説明

方向性電磁鋼板の製造方法

【課題】本発明の目的は、良好な磁気特性を有する方向性電磁鋼板を得るための手段を提供することである。
【解決手段】質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材において、熱延工程を経た後の鋼中のBをスパーク放電発光分光分析法によるPSA分析において、SInsolB≧5%・・・・(式1)
であることを特徴とする熱延鋼板。ただし、SInsol Bは、発光分光分析法を用いて、放電により得られる特定成分の発光強度を順に並べ替えたパルス強度順位図を作成して、金属中特定成分の全量、不溶成分量、固溶成分量を求められる値である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は方向性電磁鋼板の磁気特性を向上させるための製造方法に関するものである。
【背景技術】
【0002】
方向性電磁鋼板は主に電力用トランスコア材料に用いられるため、低鉄損であることが必要である。方向性電磁鋼板の製造方法は、最終板厚とした冷延鋼板に脱炭焼鈍を施した後、二次再結晶と純化を目的とした仕上げ焼鈍を経た後、鋼板表面に皮膜を形成する工程を経る。このようにして得られた方向性電磁鋼板は先鋭な(110)〔001〕集合組織(ゴス方位)を有したSi含有鋼板と、その表面に形成された数ミクロンの無機質皮膜からなる。
鋼板がゴス方位を持つことが方向性電磁鋼板の低鉄損特性を実現するために不可欠な条件であり、この組織を実現するために仕上げ焼鈍中にゴス方位粒子が選択的に成長する二次再結晶と呼ばれる粒成長が利用されている。二次再結晶を安定的に引き起こすため、方向性電磁鋼板ではインヒビターと称する鋼中の微細析出物が利用されている。インヒビターは仕上げ焼鈍中低温部では粒成長を抑制し、一定の温度以上では分解あるいは粗大化によってピン止め効果を失って二次再結晶を引き起こすもので、硫化物や窒化物が一般的に利用される。望ましい組織を得るためにはインヒビターを一定の温度まで保持することが必要であり、硫化物であれば仕上げ焼鈍の硫黄成分分圧、窒化物であれば窒素分圧を制御することなどで目的を達する。インヒビターとして使用される硫化物や窒化物は仕上げ焼鈍中の昇温途中で起こる二次再結晶のために必要ではあるが、これらが製品中に残留すると製品の鉄損を著しく悪化させる。硫化物や窒化物の影響を鋼中から除くために、二次再結晶完了後、純水素中1200℃前後で長時間保定を行う。これを純化焼鈍と称する。したがって、純化焼鈍は仕上げ焼鈍中における高温保定状態のことである。
【0003】
本発明者らによる種々の検討の結果、良好な二次再結晶を得るためには、熱延板のBが安定な析出物の形態で析出している必要があることが明らかとなった。このようなBの性状を分析した結果、スパーク放電発光分光分析のPSA分析結果でinsol Bに相当する値が一定量以上確保すると、良好な二次再結晶が得られ、磁気特性が向上することが明らかとなった。
【0004】
QV-PSA分析については特許文献1に詳細な技術内容の開示がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許4430460
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、良好な磁気特性を有する方向性電磁鋼板を得るための手段を提供することである。
【課題を解決するための手段】
【0007】
(1)質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材において、熱延工程を経た後の鋼中のBをスパーク放電発光分光分析法によるPSA分析において、
SInsolB≧5%・・・・(式1)
であることを特徴とする熱延鋼板。
ただし、SInsol Bは、発光分光分析法を用いて、放電により得られる特定成分の発光強度を順に並べ替えたパルス強度順位図を作成して、下記(式2)、(式3)及び(式4)式により得られる値である。
Insol.成分量測定値 = {Sall−N×F(N/2)}… (式2)
Total量測定値= N×F(N/2)…(式3)
Sinsol B= (Insol.成分量測定値/ Total量測定値)×100…(式4)
ここで、Nは放電により得られた全パルス数から発光不良データを除いたパルス数であり、Sallは発光パルス強度x=1からNまでの全積分値であり、F(N/2)は、パルス強度順に並び替えた時、中間順位値となる強度値であり、y=F(x)はx=1からN/2までのパルス強度値を表現する関数である。
(2)質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材を所定の温度で加熱する工程と、
加熱された前記珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、
前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、
前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、
前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、
MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、
前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、
を有し、
更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、
前記所定の温度は、
前記珪素鋼素材にS及びSeが含有されている場合、下記(式5)で表される温度T1(℃)以下、下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記珪素鋼素材にSeが含有されていない場合、下記(式5)で表される温度T1(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記珪素鋼素材にSが含有されていない場合、下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記熱間圧延鋼帯中のBN、MnS及びMnSeの量は下記(式8)、(式9)及び(式10)を満たすことを特徴とする(1)または(2)に記載の方向性電磁鋼板の製造方法。
【0008】
