモリやメモリカードなどの記録媒体である。なお、画像信号とともに記録すべき所定の情報には、例えば、画像を撮影した際の日時、焦点距離情報、シャッタースピード情報、絞り値情報および撮影モード情報が含まれる。
【0023】
(3)撮像素子ユニット
ここで、撮像素子ユニット100の構造について詳細に説明する。図3に示すように、撮像素子ユニット100は、第1撮像素子110と、第2撮像素子120と、第1パッケージ111と、第2パッケージ121と、を有している。
図4(A)および図5に示すように、第1撮像素子110は、裏面照射型撮像素子であり、光学系Oから出射した光が透過するように配置されている。具体的には、第1撮像素子110は、第1光電変換部113と、補強ガラス112と、第1回路部114と、第1カラーフィルタ115と、第1マイクロレンズ116と、を有している。
第1光電変換部113は、半導体材料で構成されており、入射する光に対して光電変換を行う。第1光電変換部113はマトリックス状に配置された複数の第1光電変換素子117を有している。第1カラーフィルタ115が第1光電変換部113の前面側(入射側)に設けられているので、各第1光電変換素子117には赤色(R)、緑色(G)、青色(B)のうち1色の光しか入射しない。第1光電変換部113は光を受ける第1撮像面113aを有している。
【0024】
第1回路部114は、第1光電変換素子117で生成された電気信号を第1アナログ信号処理部13aに出力するための回路であり、複数の第1光電変換素子117の境界線117aに沿って格子状に配置されている。第1撮像素子110が裏面照射型であるため、第1回路部114は第1光電変換部113の裏側(出射側)に配置されている。つまり、第1回路部114は第1光電変換素子117と第2撮像素子120との間に配置されている。
第1回路部114は、第1電気回路114aと、第1マスク114bと、を有している。第1電気回路114aは、トランジスタおよび信号線を含んでおり、複数の第1光電変換素子117の境界線117aに対応する位置に配置されている。第1マスク114bは、第1電気回路114aを覆っており、第1電気回路114aと同様に境界線127aに対応する位置に配置されている。
【0025】
第1カラーフィルタ115は、ベイヤー配列の原色フィルタであり、第1光電変換部113の入射側に配置されている。第1カラーフィルタ115は、複数の赤色フィルタRと、複数の緑色フィルタGと、複数の青色フィルタBと、を有している。赤色フィルタRは、赤色以外の色の可視光波長域よりも赤色の可視光波長域の方が透過率が高いフィルタである。緑色フィルタGは、緑色以外の色の可視光波長域よりも緑色の可視光波長域の方が透過率が高いフィルタである。青色フィルタBは、青色以外の色の可視光波長域よりも青色の可視光波長域の方が透過率が高いフィルタである。
赤色フィルタR、緑色フィルタGおよび青色フィルタBはマトリックス状に配置されている。具体的には図6(A)に示すように、2行2列に配置された赤色フィルタR、2つ緑色フィルタGおよび青色フィルタBを1セットとした場合、各セットがマトリックス状に配置されている。1セットのフィルタにおいて、2つの緑色フィルタGは対角に配置されている。本実施形態では、1つのフィルタが1つの第1光電変換素子117に対応する位置に配置されている。なお、第1カラーフィルタ115は補色フィルタでもよい。
【0026】
第1マイクロレンズ116は、混色を防止あるいは抑制するためのレンズであり、第1カラーフィルタ115の入射側に配置されている。第1カラーフィルタ115が第1マイクロレンズ116と第1光電変換部113との間に配置されている、と言うこともできる。第1マイクロレンズ116は各赤色フィルタR、各緑色フィルタGおよび各青色フィルタBに対応する複数のレンズ部116aを有している。各レンズ部116aは対応するフィルタに光が正しく入射するように集光する。第1マイクロレンズ116により第1光電変換部113を効率よく照射することができる。
補強ガラス112は第1撮像素子110の強度を確保するために設けられている。具体的には、補強ガラス112は第1マイクロレンズ116の入射側に配置されている。補強ガラス112には第1マイクロレンズ116が樹脂118により接着固定されている。
【0027】
以上のように、第1撮像素子110に入射する光は、補強ガラス112、樹脂118、第1マイクロレンズ116、第1カラーフィルタ115および第2光電変換部123を順に透過し、第1回路部114の間を通る。このように、この第1撮像素子110では、第1回路部114の第1マスク114b以外にマスクを設けていないので、第1光電変換部113に入射した光の一部が第1光電変換部113を透過して第1撮像素子110から出射するようになっている。
図4(B)および図5に示すように、第2撮像素子120は、表面照射型撮像素子であって、第1撮像素子110から出射した光が入射するように配置されている。具体的には図4(B)および図5に示すように、第2撮像素子120は、第1撮像素子110の背面側に配置されており、第2光電変換部123と、Si基板122と、第2回路部124と、第2マイクロレンズ126と、を有している。第2撮像素子120は第1撮像素子110とは異なり、カラーフィルタを有していない。
【0028】
第2光電変換部123は、半導体材料で構成されており、入射する光に対して光電変換を行う。具体的には、第2光電変換部123はマトリックス状に配置された複数の第2光電変換素子127を有している。図4(A)および図4(B)に示すように、第2撮像素子120の第2画素ピッチR2は、第1撮像素子110の第1画素ピッチR1よりも大きく設定されている。図6(A)および図6(B)に示すように、第2光電変換素子127は第1光電変換素子117よりも大きく、1つの第2光電変換素子127の大きさが4つの第1光電変換素子117の大きさに相当する。カラーフィルタが第2光電変換部123の入射側に設けられていないので、各第2光電変換素子127にはR、G、Bの3色の光が入射し得る。第2光電変換部123は光を受ける第2撮像面123aを有している。
図6(B)に示すように、第2回路部124は、第2光電変換素子127で生成された電気信号を第2アナログ信号処理部13bに出力するための回路であり、複数の第2光電変換素子127の境界線127aに沿って格子状に配置されている。第2撮像素子120が表面照射型であるため、第2回路部124は第2光電変換部123の表側(入射側)に配置されている。つまり、第2回路部124は第2光電変換素子127と第1撮像素子110との間に配置されている。
【0029】
第2回路部124は、第2電気回路124aと、第2マスク124bと、を有している。第2電気回路124aは、トランジスタおよび信号線を含んでおり、複数の第2光電変換素子127の境界線127aに対応する位置に配置されている。第2マスク124bは、第2電気回路124aを覆っており、第2電気回路124aと同様に境界線127aに対応する位置に配置されている。
第2マイクロレンズ126は各赤色フィルタR、各緑色フィルタGおよび各青色フィルタBに対応する複数のレンズ部126aを有している。各レンズ部126aは対応するフィルタに光が正しく入射するように集光する。第2マイクロレンズ126により第2光電変換部123を効率よく照射することができる。
Si基板122は、第2撮像素子120の強度を確保するために設けられており、第2マイクロレンズ126の入射側に配置されている。Si基板122には第2マイクロレンズ126が固定されている。