T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(式5)
T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(式6)
T3=16000/(5.92-log([B]×[N]))-273 ・・・(式7)
BasBN≧0.0005 ・・・(式8)
[B]―BasBN≦0.001 ・・・(式9)
SasMnS+0.5×SeasMnSe≧0.002 ・・・(式10)
ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示し、[B]は前記珪素鋼素材のB含有量(質量ppm)を示し、[N]は前記珪素鋼素材のN含有量(質量ppm)を示し、BasBNは前記熱間圧延鋼帯中にBNとして析出しているBの量(質量%)を示し、SasMnSは前記熱間圧延鋼帯中にMnSとして析出しているSの量(質量%)を示し、SeasMnSeは前記熱間圧延鋼帯中にMnSeとして析出しているSeの量(質量%)を示す。
(3)前記電磁鋼板素材が、更に、質量%で、Cr:0.3%以下、Cu:0.4%以下、Ni:1%以下、P:0.5%以下、Mo:0.1%以下、Sn:0.3%以下、Sb:0.3%以下、及びBi:0.01%以下からなる群から選択された少なくとも1種を含有することを特徴とする前項(3)に記載の方向性電磁鋼板の製造方法である。
【発明の効果】
【0009】
本発明によれば、良好な磁気特性を有する方向性電磁鋼板が得られる。
【図面の簡単な説明】
【0010】
【図1】QV-PSA解析による磁気特性の結果を示す。
【図2】熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を示す。
【図3】BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す。
【図4】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図5】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図6】熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す。
【図7】熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を示す。
【図8】BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す。
【図9】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図10】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図11】熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す。
【図12】熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を示す。
【図13】BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を示す。
【図14】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図15】熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を示す。
【図16】熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を示す。
【図17】QV-PSA分析法の基本原理を示す。
【発明を実施するための形態】
【0011】
析出物性状の規定には種々の方法があるが、QV-PSA法は迅速に決定可能で,有効性の高い評価指標であることが明らかとなった。この方法は、特許文献1に有るような、insol介在物を評価する手法である。本発明者らは、BのQV-PSA解析結果で(式1)の条件が満たされると、良好な磁気特性が得られることを見出した。
【0012】
このQV-PSA解析を以下の実験の詳細にある種々の条件にて作成した試料について実施し、磁気特性との関係を調査したところ、図1の結果を得た。
【0013】
このような析出物性状を実現するためには、課題を解決する手段の(2)に記載したように、Siを初めとする成分を規定し、この電磁鋼板素材を所定の温度にて処理すること、あるいは課題を解決する手段の(3)に記載した方法によればよい。
<実験の詳細>
以上のような知見を得るに至った試験の内容を以下に述べる。まず析出物と磁性、皮膜密着性の関係についてSを含む組成を有する珪素鋼素材について調査する試験を行った。成分としてSi:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.05質量%〜0.19質量%、S:0.007質量%、及びB:0.0010質量%〜0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃〜1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0014】
そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図2に示す。縦軸はBNの析出量をBに換算した値(質量%)を示す。横軸はMnSとして析出したSの量(質量%)に相当する。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図2に示すように、MnS及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0015】
更に、MnS及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図3に示す。図3の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図3に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0016】
磁気特性が良好な試料について析出物の形態を調査した結果、MnSを核としてBNがMnSの周辺に複合析出していることが判明した。このような複合析出物は二次再結晶を安定化させるインヒビターとして有効である。
【0017】
また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図4及び図5に示す。
【0018】
図4の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図5の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図4中の曲線は、下記式(2)で表わされるMnSの溶体化温度T1(℃)を示し、図5中の曲線は、下記式(4)で表わされるBNの溶体化温度T3(℃)を示している。図4に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSの溶体化温度T1とほぼ一致していることも判明した。また、図5に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
【0019】
T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(式5)
T3=16000/(5.92-log([B]×[N]))-273 ・・・(式7)
ここで、[Mn]はMn含有量(質量%)を示し、[S]はS含有量(質量%)を示し、[B]はB含有量(質量ppm)を示し、[N]はN含有量(質量ppm)を示す。
【0020】
更にBNの析出挙動を調査した結果、その析出温度域が800℃〜1000℃であることが判明した。
【0021】
また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.1質量%、S:0.007質量%、及びB:0.001質量%〜0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃〜900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0022】
そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図6に示す。図6の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図6に示すように、仕上げ圧延の終了温度Tfが、下記(式11)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
【0023】
Tf≦1000−10000x[B] ・・・(式11)
次に、析出物と磁性、皮膜密着性の関係についてSeを含む組成を有する珪素鋼素材について調査する試験を行った。鋼組成Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.05質量%〜0.20質量%、Se:0.007質量%、及びB:0.0010質量%〜0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃〜1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0024】
そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図7に示す。図7の横軸はMnSeの析出量をSeの量に換算した値(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図7に示すように、MnSe及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0025】
更に、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図8に示す。図8の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図8に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0026】
また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図9及び図10に示す。
【0027】
図9の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図10の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図9中の曲線は、下記(式6)で表わされるMnSeの溶体化温度T2(℃)を示し、図10中の曲線は、(式7)で表わされるBNの溶体化温度T3(℃)を示している。図9に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図10に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnSe及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
【0028】
T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(式6)
T3=16000/(5.92-log([B]×[N]))-273 ・・・(式7)
ここで、[Se]はSe含有量(質量%)を示す。
【0029】
更にBNの析出挙動を調査した結果、その析出温度域が800℃〜1000℃であることが判明した。
【0030】
また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.1質量%、Se:0.007質量%、及びB:0.001質量%〜0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃〜900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0031】
そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図11に示す。図11の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図11に示すように、仕上げ圧延の終了温度Tfが(式11)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
【0032】