【0030】
以上のように、第2撮像素子120に入射する光は、第2回路部124の間を通って、第2マイクロレンズ126、第2カラーフィルタ125および第2光電変換部123を順に透過する。
第1パッケージ111は、第1撮像素子110と第2撮像素子120との間に配置されている。第1パッケージ111には第1撮像素子110が固定されている。第1撮像素子110は第1パッケージ111の前面側に配置されている。第1パッケージ111は開口111bおよび3つのネジ孔111aを有している。開口111bは第1パッケージ111の中央付近に配置されている。第1撮像素子110から出射する光は開口111bを通って第2撮像素子120に入射する。第1パッケージ111はネジ孔111aを使ってネジ(図示せず)に固定されている。なお、第1パッケージ111は接着により固定されていてもよい。
【0031】
第2パッケージ121は、第2撮像素子120を支持するための部材であり、第1パッケージ111に固定されている。第2パッケージ121は第1パッケージ111の背面側に配置されており、第2パッケージ121には第2撮像素子120が固定されている。第1撮像素子110と第2撮像素子120との間には、所定の隙間が確保されている。
(4)第1画像処理部および第2画像処理部
撮像素子ユニット100が第1撮像素子110および第2撮像素子120を有しているので、前述のように、デジタルカメラ1は2つの画像処理部(第1画像処理部11aおよび第2画像処理部11b)を有している。以下、第1画像処理部11aおよび第2画像処理部11bの詳細について説明する。
図2に示すように、第1撮像素子110から出力された画像信号は、第1アナログ信号処理部13aから、第1A/D変換部14a、第1デジタル信号処理部15a、第1バッファメモリ16aおよび第1画像圧縮部17aへと、順次送られて処理される。
【0032】
第1アナログ信号処理部13aは、第1撮像素子110から出力される画像信号にガンマ処理等のアナログ信号処理を施す。第1A/D変換部14aは、第1アナログ信号処理部13aから出力されたアナログ信号をデジタル信号に変換する。第1デジタル信号処理部15aは、第1A/D変換部14aによりデジタル信号に変換された画像信号に対してノイズ除去や輪郭強調等のデジタル信号処理を施す。第1バッファメモリ16aは、RAMであり、画像信号を一旦記憶する。第1バッファメモリ16aに記憶された画像信号は、画像圧縮部17から画像記録部18へと、順次送られて処理される。第1バッファメモリ16aに記憶された画像信号は、画像記録制御部19の命令により読み出されて、画像圧縮部17に送信される。画像圧縮部17に送信された画像信号のデータは、画像記録制御部19の命令に従って画像信号に圧縮処理される。画像信号は、この圧縮処理により、元のデータより小さなデータサイズになる。画像信号の圧縮方法として、例えば1フレームの画像信号毎に圧縮するJPEG(Joint Photographic Experts Group)方式が用いられる。その後、圧縮された画像信号は、画像記録制御部19により画像記録部18に記録される。また、ユーザーによってRAWデータによる記録が選択された場合は、画像圧縮部17をスルーして画像記録部18にRAWデータを記録することも可能である。
【0033】
一方、第2撮像素子120から出力された画像信号は、第2アナログ信号処理部13bから、第2A/D変換部14b、第2デジタル信号処理部15bおよび第2バッファメモリ16bへと、順次送られて処理される。
第2アナログ信号処理部13bは、第2撮像素子120から出力される画像信号にガンマ処理等のアナログ信号処理を施す。第2A/D変換部14bは、第2アナログ信号処理部13bから出力されたアナログ信号をデジタル信号に変換する。第2デジタル信号処理部15bは、第2A/D変換部14bによりデジタル信号に変換された画像信号に対してノイズ除去や輪郭強調等のデジタル信号処理を施す。第2バッファメモリ16bは、RAMであり、画像信号を一旦記憶する。第2バッファメモリ16bに記憶された画像信号はボディーコントローラ10により適宜、読み出し可能となっている。
【0034】
<デフォーカス判定>
(1)参考例
2枚の撮像素子を用いたデフォーカス判定方法(焦点検出方法)について説明する前に、1枚の撮像素子を用いたコントラストAFについて簡単に説明しておく。
コントラストAFでは、AF評価値に基づいてピント位置を判断する。AF評価値とは、画像データの空間周波数成分のうち高周波成分を積分して得られた数値である。AF評価値が大きいほどピントが合っている(画像の鮮鋭度が高い)ことを意味している。
しかし、AF評価値自体がピント位置を示しているわけではなく、AF評価値はピント位置を判断するための相対的な指標にしかすぎない。
そこで、コントラストAFでは、フォーカスレンズを動かしてAF評価値が最大となるフォーカスレンズの位置を検出する。AF評価値が最大となるフォーカスレンズの位置を検出するために、いわゆる山登り方式が採用されている。この方式では、フォーカスレンズを一方向に動かしながら所定の周期(例えば、フレームレート)で画像データを取得し、取得された画像データからAF評価値を算出する。AF評価値のピーク位置を確認するために、AF評価値が最大となる位置からさらにフォーカスレンズを移動させ、AF評価値が減少したことを確認した上で、AF評価値が最大となるフォーカスレンズの位置を特定する。
【0035】
しかし、撮影条件によってはAF評価値の変化量が小さい場合もあるので、最大のAF評価値を決定するために、AF評価値の監視はAF評価値が最大となってから3〜4フレーム程度は継続する必要がある。また、各種条件に基づいてフォーカスレンズを最初に移動させる方向を決定するが、最初に決定された方向がピントの合う方向と一致しない場合もありえる。間違った方向にフォーカスレンズを駆動した場合、フォーカスレンズを駆動する方向が正しいか否かを判断するのに、やはり3〜4フレーム程度はAF評価値を監視する必要がある。以上のように、参考例のコントラストAFでは、AF評価値のピークを検出するまでに時間がかかってしまう。
(2)本実施形態
そこで、このデジタルカメラ1では、2枚の撮像素子(第1撮像素子110および第2撮像素子120)を用いてデフォーカス判定の時間を短縮している。以下、デフォーカス判定処理について説明する。
【0036】
図7(A)〜図7(D)は、第1撮像素子110の第1撮像面113a、第2撮像素子120の第2撮像面123a、および光学系Oにより形成される光束45をそれぞれ示している。また、下部に示す円は第1撮像面113aおよび第2撮像面123aにおけるボケ像円を示している。ボケ像円が大きいほど、像がぼけていることを示しており、コントラストAFの際に算出されるAF評価値(コントラスト値ともいう)は小さくなる。
ここで、画像記録部18に記録する画像は、第2撮像素子120ではなく、第1撮像素子110により生成された画像とする。したがって、ピントが合っている合焦状態とは、光束45の結像位置FPが第1撮像面113a上に配置されている状態を意味している。また、いわゆる前ピン状態とは、結像位置FPが第1撮像面113aよりも前側(入射側)に配置されている状態を意味しており、いわゆる後ピン状態とは、結像位置FPが第1撮像面113aよりも後側(出射側)に配置されている状態を意味している。
【0037】
ここでは、第1撮像素子110で生成される電気信号に基づく画像データを第1画像データとし、第2撮像素子120で生成される電気信号に基づく画像データを第2画像データとする。さらに、第1画像データから算出されるAF評価値を第1評価値EV1とし、第2画像データから算出されるAF評価値を第2評価値EV2とする。
図7(A)および図7(D)は、後ピン状態を示している。図7(A)に示すように、光束45の結像位置FPが第1撮像面113aと第2撮像面123aとの間にある状態を、以下、第1後ピン状態と称す。図7(D)に示すように、結像位置FPが第2撮像面123aより後側に配置されている状態を、以下、第2後ピン状態と称す。図7(B)は合焦状態を示しており、図7(C)は前ピン状態を示している。
図7(A)〜図7(D)に示すように、結像位置FP、第1撮像面113aおよび第2撮像面123aの位置関係によって、フォーカスレンズLを移動させた場合の第1画像データおよび第2画像データに基づく画像のボケ像円の変化の仕方が違ってくる。前述のように、ボケ像円が小さくなると、AF評価値は大きくなり、ボケ像円が大きくなると、AF評価値は小さくなる。したがって、第1評価値EV1および第2評価値EV2がどのように変化するのかを監視することで、結像位置FP、第1撮像面113aおよび第2撮像面123aの位置関係を把握することができる。
【0038】
具体的には図8(A)および図10(A)に示すように、フォーカスレンズLを一方向に駆動している状態で第1評価値EV1および第2評価値EV2がともに増加する場合、結像位置FPが前ピン状態または第2後ピン状態であることが分かり、さらに、結像位置FPが第1撮像面113aおよび第2撮像面123aに近づいていることがわかる。したがって、第1評価値EV1および第2評価値EV2がともに増加する場合、前ピン状態または第2後ピン状態でフォーカスレンズLを正しい方向に駆動していると判断できる。
また、図8(A)に示すように、フォーカスレンズLの駆動を継続し、第1評価値EV1が第2評価値EV2よりも先に最大値をとる(ピークを迎える)場合、結像位置FPが前ピン状態から第1後ピン状態に変化したと判断することができる。より詳細には、第1評価値EV1および第2評価値EV2がともに増加し、その後、第1評価値EV1のみが減少に転じた場合、結像位置FPが前ピン状態から第1後ピン状態に変化したと判断できる。
【0039】
一方、図10(A)に示すように、フォーカスレンズLの駆動を継続し、第2評価値EV2が第1評価値EV1よりも先に最大値をとる場合、結像位置FPが第2後ピン状態から第1後ピン状態に変化したと判断することができる。より詳細には、第1評価値EV1および第2評価値EV2がともに増加し、その後、第2評価値EV2のみが減少に転じた場合、結像位置FPが第2後ピン状態から第1後ピン状態に変化したと判断できる。
図8(B)および図10(B)に示すように、フォーカスレンズLを一方向に駆動している状態で第1評価値EV1および第2評価値EV2がともに減少する場合、結像位置FPが前ピン状態または第2後ピン状態であることが分かり、さらに、結像位置FPが第1撮像面113aおよび第2撮像面123aから遠ざかっていることがわかる。したがって、第1評価値EV1および第2評価値EV2に基づいて、前ピン状態または第2後ピン状態でフォーカスレンズLを間違った方向に駆動していると判断できる。
【0040】
また、図8(B)に示すように、第1評価値EV1および第2評価値EV2が減少した後に、フォーカスレンズLを逆駆動すると、第1評価値EV1および第2評価値EV2はともに増加する。その後、第1評価値EV1が第2評価値EV2よりも先に最大値をとる場合、図8(A)に示す場合と同様に、結像位置FPが前ピン状態から第1後ピン状態に変化したと判断することができる。
一方、図10(B)に示すように、第1評価値EV1および第2評価値EV2が減少した後に、フォーカスレンズLを逆駆動すると、第1評価値EV1および第2評価値EV2はともに増加する。その後、第2評価値EV2が第1評価値EV1よりも先に最大値をとる場合、図10(A)に示す場合と同様に、結像位置FPが第2後ピン状態から第1後ピン状態に変化したと判断することができる。
【0041】
さらに、図9(A)に示すように、フォーカスレンズLを一方向に駆動している状態で第1評価値EV1が増加し第2評価値EV2が減少する場合、結像位置FPが第1後ピン状態であることが分かり、さらに、結像位置FPが第1撮像面113aに近づき、かつ、第2撮像面123aから遠ざかっていることがわかる。したがって、第1評価値EV1および第2評価値EV2に基づいて、第1後ピン状態でフォーカスレンズLを正しい方向に駆動していると判断できる。
一方、図9(B)に示すように、フォーカスレンズLを一方向に駆動している状態で第1評価値EV1が減少し第2評価値EV2が増加する場合、結像位置FPが第1後ピン状態であることが分かり、さらに、結像位置FPが第1撮像面113aから遠ざかり、かつ、第2撮像面123aに近づいていることがわかる。したがって、第1評価値EV1および第2評価値EV2に基づいて、第1後ピン状態でフォーカスレンズLを間違った方向に駆動していると判断できる。
【0042】
以上に説明したように、第1評価値EV1および第2評価値EV2に基づいて、結像位置FP、第1撮像面113aおよび第2撮像面123aの位置関係を判定することができる。
<オートフォーカス>
上記のデフォーカス判定方法を利用したオートフォーカスについて説明する。ここでは、静止画を撮影する際のシングルAFを例にオートフォーカスについて説明する。
静止画撮影モードでは、液晶モニタ20または液晶ファインダ8に被写体の実時間画像が表示される。このとき、撮像素子ユニット100の第1撮像素子110により所定のフレームレート(例えば30〔fps〕)で第1画像データが生成される。この状態で、例えばレリーズボタン30が半押しされると、撮影準備動作が開始される。具体的には図11に示すように、フォーカスレンズLが停止している状態で、第1画像データに基づいて第1評価値算出部51aにより第1評価値EV1が算出され、第2撮像素子120で生成される第2画像データに基づいて第2評価値算出部51bにより第2評価値EV2が算出される(S1)。図8(A)〜図10(B)に示すように、本実施形態では、第1評価値EV1および第2評価値EV2を算出する時間が約2フレーム分に相当している。第1撮像素子110への入射光量が第2撮像素子120への入射光量よりも多いので、第1評価値EV1が第2評価値EV2よりも常に大きくなる。
【0043】
算出された第1評価値EV1および第2評価値EV2はボディーコントローラ10のRAM10a内の所定のアドレスに一時的に格納される。このとき、第1画像データの取得タイミングと同じタイミングで位置検出センサ67により検出されたフォーカスレンズLの位置情報が、第1評価値EV1と関連付けられてRAM10a内の所定のアドレスに記憶される。また、第2画像データの取得タイミングと同じタイミングで位置検出センサ67により検出されたフォーカスレンズLの位置情報が、第2評価値EV2と関連付けられてRAM10a内の所定のアドレスに記憶される。