さらに析出物と磁性の関係についてSとSeを含む組成を有する珪素鋼素材について調査する試験を行った。鋼成分がSi:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.009質量%、Mn:0.05質量%〜0.20質量%、S:0.005質量%、Se:0.007質量%、及びB:0.0010質量%〜0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃〜1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0033】
そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図12に示す。図12の横軸はMnSの析出量をSの量に換算した値とMnSeの析出量をSeの量に換算した値に0.5を乗じて得られる値との和(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図12に示すように、MnS、MnSe及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0034】
更に、MnS、MnSe及びBNが一定量以上析出している試料について、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図13に示す。図13の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図13に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
【0035】
更に、磁気特性および皮膜密着性が良好な試料について析出物の形態を調査した結果、MnS又はMnSeを核としてBNがMnS又はMnSeの周辺に複合析出していることが判明した。このような複合析出物は二次再結晶を安定化させるインヒビターとして有効であるとともに、二次再結晶焼鈍中に最適な温度域で分解してグラス皮膜形成時にBを地鉄-皮膜界面に供給し、最終的に皮膜密着性向上に寄与する。
【0036】
次に、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図14及び図15に示す。
【0037】
図14の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。図15の横軸はB含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図14中の2つの曲線は、式(式5)で表わされるMnSの溶体化温度T1(℃)、及び式(式6)で表わされるMnSeの溶体化温度T2(℃)を示し、図15中の曲線は、式(式7)で表わされるBNの溶体化温度T3(℃)を示している。図14に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度は、MnSの溶体化温度T1及びMnSeの溶体化温度T2とほぼ一致していることも判明した。また、図15に示すように、B含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることも判明した。更に、この温度はBNの溶体化温度T3とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS、MnSe及びBNが完全固溶しない温度域で行うことが有効であることが判明した。
【0038】
また、本発明者らは、熱間圧延の仕上げ圧延の終了温度について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.009質量%、Mn:0.1質量%、S:0.005質量%、Se:0.007質量%、及びB:0.001質量%〜0.004質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1020℃〜900℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、850℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
【0039】
そして、熱間圧延の仕上げ圧延の終了温度と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図16に示す。図16の横軸はB含有量(質量%)を示し、縦軸は仕上げ圧延の終了温度Tfを示す。また、白丸は磁束密度B8が1.91T以上であったことを示し、黒四角は磁束密度B8が1.91T未満であったことを示している。図16に示すように、仕上げ圧延の終了温度Tfが(式11)を満たしている場合に、高い磁束密度B8が得られることが判明した。これは、仕上げ圧延の終了温度Tfの制御によって、BNの析出が更に促進されたためであると考えられる。
【0040】
以上の実験の結果から、BNの析出形態を制御することによって、安定して方向性電磁鋼板の磁気特性が向上することがわかる。BがBNとしてMnS又はMnSeと複合析出しない場合に二次再結晶が不安定になって良好な磁気特性が得られない理由は今のところ明らかになっていないが、次のように考えられる。
【0041】
まず磁気特性については次のとおりである。一般的に、固溶状態のBは粒界に偏析しやすく、熱間圧延後に単独析出したBNは微細であることが多い。これらの固溶状態のB及び微細なBNは、脱炭焼鈍が行われる低温度域では強力なインヒビターとして一次再結晶時に粒成長を抑制し、仕上げ焼鈍が行われる高温度域では局所的にインヒビターとして機能しなくなり、鋼の結晶粒組織が混粒組織となる。したがって、一次再結晶温度が低温度域では一次再結晶粒が小さいので、方向性電磁鋼板の磁束密度が低くなってしまう。また、高温度域では結晶粒組織が混粒組織となるため、二次再結晶が不安定になる。
【0042】
次に本発明の各条件について限定理由を以下に説明する。
【0043】
前述のように、磁気特性が良好な試料の析出物の形態は、MnSを核としてBNがMnSの周辺に複合析出しているものであった。このようなBNは比較的大きな析出物となる傾向がある。このような析出状態においてBについてQV分析すると、いわゆるinsol Bに起因するトリガーピークが多数検出される。QVのトリガーピークをPSA解析を行うと、insol Bの面積が大きいものほどMnSと複合析出したBNが多い結果となった。以上の検討から、QV-PSA分析でinsol Bが一定量以上存在すると、最終製品の磁気特性が良好であるとの結果が得られた。すなわち(1)式のように、Sinsol BをQV-PSA分析のinsol Bの面積とした場合、
Sinsol B≧5%・・・・・・・・・・(式1)