本実施形態では、フォーカスレンズLの位置は位置検出センサ67により所定の周期で検出され、検出結果はレンズコントローラ40を介してボディーコントローラ10に送信される。位置検出センサ67の検出周期は、第1撮像素子110および第2撮像素子120のフレームレートに比べて大幅に短いので、第1画像データおよび第2画像データの取得タイミング(つまり、第1タイミングジェネレータ12aおよび第2タイミングジェネレータ12bで生成されたタイミング信号がボディーコントローラ10に入力されるタイミング)と概ね同じタイミングで検出された位置情報を、ボディーコントローラ10は選択することができる。
【0044】
次に、フォーカスレンズLが駆動される(S2)。駆動方向はフォーカスレンズLの現在位置や光学系Oの焦点距離などの各種情報に基づいてボディーコントローラ10により決定される。本実施形態では、ステップS2での駆動方向をD1方向とする。また、駆動量は例えばフォーカスモータ64の最小駆動量あるいは1フレームでの駆動量とする。フォーカスレンズLをD1方向に駆動した後、第1画像データおよび第2画像データに基づいて、第1評価値算出部51aおよび第2評価値算出部51bにより、それぞれ第1評価値EV1および第2評価値EV2が算出される(S3)。このときの第1画像データおよび第2画像データは、ステップS1で用いられた第1画像データおよび第2画像データと取得されるタイミングが異なっている。図8(A)〜図10(B)では、ステップS1で用いられる第1画像データおよび第2画像データの次のフレームの第1画像データおよび第2画像データとなっている。
【0045】
ステップS3で算出された第1評価値EV1および第2評価値EV2は、ボディーコントローラ10のRAM10a内の所定のアドレスに一時的に格納される。このとき、第1画像データの取得タイミングと同じタイミングで位置検出センサ67により検出されたフォーカスレンズLの位置情報が、第1評価値EV1と関連付けられてRAM10a内の所定のアドレスに記憶される。また、第2画像データの取得タイミングと同じタイミングで位置検出センサ67により検出されたフォーカスレンズLの位置情報が、第2評価値EV2と関連付けられてRAM10a内の所定のアドレスに記憶される。
次に、第1評価値判定部52aにより第1評価値EV1の増減が判定され、かつ、第2評価値判定部52bにより第2評価値EV2の増減が判定され、さらに、第1判定結果および第2判定結果に基づいて状態判定部53によりフォーカスレンズLの駆動方向が決定される(S4〜S6)。具体的には、ボディーコントローラ10のRAM10aに記憶されている2つの第1評価値EV1が第1評価値判定部52aにより比較され、第1評価値判定部52aにより、第1評価値EV1の増減を示す第1判定結果が生成される。第1判定結果はRAM10aに記憶される。また、ボディーコントローラ10のRAM10aに記憶されている2つの第2評価値EV2が第2評価値判定部52bにより比較され、第2評価値判定部52bにより、第2評価値EV2の増減を示す第2判定結果が生成される。第2判定結果はRAM10aに記憶される。
【0046】
第1評価値EV1および第2評価値EV2がともに増加している場合は、フォーカスレンズLの駆動方向が正しいので、フォーカスレンズLのD1方向への駆動が開始される(S4、S8A)。一方、第1評価値EV1および第2評価値EV2がともに減少している場合は、フォーカスレンズLの駆動方向が間違っているので、フォーカスレンズLのD2方向への駆動が開始される(S5、S8B)。
また、第1評価値EV1が増加し第2評価値EV2が減少している場合は、フォーカスレンズLの駆動方向が正しいので、フォーカスレンズLのD1方向への駆動が開始される(S6、S20A)。一方、第1評価値EV1が減少し第2評価値EV2が増加している場合は、フォーカスレンズLの駆動方向が間違っているので、フォーカスレンズLのD2方向への駆動が開始される(S6、S20B)。
【0047】
図12に示すフローについて説明すると、ステップS8AおよびS8Bの後、第1評価値算出部51aにより第1評価値EV1が算出され、第2評価値算出部51bにより第2評価値EV2が算出される(S9)。第1評価値EV1および第2評価値EV2の算出後、第1評価値判定部52aにより第1評価値EV1の増減が判定され、第2評価値判定部52bにより第2評価値EV2の増減が判定される。さらに。第1判定結果および第2判定結果に基づいて、状態判定部53により第1評価値EV1および第2評価値EV2がともに増加しているか否かが判定される(S10)。第1評価値EV1および第2評価値EV2のうちいずれか一方でも減少している場合は、処理がステップS1に戻り、駆動方向の判定が再度行われる。一方、第1評価値EV1および第2評価値EV2がともに増加している場合、フォーカスレンズLの駆動が継続される(S11)。
【0048】
フォーカスレンズLの駆動が継続されている状態で、第1評価値判定部52a、第2評価値判定部52bおよび状態判定部53により、第1評価値EV1および第2評価値EV2の増減の判定が繰り返される(S12A、S12B)。第1評価値EV1が減少し、かつ、第2評価値EV2が増大している場合、第1評価値EV1がピークを迎えているので、合焦演算部54により第1評価値EV1に基づいて合焦状態に対応するフォーカスレンズLの位置が算出される(S12A、S13A)。具体的には、合焦演算部54により、第1判定結果に基づいて第1評価値EV1のピークが判定され、RAM10aに記憶されている複数の第1評価値EV1に基づいてピークに対応する第1評価値EV1が選択される。選択された第1評価値EV1は第1最大評価値としてボディーコントローラ10のRAM10a内の所定のアドレスに記憶される。
【0049】
さらに、合焦演算部54により、一連の第1評価値EV1の変化曲線が演算により求められ、その最大値(頂点)に対応するフォーカスレンズLの位置情報が算出される。合焦演算部54により算出された位置情報はボディーコントローラ10のRAM10a内の所定のアドレスに目標位置として記憶される。この目標位置はボディーコントローラ10からレンズコントローラ40に送信され、レンズコントローラ40のRAM40aに記憶される。
合焦位置演算後、フォーカスレンズLの逆駆動が開始され(S14A)、フォーカスレンズLがフォーカスモータ64により目標位置まで駆動される。具体的には、位置検出センサ67により所定の周期で検出されるフォーカスレンズLの現在位置が、レンズコントローラ40のRAM40aに記憶されている目標位置とフォーカス駆動制御部41により順次比較される(S15A)。検出された現在位置と目標位置とが一致するとフォーカス駆動制御部41が判定すると、フォーカス駆動制御部41によりフォーカスレンズLの駆動が停止される(S16A)。この結果、第1評価値EV1が最大となる位置でフォーカスレンズLが停止し、ピントの合った画像を第1撮像素子110により取得することができる。
【0050】
一方、ステップS12Aにおいて、条件を満たしていないと判断された場合、第2評価値EV2がピークを迎えているか否かを判定するために、第1判定結果および第2判定結果に基づいて、状態判定部53により第1評価値EV1および第2評価値EV2の増減が確認される(S12B)。第1評価値EV1が増加し、かつ、第2評価値EV2が減少している場合、合焦状態に対応するフォーカスレンズLの位置が合焦予測部55により予測される(S13B)。ここで、合焦位置予測演算について説明する。
第1評価値EV1が増加し、かつ、第2評価値EV2が減少している場合、第2評価値EV2が第1評価値EV1よりも先にピークを迎えているので、図10(A)および図10(B)に示すように、さらにフォーカスレンズLの駆動を継続すると、結像位置FPが第1撮像素子110の第1撮像面113aに到達する。つまり、第2撮像面123aから第1撮像面113aまで結像位置FPを移動させるために必要なフォーカスレンズLの移動距離が分かれば、第2評価値EV2のピークに対応する位置からその移動距離だけフォーカスレンズLを駆動することで、結像位置FPを第1撮像面113a上に移動させることができる。
【0051】
これを利用すると、ステップS12Bにおいて、第1評価値EV1が増加し、かつ、第2評価値EV2が減少していると判断される場合、第2評価値EV2に基づいて合焦位置に対応するフォーカスレンズLの位置が合焦予測部55により算出される(S13B)。具体的には、合焦予測部55により、一連の第2評価値EV2の変化曲線が演算により求められ、その最大値(頂点)に対応する第2評価値EV2が算出される。算出された第2評価値EV2は第2最大評価値としてボディーコントローラ10のRAM10a内の所定のアドレスに記憶される。
さらに、合焦予測部55により、第2最大評価値と関連付けられているフォーカスレンズLの位置情報が選択される。合焦予測部55により選択された位置情報はボディーコントローラ10のRAM10a内の所定のアドレスに基準位置として記憶される。選択された基準位置、ボディーコントローラ10のROM10bに予め記憶されているK値およびレンズコントローラ40から送信される焦点距離情報に基づいて、合焦予測部55により合焦位置に対応するフォーカスレンズLの位置が目標位置として算出される。
【0052】
ここで、K値とは、フォーカスレンズLの移動量に対するバックフォーカスの変位量の割合を示している。したがって、K値を用いることで、第2撮像面123aから第1撮像面113aまで結像位置FPを移動させるために必要な距離を算出することができる。光学系Oの焦点距離に応じてK値が変化する場合、レンズコントローラ40には予め各焦点距離に対応するK値が格納されている。
このように、合焦予測部55により、結像位置FPを第1撮像面113a上に移動させるために必要なフォーカスレンズLの移動距離が算出され、フォーカスレンズLの目標位置が算出される。
合焦位置予測演算後、フォーカスレンズLの駆動が継続され(S14B)、フォーカスレンズLがフォーカスモータ64により目標位置まで駆動される。具体的には、位置検出センサ67により所定の周期で検出されるフォーカスレンズLの現在位置が、レンズコントローラ40のRAM40aに記憶されている目標位置とフォーカス駆動制御部41により順次比較される(S15B)。検出された現在位置と目標位置とが一致するとフォーカス駆動制御部41が判定すると、フォーカス駆動制御部41によりフォーカスレンズLの駆動が停止される(S16B)。この結果、第1評価値EV1が最大となる位置でフォーカスレンズLが停止し、ピントの合った画像を第1撮像素子110により取得することができる。
【0053】
また、図13に示すフローについて説明すると、ステップS20AおよびS20Bの後、第1評価値算出部51aにより第1評価値EV1が算出され、第2評価値算出部51bにより第2評価値EV2が算出される(S21)。第1評価値EV1および第2評価値EV2の算出後、第1評価値判定部52aにより第1評価値EV1の増減が判定され、第2評価値判定部52bにより第2評価値EV2の増減が判定される。さらに、第1判定結果および第2判定結果に基づいて、第1評価値EV1が増加し、かつ、第2評価値EV2が減少しているか否かが状態判定部53により判定される(S22)。第1評価値EV1が増加し、かつ、第2評価値EV2が減少している場合は、フォーカスレンズLの駆動が継続され(S23)、この条件を満たしていない場合は、処理がステップS1に戻る。
ステップS23の後、フォーカスレンズLの駆動が継続されている状態で、第1評価値EV1および第2評価値EV2がともに減少しているか否かが状態判定部53により判定される(S24)。第1評価値EV1および第2評価値EV2がともに減少している場合は、ステップS13Aと同様に、合焦演算部54により合焦位置演算が行われる(S25)。また、ステップS14A〜S16Aと同様に、フォーカスレンズLが目標位置まで駆動される(S26〜S28)。この結果、第1評価値EV1が最大となる位置でフォーカスレンズLが停止し、ピントの合った画像を第1撮像素子110により取得することができる。一方、ステップS24において、上記の条件を満たしていない場合は、フォーカスレンズLの駆動が継続され、ステップS23およびS24が繰り返される(S23、S24)。
【0054】
このように、このデジタルカメラ1では、第1撮像素子110および第2撮像素子120の2つの撮像素子でAF評価値を取得し、2つのAF評価値に基づいてコントラストAFを行っているので、焦点検出時に必要とされる時間を大幅に短縮することができる。
<コンティニュアスAF>
さらに、図14に示すタイムチャートのように、コンティニュアスAFの場合も再合焦にかかる時間を短縮することができる。コンティニュアスAFでは、合焦状態を保つために連続的にオートフォーカスが行われる。例えば、動画撮影時や、あるいは、シングルAFで合焦状態となった後(ステップS16A、S16B、S28の後)に、コンティニュアスAFが実行される。
具体的には図14および図15に示すように、第1撮像素子110および第2撮像素子120により所定のフレームレートで画像データが取得されている状態で、第1評価値算出部51aにより第1評価値EV1が算出され、第2評価値算出部51bにより第2評価値EV2が算出される(S31)。次に、第1評価値EV1および第2評価値EV2の増減がそれぞれ状態判定部53により判定される(S32、S33)。具体的には、ステップS31において算出された第1評価値EV1に基づいて、第1評価値判定部52aにより第1評価値EV1の増減を示す第1判定結果が生成される。また、ステップS31において算出された第2評価値EV2に基づいて、第2評価値判定部52bにより第2評価値EV2の増減を示す第2判定結果が生成される。
【0055】
さらに、第1判定結果に基づいて状態判定部53により第1評価値EV1が減少しているか否かが判定される(S32)。第1評価値EV1が減少していない場合、ピントがずれていないので、第1評価値EV1および第2評価値EV2の算出が繰り返される(S32、S31)。一方、第1評価値EV1が減少している場合、撮影条件が変わるなどの理由でピントがずれている(図14のJ1)。したがって、フォーカスレンズLの駆動方向を決定するために、第2判定結果に基づいて状態判定部53により第2評価値EV2が減少しているか否かが判定される(S33)。
第2評価値EV2が減少している場合、結像位置FPが前ピン状態と考えられるので、状態判定部53によりフォーカスレンズLの駆動方向がD2方向と決定される(図14のJ2)。第2評価値EV2が増加している場合、結像位置FPが第1後ピン状態と考えられるので、状態判定部53によりフォーカスレンズLの駆動方向がD1方向と決定される(図14のJ3)。ステップS33の後、合焦演算部54により合焦位置演算が行われる(S34A)。第1評価値EV1の変化量、フォーカスレンズLの駆動方向および必要駆動量の関係が予めボディーコントローラ10のROM10bに記憶されている。したがって、合焦位置演算の際、その関係を用いて、第1評価値EV1に基づいてフォーカスレンズLの目標位置(図14のJ4およびJ5)が合焦演算部54により算出される(S34A)。
【0056】