であると良い結果が得られる。(式1)式の左辺が10%以上であると、更によい磁気特性が得られ、B8が1.9T以上を安定的に得られる効果がある。一方5%を下回ると、二次再結晶が不安定化して良好な磁気特性が得られなくなる。
(式1)式の値を得るには、以下の方法による。
まず試料は表層部をベルダー研磨して清浄化した後、発光分光分析法を用いて、放電により得られる特定成分の発光強度を順に並び替えたパルス強度順位図を作成して、金属中特定成分の全量、不溶成分量、固溶成分量を下式により求める。
Insol.成分量測定値 = 全積分値−理想Total面積= S3 = {Sall−N×F(N/2)}…(式2)
Total量測定値 = 理想Total曲線とX軸間の面積= 2×(S1 + S2) = N×F(N/2)…(式3)
Sinsol B= (Insol.成分量測定値/ Total量測定値)×100…(式4)
ここで、Nは放電により得られた全パルス数から発光不良データを除いたパルス数であり、Sallは発光パルス強度x=1からNまでの全積分値であり、F(N/2)はパルス強度順に並び替えた時、中間順位値となる強度値であり、y=F(x)はx=1からN/2までのパルス強度値を表現する関数である。なお、この方法は特許文献1によるものである。
【0044】
本発明においてはNは全パルス数で2000パルスとした。F(x)はパルス強度順にソートした発光強度曲線で、N番目のパルスに対する発光強度を示す。本解析法の基本原理を図17に示す。
【0045】
次に成分範囲の限定理由について述べる。
【0046】
本実施形態で用いる珪素鋼素材は、Si:0.8質量%〜7質量%、酸可溶性Al:0.01質量%〜0.065質量%、N:0.004質量%〜0.012質量%、Mn:0.05質量%〜1質量%、S及びSe:総量で0.003質量%〜0.015質量%、並びにB:0.0005質量%〜0.0080質量%を含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる。
【0047】
Siは、電気抵抗を高めて鉄損を低下させる。しかし、Si含有量が7質量%を超えていると、冷間圧延が極めて困難となり、冷間圧延時に割れが生じやすくなる。このため、Si含有量は7質量%以下とし、4.5質量%以下であることが好ましく、4質量%以下であることが更に好ましい。また、Si含有量が0.8質量%未満であると、仕上げ焼鈍時にγ変態が生じ、方向性電磁鋼板の結晶方位が損なわれてしまう。このため、Si含有量は0.8質量%以上とし、2質量%以上であることが好ましく、2.5質量%以上であることが更に好ましい。
【0048】
Cは、一次再結晶組織を制御に有効な元素であるが、磁気特性に悪影響を及ぼす。このため、本実施形態では、仕上げ焼鈍前に脱炭焼鈍を行う。しかし、C含有量が0.085質量%を超えていると、脱炭焼鈍にかかる時間が長くなり、工業生産における生産性が損なわれてしまう。このため、C含有量は0.85質量%以下とし、0.07質量%以下であることが好ましい。
【0049】
酸可溶性Alは、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。酸可溶性Alの含有量が0.01質量%〜0.065質量%の範囲内にある場合に二次再結晶が安定する。このため、酸可溶性Alの含有量は0.01質量%以上0.065質量%以下とする。また、酸可溶性Alの含有量は0.02質量%以上であることが好ましく、0.025質量%以上であることが更に好ましい。また、酸可溶性Alの含有量は0.04質量%以下であることが好ましく、0.03質量%以下であることが更に好ましい。
【0050】
BはNと結合してBNとしてMnS又はMnSeと複合析出し、インヒビターとして機能する。B含有量が0.0005質量%〜0.0080質量%の範囲内にある場合に二次再結晶が安定する。このため、B含有量は0.0005質量%以上0.0080質量%以下とする。また、B含有量は0.001%以上であることが好ましく、0.0015%以上であることが更に好ましい。また、B含有量は0.0040%以下であることが好ましく、0.0030%以下であることが更に好ましい。
【0051】
Nは、B又はAlと結合してインヒビターとして機能する。N含有量が0.004質量%未満であると、十分な量のインヒビターを得ることができない。このため、N含有量は0.004質量%以上とし、0.006質量%以上であることが好ましく、0.007質量%以上であることが更に好ましい。一方、N含有量が0.012質量%を超えていると、冷間圧延時に鋼帯中にブリスターとよばれる空孔が生じる。このため、N含有量は0.012質量%以下とし、0.010質量%以下であることが好ましく、0.009質量%以下であることが更に好ましい。
【0052】
Mn、S及びSeは、BNが複合析出する核となるMnS及びMnSeを生成し、複合析出物がインヒビターとして機能する。Mn含有量が0.05質量%〜1質量%の範囲内にある場合に二次再結晶が安定する。このため、Mn含有量は0.05質量%以上1質量%以下とする。また、Mn含有量は0.08質量%以上であることが好ましく、0.09質量%以上であることが更に好ましい。また、Mn含有量は0.50質量%以下であることが好ましく、0.2質量%以下であることが更に好ましい。
【0053】
また、S及びSeの含有量が総量で0.003質量%〜0.015質量%の範囲内にある場合に二次再結晶が安定する。このため、S及びSeの含有量は総量で0.003質量%以上0.015質量%以下とする。また、熱間圧延における割れの発生を防止する観点から、下記式(9)が満たされることが好ましい。なお、S又はSeのいずれかのみが珪素鋼素材に含有されていてもよく、S及びSeの双方が含有されていてもよい。S及びSeの双方が含有されている場合、BNの析出をより安定的に促進し、磁気特性を安定的に向上させることができる。
【0054】
[Mn]/([S]+[Se])≧4 ・・・(9)
Tiは、粗大なTiNを形成して、インヒビターとして機能するBN及び(Al,Si)Nの析出量に影響を及ぼす。Ti含有量が0.004質量%を超えていると、良好な磁気特性を得にくい。このため、Ti含有量は0.004質量%以下であることが好ましい。
【0055】
珪素鋼素材に、更に、Cr、Cu、Ni、P、Mo、Sn、Sb、及びBiからなる群から選択された一種以上が下記の範囲で含有されていてもよい。
【0056】