合焦位置演算後、フォーカスレンズLのD2方向への駆動が開始され(S35A)、目標位置にフォーカスレンズLが到達すると、フォーカスレンズLの駆動がフォーカス駆動制御部41により停止される(S36A、S37A)。この結果、フォーカスレンズLが合焦状態に対応する位置まで駆動することができ、ピントが再度合った状態となる。
一方、第2評価値EV2が増加している場合、結像位置FPが第1後ピン状態と考えられるので、状態判定部53によりフォーカスレンズLの駆動方向がD1方向と決定される。ステップS33の後、合焦演算部54により合焦位置演算が行われる(S34B)。合焦演算後、フォーカスレンズLのD2方向への駆動が開始され(S35B)、目標位置にフォーカスレンズLが到達すると、フォーカスレンズLの駆動が停止される(S36B、S37B)。この結果、フォーカスレンズLが合焦状態に対応する位置まで駆動することができ、ピントが再度合う(図14のJ6およびJ7)。
【0057】
ステップS37AおよびS37Bの後、ステップS31から上記の処理が繰り返される。これにより、ピントがずれても自動的にフォーカスが調整され、合焦状態が保たれる。
なお、参考例として図16(A)および(B)に1枚の撮像素子を用いる場合を示しているが、この場合、ウォブリングと呼ばれるフォーカスレンズの微小な往復運動を行い、AF評価値を比較することで、ピントがどちらにずれたのかを判断する。さらに、山登り方式によるコントラストAFを併用したり(図16(A))、あるいは、ウォブリングを継続したりすることで、再合焦させている。
しかし、図16(A)および(B)からも分かるように、この方法では、ピントがずれてから再合焦するまで、11〜12フレームを要している。この撮像素子のフレームレートが30〔fps〕であれば、約400〔msec〕が必要であることがわかり、フレームレートが60〔fps〕の場合であっても、約200〔msec〕が必要であることがわかる。
【0058】
一方、図14に示すように、前述のコンティニュアスAFであれば、ピントがずれてから再合焦するまで5フレームを要するが、フレームレートが30〔fps〕であれば、約166〔msec〕で再合焦が可能であり、フレームレートが60〔fps〕であれば、わずか83〔msec〕で再合焦が可能であることがわかる。
以上のように、2枚の撮像素子を用いてコンティニュアスAFを行うことで、コンティニュアスAFでの再合焦時間を大幅に短縮することができる。ウォブリング駆動する必要が無いので、フォーカスレンズLの移動に起因する像のちらつきが無くなる。さらに光学設計においても、フォーカスレンズLの像倍率変化を抑える制約が小さくなり、設計の自由度が増す。したがって、光学系Oを小型化することができる。
<特徴>
以上に説明したように、このデジタルカメラ1では、第1撮像素子110および第2撮像素子120を備えているので、同じタイミングで2つの画像データ(第1画像データおよび第2画像データ)を取得することができる。第1画像データから算出される第1評価値EV1に加えて、第2画像データから算出される第2評価値EV2を補助的に用いることで、AF評価値の信頼性が高まる。したがって、コントラストAFにおいてAF評価値の変動を判定する時間を短縮することができ、焦点検出の速度を高めることができる。
【0059】
また、結像位置FP、第1光電変換部113の第1撮像面113aおよび第2光電変換部123の第2撮像面123aの位置関係を、第1画像データから算出される第1評価値EV1の増減および第2画像データから算出される第2評価値EV2の増減に基づいて判定することができる。したがって、フォーカスレンズLの正しい駆動方向を第1評価値EV1および第2評価値EV2に基づいて迅速に判定することができ、焦点検出の速度をさらに高めることができる。
〔第2実施形態〕
以下、第2実施形態について説明する。なお、前述の第1実施形態の構成と実質的に同じ機能を有する構成については、同じ符号を付し、その詳細な説明は省略する。
前述の第1実施形態では、第2撮像素子120がカラーフィルタを有していないが、第2撮像素子120が第2カラーフィルタ125を有していてもよい。例えば図17(A)、図17(B)、図18(A)および図18(B)に示すように、第2カラーフィルタ125は、ベイヤー配列の原色フィルタであり、第2光電変換部123の入射側に配置されている。第2カラーフィルタ125は、複数の赤色フィルタRと、複数の緑色フィルタGと、複数の青色フィルタBと、を有している。赤色フィルタRは、赤色以外の色の可視光波長域よりも赤色の可視光波長域の方が透過率が高いフィルタである。緑色フィルタGは、緑色以外の色の可視光波長域よりも緑色の可視光波長域の方が透過率が高いフィルタである。青色フィルタBは、青色以外の色の可視光波長域よりも青色の可視光波長域の方が透過率が高いフィルタである。
【0060】
赤色フィルタR、緑色フィルタGおよび青色フィルタBはマトリックス状に配置されている。具体的には、2行2列に配置された赤色フィルタR、2つ緑色フィルタGおよび青色フィルタBを1セットとした場合、各セットがマトリックス状に配置されている。1セットのフィルタにおいて、2つの緑色フィルタGは対角に配置されている。本実施形態では、1つのフィルタが1つの第2光電変換素子127に対応する位置に配置されている。なお、第2カラーフィルタ125は補色フィルタでもよい。
また、第2カラーフィルタ125の赤色フィルタR、緑色フィルタGおよび青色フィルタBは、第2光電変換素子127と同様に、4枚の第1光電変換素子117と同じ大きさを有している。したがって、第1カラーフィルタ115の1枚の赤色フィルタR、1枚の青色フィルタBおよび2枚の緑色フィルタGを通った光が第2カラーフィルタ125の1枚の赤色フィルタR、青色フィルタBまたは2枚の緑色フィルタGに入射する。これにより、1つの第2光電変換素子127には1色の光だけが入射する。
【0061】
このような第2撮像素子120を用いても、第1実施形態と同様の効果を得ることができる。
〔第3実施形態〕
以下、第3実施形態について説明する。なお、前述の第1および第2実施形態の構成と実質的に同じ機能を有する構成については、同じ符号を付し、その詳細な説明は省略する。
前述の第1および第2実施形態では、第1撮像素子110および第2撮像素子120は光軸AZに平行な方向に相対移動しないが、第1撮像素子110および第2撮像素子120を互いに相対移動可能に配置してもよい。
<構成>
例えば図19および図20に示すように、第3実施形態に係る撮像素子ユニット200は、第1撮像素子110と、第2撮像素子120と、第1パッケージ211と、第2パッケージ221と、調整機構203と、温度調整部204と、を備えている。
【0062】
第1パッケージ211は、第1撮像素子110を支持しており、筐体(図示せず)に固定されている。第1パッケージ211には第1撮像素子110が固定されている。
第2パッケージ221は、第2撮像素子120を支持しており、調整機構203により第1パッケージ211に連結されている。第2パッケージ221には第2撮像素子120が固定されている。
調整機構203は、第1パッケージ211および第2パッケージ221を連結しており、第1撮像素子110および第2撮像素子120の間の距離を調整する。具体的には、調整機構203は、4本の連結ワイヤ230と、4つの第1固定ブッシュ233と、4つの第2固定ブッシュ234と、4つのバイアスばね231と、を有している。
4つの第1固定ブッシュ233は、第1パッケージ211を連結ワイヤ230に連結しており、第1パッケージ211および連結ワイヤ230に固定されている。4つの第2固定ブッシュ234は、第2パッケージ221を連結ワイヤ230に連結しており、第2パッケージ221および第2パッケージ221に固定されている。
【0063】
連結ワイヤ230は、いわゆる形状記憶合金で形成されている。連結ワイヤ230の線膨張係数は、第1パッケージ211、第2パッケージ221、第1固定ブッシュ233および第2固定ブッシュ234の線膨張係数よりも大幅に大きい。4本の連結ワイヤ230は、温度調整部204と電気的に接続されている。温度調整部204は、連結ワイヤ230に電流を流すことで連結ワイヤ230の温度を調整し、連結ワイヤ230の長さを自在に変化させる。本実施形態では、第2撮像素子120の通常位置を図20に示す位置P1とすると、温度調整部204により第2撮像素子120は位置P2まで第1撮像素子110側に駆動される。
4つのバイアスばね231は、第1パッケージ211および第2パッケージ221の間に挟み込まれており、第1パッケージ211および第2パッケージ221が互いに離れるように第1パッケージ211および第2パッケージ221を押圧する。バイアスばね231には連結ワイヤ230が挿入されている。連結ワイヤ230により第1パッケージ211および第2パッケージ221が光軸AZに平行な方向に連結されているので、バイアスばね231の弾性力により第1パッケージ211および第2パッケージ221の相対位置が安定する。また、連結ワイヤ230の長さが変化すると、長さの変化に応じて第1パッケージ211および第2パッケージ221の間の距離Qが変化する。距離Qの変化に応じてバイアスばね231が伸縮するので、第1パッケージ211および第2パッケージ221の相対位置を安定させつつ、距離Qを変更することができる。
【0064】
温度調整部204は連結ワイヤ230に流れる電流を変化させる。温度調整部204の出力はボディーコントローラ10により制御される。
<動作>
図21〜図23を用いて、以上に説明した撮像素子ユニット200の動作をコンティニュアスAFモードを例に説明する。
図22に示すように、第1撮像素子110および第2撮像素子120により所定のフレームレートで画像データが取得されている状態で、第1評価値算出部51aにより第1評価値EV1が算出され、第2評価値算出部51bにより第2評価値EV2が算出される(S41)。本実施形態では、図21のタイムチャートに示すように、第2撮像素子120のフレームレートは第1撮像素子110のフレームレートの2倍である。したがって、1つの第1評価値EV1が算出される間に、2つの第2評価値EV2が算出される。
【0065】
第2評価値EV2の算出周期は第1評価値EV1の算出周期の半分であるため、ピントがずれたか否かは第2評価値EV2の増減により判定するのが好ましい。したがって、図22に示すように、第2評価値EV2が変化したか否かが判定される(S42)。具体的には、第2評価値EV2に基づいて第2評価値判定部52bにより第2判定結果が生成される。第2評価値EV2が一定であれば、算出された第2評価値EV2が基準評価値EV2sとしてボディーコントローラ10のRAM10aに記憶され(S43)、ステップS41およびS42が繰り返される。
一方、第2評価値EV2が変化した場合は、第1評価値EV1および第2評価値EV2がともに減少しているか否かが状態判定部53により判定される(S44)。具体的には、第1評価値判定部52aにより生成された第1判定結果および第2評価値判定部52bにより生成された第2判定結果に基づいて、状態判定部53によりフォーカスレンズLの駆動方向が判定される。
【0066】
第1評価値EV1および第2評価値EV2がともに減少している場合は、合焦状態から前ピン状態に結像位置FPが変化しているので、状態判定部53により駆動方向がD2方向と決定される(S44、S45A)。一方、第1評価値EV1および第2評価値EV2がともに減少していない場合は、合焦状態から第1後ピン状態に結像位置FPが変化しているので、状態判定部53により駆動方向がD1方向と決定される(S44、S45B)。ステップS45AおよびS45Bでは、決定された駆動方向にフォーカスレンズLが駆動される(S45A、S45B)。
その後、第2撮像素子120の駆動が開始される(S46)。具体的には、温度調整部204により連結ワイヤ230の温度が調整され、通常位置P1および駆動位置P2の間の往復運動が所定の周期で繰り返される。第2撮像素子120が通常位置P1から駆動位置P2を経て再度通常位置P1に戻るまでの周期は、第1撮像素子110のフレームレートと同じに設定されている。例えば、温度調整部204は第1タイミングジェネレータ12aからボディーコントローラ10に送られるタイミング信号を利用して、第2撮像素子120の往復駆動を第1撮像素子110のフレームレートと同期させている。
【0067】
第2撮像素子120が往復駆動されている状態で、通常位置P1および駆動位置P2に対応する第2評価値EV2がそれぞれ第2評価値算出部51bにより算出される(S47)。通常位置P1に対応する第2評価値EV2は第2評価値EV2aとしてRAM10aに記憶され、駆動位置P2に対応する第2評価値EV2は第2評価値EV2bとしてRAM10aに記憶される。
第2評価値EV2aが基準評価値EV2sよりも小さく、かつ、第2評価値EV2bが基準評価値EV2sよりも大きい場合、第2評価値EV2が合焦位置に相当する値となる第2撮像素子120の位置が通常位置P1および駆動位置P2の間に存在する、ということを意味している。この位置を特定することができれば、その位置を基準に合焦状態にするために必要なフォーカスレンズLの駆動量を算出することができる。したがって、ステップS48において上記の条件が満たされている場合、合焦演算部54により合焦位置演算が行われる(S48、S49)。例えば、第2評価値EV2a、EV2bおよび基準評価値EV2sから、基準評価値EV2sに対応するフォーカスレンズLの位置を算出することで、フォーカスレンズLの目標位置を算出することができる。
【0068】
一方、上記の条件を満たしていない場合、第2評価値EV2aおよびEV2bの算出が繰り返される(S48、S47)。
合焦位置演算後、フォーカスレンズLのD2方向への逆駆動が開始され(S50)、目標位置にフォーカスレンズLが到達すると、フォーカスレンズLの駆動がフォーカス駆動制御部41により停止される(S51、S52)。この結果、フォーカスレンズLが合焦状態に対応する位置まで駆動することができ、ピントが再度合った状態となる。
このように、第2撮像素子120を駆動可能な撮像素子ユニット200であっても、コンティニュアスAFを行うことができる。
〔他の実施形態〕
本発明の実施形態は、前述の実施形態に限られず、本発明の趣旨を逸脱しない範囲で種々の修正および変更が可能である。また、前述の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
【0069】
(1)前述の実施形態では、デジタルカメラは静止画および動画の撮影が可能であるが、静止画撮影のみ可能であってもよい。
(2)前述の技術は、フォーカシング機能を有する撮像装置に適用可能である。撮像装置としては、例えばデジタルスチルカメラ(レンズ交換式デジタルカメラも含む)、デジタルビデオカメラ、カメラ付き携帯電話およびカメラ付きPDAが考えられる。