Crは、脱炭焼鈍時に形成される酸化層を改善し、グラス皮膜の形成に有効である。しかし、Cr含有量が0.3質量%を超えていると、脱炭が著しく阻害される。このため、Cr含有量は0.3質量%以下とする。
【0057】
Cuは、比抵抗を高めて鉄損を低減させる。しかし、Cu含有量が0.4質量%を超えるとこの効果が飽和する。また、熱間圧延時に「カッパーヘゲ」とよばれる表面疵が生じることもある。このため、Cu含有量は0.4質量%以下とした。
【0058】
Niは、比抵抗を高めて鉄損を低減させる。また、Niは、熱間圧延鋼帯の金属組織を制御して磁気特性を向上させる。しかし、Ni含有量が1質量%を超えていると、二次再結晶が不安定になる。このため、Ni含有量は1質量%以下とする。
【0059】
Pは、比抵抗を高めて鉄損を低減させる。しかし、P含有量が0.5質量%を超えていると、圧延性に問題が生じる。このため、P含有量は0.5質量%以下とする。
【0060】
Moは、熱間圧延時の表面性状を改善する。しかし、Mo含有量が0.1質量%を超えるとこの効果が飽和してしまう。このため、Mo含有量は0.1質量%以下とする。
【0061】
Sn及びSbは、粒界偏析元素である。本実施形態で用いられる珪素鋼素材はAlを含有しているため、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化される場合がある。この場合、方向性電磁鋼板内の部位によってインヒビター強度にばらつきが生じ、磁気特性もばらつくことがある。しかし、粒界偏析元素が含有されている場合には、Alの酸化を抑制することができる。つまり、Sn及びSbは、Alの酸化を抑制して磁気特性のばらつきを抑制する。但し、Sn及びSbの含有量が総量で0.30質量%を超えていると、脱炭焼鈍時に酸化層が形成されにくくなり、グラス皮膜の形成が不十分となる。また、脱炭が著しく阻害される。このため、Sn及びSbの含有量は総量で0.3質量%以下とする。
【0062】
Biは、硫化物等の析出物を安定化してインヒビターとしての機能を強化する。しかし、Bi含有量が0.01質量%を超えていると、グラス皮膜の形成に悪影響が及ぶ。このため、Bi含有量は0.01質量%以下とする。
【0063】
次に、本実施形態における各処理について説明する。
【0064】
上記の成分の珪素鋼素材(スラブ)は、例えば、転炉又は電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、次いで、連続鋳造を行うことによって作製することができる。また、連続鋳造に代えて、造塊後分塊圧延を行っても作製することができる。珪素鋼スラブの厚さは、例えば150mm〜350mmとし、220mm〜280mmとすることが好ましい。また、厚さが30mm〜70mmの所謂薄スラブを作製してもよい。薄スラブを作製した場合は、熱間圧延鋼帯を得る際の粗圧延を省略することができる。
【0065】
珪素鋼スラブの作製後には、スラブ加熱を行い、熱間圧延を行う。そして、本実施形態では、BNをMnS及び/又はMnSeと複合析出させ、熱間圧延鋼帯におけるBN、MnS、及びMnSeの析出量が下記(式8)〜(式10)を満たすように、スラブ加熱及び熱間圧延の条件を設定する。
【0066】
asBN≧0.0005 ・・・(式8)
[B]−BasBN≦0.001 ・・・(式9)
asMnS+0.5×SeasMnSe≧0.002 ・・・(式10)
ここで、「BasBN」はBNとして析出したBの量(質量%)を示し、「SasMnS」はMnSとして析出したSの量(質量%)を示し、「SeasMnSe」はMnSeとして析出したSeの量(質量%)を示している。
【0067】
Bについては、(式8)及び(式9)が満たされるように、その析出量及び固溶量を制御する。インヒビターの量を確保するために、一定量以上のBNを析出させておく。また、固溶しているBの量が多い場合、その後の工程で不安定な微細析出物を形成して一次再結晶組織に悪影響を及ぼすことがある。
【0068】
MnS及びMnSeは、BNが複合析出する核として機能する。従って、BNを十分に析出させて磁気特性を向上させるために、(式10)が満たされるように、その析出量を制御する。
【0069】
(式9)に表わされる条件は、図3、図8、及び図13から導き出したものである。図3、図8、及び図13から、[B]−BasBNが0.001質量%以下の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。
【0070】
式(式8)及び(式9)に表わされる条件は、図2、図7、及び図12から導き出したものである。図2からBasBNが0.0005質量%以上、かつSasMnSが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。
【0071】
同様に、図7からBasBNが0.0005質量%以上、かつSeasMnSeが0.004質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。同様に、図12からBasBNが0.0005質量%以上、かつSeasMnSe+0.5×SeasMnSeが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。そして、SasMnSが0.002質量%以上であれば、必然的に、SeasMnSe+0.5×SeasMnSeは0.002質量%以上となり、SeasMnSeが0.004質量%以上であれば、必然的に、SeasMnSe+0.5×SeasMnSeは0.002質量%以上となる。従って、SeasMnSe+0.5×SeasMnSeが0.002質量%以上であることが重要である。
【0072】
また、スラブ加熱の温度は、以下の条件を満たすように設定する。
【0073】
(i)記珪素鋼素材にS及びSeが含有されている場合
下記(式5)で表される温度T1(℃)以下、下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下
(ii)前記珪素鋼素材にSeが含有されていない場合
下記(式5)で表される温度T1(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下、
(iii )珪素鋼素材にSが含有されていない場合
下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下、
T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(式5)