(3)前述のデジタルカメラ1はクイックリターンミラーを有していないが、従来のデジタル一眼レフカメラのようにクイックリターンミラーが搭載されていてもよい。
(4)前述の第3実施形態では、連結ワイヤ230およびバイアスばね231を用いて第2撮像素子120を駆動しているが、第2撮像素子120を駆動する構成はこれに限定されない。例えば、図24に示すように圧電素子330を用いてもよい。この場合、圧電素子330は第1パッケージ211および第2パッケージ221の間に挟みこまれている。また、圧電素子330を駆動する圧電素子駆動装置340が設けられている。
【産業上の利用可能性】
【0070】
上記の技術であればAFの速度が高まるので、上記の技術は撮像装置の分野で有用である。
【符号の説明】
【0071】
1 デジタルカメラ(撮像装置の一例)
100 撮像素子ユニット
110 第1撮像素子
111 第1パッケージ
112 第1補強ガラス基板
113 第1光電変換部
114 第1回路部
115 第1カラーフィルタ
116 第1マイクロレンズ
120 第2撮像素子
121 第2パッケージ
122 第2補強ガラス基板
123 第2光電変換部
124 第2回路部
125 第2カラーフィルタ
126 第2マイクロレンズ
51a 第1評価値算出部
51b 第2評価値算出部
52a 第1評価値判定部
52b 第2評価値判定部
53 状態判定部
54 合焦演算部
55 合焦予測部
230 連結ワイヤ
231 バイアスばね
233 固定ブッシ
45 被写体光束

【特許請求の範囲】
【請求項1】
光を電気信号に変換する第1光電変換部を有する第1撮像素子と、
前記第1光電変換部から出射する光が入射するように配置された素子であって、前記第1光電変換部から出射する光を電気信号に変換する第2光電変換部を有する第2撮像素子と、
前記第1撮像素子で得られる第1画像データおよび前記第2撮像素子で得られる第2画像データに基づいて焦点検出を行う焦点検出部と、
を備えた撮像装置。
【請求項2】
前記焦点検出部は、前記第1画像データの空間周波数成分に基づいて第1評価値を算出する第1評価値算出部と、前記第2画像データの空間周波数成分に基づいて第2評価値を算出する第2評価値算出部と、を有している、
請求項1に記載の撮像装置。
【請求項3】
前記焦点検出部は、前記第1評価値の増減を判定する第1評価値判定部と、前記第2評価値の増減を判定する第2評価値判定部と、を有しており、
前記第1評価値判定部は、前記第1評価値の増減を示す第1判定結果を生成し、
前記第2評価値判定部は、前記第2評価値の増減を示す第2判定結果を生成する、
請求項2に記載の撮像装置。
【請求項4】
前記焦点検出部は、前記第1光電変換部に入射する光の結像位置と前記第1光電変換部との位置関係を前記第1判定結果および前記第2判定結果に基づいて判定する状態判定部を有している、
請求項3に記載の撮像装置。
【請求項5】
前記状態判定部は、前記第1判定結果および前記第2判定結果の組み合わせに基づいて前記第1光電変換部に入射する光の結像位置と前記第1光電変換部との位置関係を判定する、
請求項4に記載の撮像装置。
【請求項6】
前記状態判定部は、前記第1光電変換部に入射する光の結像位置と前記第2光電変換部との位置関係を前記第1判定結果および前記第2判定結果に基づいて判定する、
請求項3から5のいずれかに記載の撮像装置。
【請求項7】
前記状態判定部は、前記第1判定結果および前記第2判定結果の組み合わせに基づいて前記第1光電変換部に入射する光の結像位置と前記第2光電変換部との位置関係を判定する、
請求項6に記載の撮像装置。
【請求項8】
被写体の光学像を形成するように設けられ、フォーカスレンズを含む光学系をさらに備え、
前記焦点検出部は、前記第1評価値の最大値が検出される前に前記第2判定結果に基づいて合焦状態に対応する前記フォーカスレンズの目標位置を予測する合焦予測部を有している、
請求項3から7のいずれかに記載の撮像装置。
【請求項9】
前記合焦予測部は、前記第2評価値のピークを基準に前記目標位置を予測する、
請求項8に記載の撮像装置。
【請求項10】
前記第1撮像素子は、前記第1光電変換部と前記第2光電変換部との間に配置され前記第1光電変換部で生成される電気信号が流れる第1回路部を有している、
請求項1から9のいずれかに記載の撮像装置。
【請求項11】
前記第2撮像素子は、前記第1光電変換部と前記第2光電変換部との間に配置され前記第2光電変換部で生成される電気信号が流れる第2回路部を有している、
請求項1から10のいずれかに記載の撮像装置。
【請求項12】
前記第1撮像素子は、前記第1光電変換部の前記第2撮像素子と反対側に配置された第1マイクロレンズと、前記第1光電変換部と前記第1マイクロレンズとの間に配置された第1カラーフィルタと、を有している、
請求項1から11のいずれかに記載の撮像装置。
【請求項13】
前記第1光電変換部は、複数の第1光電変換素子を有しており、
前記複数の第1光電変換素子は、2色以上の光が入射可能に配置されている、
請求項1から12のいずれかに記載の撮像装置。
【請求項14】
前記第2撮像素子は、前記第2光電変換部と前記第1撮像素子との間に配置された第2カラーフィルタを有している、
請求項1から12のいずれかに記載の撮像装置。
【請求項15】
前記第2撮像素子は、前記第2光電変換部と前記第1撮像素子との間に配置され前記第1光電変換部を透過する光を前記第2光電変換部に向けて集光する第2マイクロレンズを有している、
請求項1から14のいずれかに記載の撮像装置。
【請求項16】
前記第2光電変換部の画素ピッチは、前記第1光電変換部の画素ピッチよりも大きい、
請求項1から15のいずれかに記載の撮像装置。
【請求項17】
前記第1撮像素子および前記第2撮像素子の間の距離を調整可能に設けられた調整機構をさらに備えた、
請求項1から16のいずれかに記載の撮像装置。
【請求項18】
前記調整機構は、前記第1撮像素子を前記第2撮像素子に連結する少なくとも1つの線状部材と、前記第1撮像素子および前記第2撮像素子が互いに離れるように前記第1撮像素子および前記第2撮像素子を押圧する弾性部材と、前記線状部材の温度を調整する温度調整部と、を有している、
請求項1から17のいずれかに記載の撮像装置。
【請求項19】
前記調整機構は、前記第1撮像素子および前記第2撮像素子を移動可能に連結する圧電素子を有している、
請求項1から17のいずれかに記載の撮像装置。
【請求項20】
前記第2撮像素子のフレームレートは、前記第1撮像素子のフレームレートよりも小さい、
請求項1から19のいずれかに記載の撮像装置。
【請求項21】
光を電気信号に変換する第1光電変換部を有する第1撮像素子と、
前記第1光電変換部から出射する光を電気信号に変換する第2光電変換部を有する第2撮像素子と、
前記第1撮像素子および前記第2撮像素子を連結し前記第1撮像素子および前記第2撮像素子の間の距離を調整可能に設けられた調整機構と、
を備えた撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2011−209317(P2011−209317A)
【公開日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2010−73775(P2010−73775)
【出願日】平成22年3月26日(2010.3.26)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】