T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(式6)
T3=16000/(5.92-log([B]×[N]))-273 ・・・(式7)
このような温度でスラブ加熱を行うと、スラブ加熱時にはBN、MnS及びMnSeが完全には固溶せず、熱間圧延中にBN、MnS及びMnSeの析出が促進されるからである。図4、図9、及び図14からわかるように、溶体化温度T1及びT2は、1.88T以上の磁束密度B8が得られるスラブ加熱温度の上限とほぼ一致している。また、図5、図10、及び図15からわかるように、溶体化温度T3は、1.88T以上の磁束密度B8が得られるスラブ加熱温度の上限とほぼ一致している。
【0074】
また、スラブ加熱の温度を以下の条件も満たすように設定することが更に好ましい。スラブ加熱中に、好ましい量のMnS又はMnSeを析出させるためである。
【0075】
(i)珪素鋼スラブにSeが含有されていない場合
下記(式12)で表される温度T4(℃)以下
(ii)珪素鋼スラブにSが含有されていない場合
下記(式13)で表される温度T5(℃)以下
T4=14855/(6.82-log([Mn-0.0034]×[S-0.002]))-273 ・・・(式12)
T5=10733/(4.08-log([Mn-0.0034]×[Se-0.004]))-273 ・・・(式13)
スラブ加熱の温度が高すぎる場合、BN、MnS及び/又はMnSeが完全に固溶することがある。この場合、熱間圧延時に、BN、MnS及び/又はMnSeを析出させることが困難になる。従って、スラブ加熱は、温度T1及び/又は温度T2以下、かつ温度T3以下で行うことが好ましい。更に、スラブ加熱の温度が温度T4又はT5以下であると、好ましい量のMnS又はMnSeがスラブ加熱中に析出するため、これらの周辺にBNを複合析出させて、容易に有効なインヒビターを形成することが可能となる。
【0076】
また、Bに関し、熱間圧延での仕上げ圧延の終了温度Tfを下記(式11)が満たされるように設定する。BNの析出を促進するためである。
【0077】
Tf≦1000−10000x[B] ・・・(式11)
図6、図11、図16からわかるように、式(式11)が示す条件は、1.91T以上の磁束密度B8が得られる条件とほぼ一致している。また、仕上げ圧延の終了温度Tfは、BNの析出の観点から800℃以上とすることが好ましい。
【0078】
熱間圧延後には、熱間圧延鋼帯の焼鈍を行う。次いで、冷間圧延を行う。上記のように、冷間圧延は1回のみ行ってもよく、複数回の冷間圧延を、間に中間焼鈍を行いながら行ってもよい。冷間圧延では、最終冷間圧延率を80%以上とすることが好ましい。これは、良好な一次再結晶集合組織を発達させるためである。
【0079】
その後、脱炭焼鈍を行う。この結果、鋼帯に含まれるCが除去される。脱炭焼鈍は、例えば、湿潤雰囲気中で行う。また、例えば、770℃〜950℃の温度域で一次再結晶により得られる結晶粒径が15μm以上となるような時間で行うことが好ましい。これは、良好な磁気特性を得るためである。続いて、焼鈍分離剤の塗布及び仕上げ焼鈍を行う。この結果、二次再結晶により{110}<001>方位を向く結晶粒が優先的に成長する。
【0080】
また、脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、窒化処理を行っておく。これは、(Al,Si)Nのインヒビターを形成するためである。この窒化処理は、脱炭焼鈍中に行ってもよく、仕上げ焼鈍中に行ってもよい。脱炭焼鈍中に行う場合、例えばアンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍を行えばよい。また、連続焼鈍炉の加熱帯又は均熱帯のいずれで窒化処理を行ってもよく、また、均熱帯よりも後の段階で窒化処理を行ってもよい。仕上げ焼鈍中に窒化処理を行う場合、例えばMnN等の窒化能のある粉末を焼鈍分離剤中に添加すればよい。
【0081】
仕上げ焼鈍の方法も特に限定するものではない。但し、本実施形態では、BNによりインヒビターが強化されているので、仕上げ焼鈍の加熱過程において、1000℃〜1100℃の温度範囲内での加熱速度を15℃/h以下とすることが好ましい。また、加熱速度の制御に代えて、1000℃〜1100℃の温度範囲内に10時間以上保持する恒温焼鈍を行うことも有効である。
【0082】
このような本実施形態によれば、安定して優れた磁気特性の方向性電磁鋼板を製造することができる。
【実施例】
【0083】
次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
<実施例1>
表1にあるような組成を有し、残部はFeおよび不可避的不純物からなるスラブを作製した。次いで、スラブを1100℃で加熱し、その後、900℃で仕上げ圧延を行った。1100℃は、表1の組成から計算されるT1、T2、T3の値の全てを下回る値である。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。
【0084】
このようにして得られた鋼板は表2ある組成を有していた。このような仕上げ焼鈍後の試料について、磁気特性(磁束密度B8)を測定した。磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。また、QV-PSA解析により、Sinsol Bの値を得た。
【0085】
【表1】

【0086】
【表2】

【0087】
【表3】

【0088】
表2および表3に示すように、本発明の範囲の組成の鋼板であり、QV-PSA解析によるSinsol Bが5%以上である場合に磁束密度が良好であることがわかる。
<実施例2>
表4にある組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。さらに表5にある温度条件でスラブ加熱と仕上げ圧延を行い、厚さが2.3mmの熱間圧延鋼帯を得た。このような熱処理を経た熱延板のB、BN、MnSおよびMnSeの分析結果は表6の通りであった。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.023質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして実施例1と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表7に示す。
【0089】
【表4】

【0090】
【表5】

【0091】
【表6】

【0092】
【表7】

【0093】
表7に示すように、スラブ加熱温度がT1、T2、T3より高い場合、あるいは熱間圧延での仕上げ圧延の終了温度Tfが高すぎる場合と低すぎる場合には磁束密度が低かった。一方、スラブ加熱温度が温度T1、T2およびT3の全て以下の場合には、良好な磁束密度が得られた。
【0094】
以上から明らかなように、本発明の範囲の操業条件によれば、良好な磁気特性を有する方向性電磁鋼板を得ることができる。
<実施例3>
表8にある組成を有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、表9にある条件でスラブを加熱した後に900℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、実施例1と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表10に示す。
【0095】
【表8】

【0096】
【表9】

【0097】
【表10】

【0098】
表8および表10より明らかなように、素材の組成が本発明の範囲を外れた比較例では皮磁束密度が低かった。しかし、素材の組成が本発明の範囲にある発明例では、良好な磁束密度が得られた。
【産業上の利用可能性】
【0099】
本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

【特許請求の範囲】
【請求項1】
質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材において、
SInsol B≧5%・・・・(1)
であることを特徴とする熱延鋼板。
ただし、SInsol Bは、発光分光分析法を用いて、放電により得られる特定成分の発光強度を順に並べ替えたパルス強度順位図を作成して、下記(2)、(3)及び(4)式により得られる値である。
Insol.成分量測定値 ={Sall−N×F(N/2)}…(2)
Total量測定値 = N×F(N/2)…(3)
Sinsol B= (Insol.成分量測定値/ Total量測定値)×100…(4)
ここで、Nは放電により得られた全パルス数から発光不良データを除いたパルス数であり、Sallは発光パルス強度x=1からNまでの全積分値であり、F(N/2)は、パルス強度順に並び替えた時、中間順位値となる強度値であり、y=F(x)はx=1からN/2までのパルス強度値を表現する関数である。
【請求項2】
質量%で、Siを0.8〜7%、酸可溶性Alを0.01〜0.065%、Nを0.004〜0.012%、Mnを0.05〜1%、Bを0.0005〜0.0080%含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003〜0.015%含有し、C含有量が0.085%以下であり、残部がFeおよび不可避的不純物からなる電磁鋼板素材をを所定の温度で加熱する工程と、
加熱された前記珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、
前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、
前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、
前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、
MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、
前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、
を有し、
更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、
前記所定の温度は、
前記珪素鋼素材にS及びSeが含有されている場合、下記(式5)で表される温度T1(℃)以下、下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記珪素鋼素材にSeが含有されていない場合、下記(式5)で表される温度T1(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記珪素鋼素材にSが含有されていない場合、下記(式6)で表される温度T2(℃)以下、かつ下記(式7)で表わされる温度T3(℃)以下であり、
前記熱間圧延鋼帯中のBN、MnS及びMnSeの量は下記(式8)、(式9)及び(式10)を満たすことを特徴とする(1)または(2)に記載の方向性電磁鋼板の製造方法。
T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(式5)
T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(式6)
T3=16000/(5.92-log([B]×[N]))-273 ・・・(式7)
BasBN≧0.0005 ・・・(式8)
[B]―BasBN≦0.001 ・・・(式9)
SasMnS+0.5×SeasMnSe≧0.002 ・・・(式10)
ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示し、[B]は前記珪素鋼素材のB含有量(質量ppm)を示し、[N]は前記珪素鋼素材のN含有量(質量ppm)を示し、BasBNは前記熱間圧延鋼帯中にBNとして析出しているBの量(質量%)を示し、SasMnSは前記熱間圧延鋼帯中にMnSとして析出しているSの量(質量%)を示し、SeasMnSeは前記熱間圧延鋼帯中にMnSeとして析出しているSeの量(質量%)を示す。
【請求項3】
前記電磁鋼板素材が、更に、質量%で、Cr:0.3%以下、Cu:0.4%以下、Ni:1%以下、P:0.5%以下、Mo:0.1%以下、Sn:0.3%以下、Sb:0.3%以下、及びBi:0.01%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−144776(P2012−144776A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−4307(P2011−4307)
【出願日】平成23年1月12日(2011.1.12)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】