説明

水素製造装置、水素製造システムおよび水素製造方法

【課題】ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できるようにする。
【解決手段】水素製造装置に、ジメチルエーテル気化器3と、水蒸気発生器4と、ジメチルエーテル気化器3から供給されるジメチルエーテルおよび水蒸気発生器4から供給される水蒸気を混合して混合ガス13を生成する混合器5と、混合ガス13を予熱する混合ガス予熱器6と、改質分離器20とを備える。改質分離器20は、水蒸気改質触媒および取り出し可能に収容された水素吸蔵材を備え、水蒸気改質触媒に予熱された混合ガス14を接触させて水蒸気改質して改質ガス22を生成し、改質ガス22を水素吸蔵材に接触させて改質ガス22に含まれる水素を水素吸蔵材に吸蔵させる。改質分離器20は、着脱可能に取り付けられた水素吸蔵材容器に水素吸蔵材を収容した水素分離器2を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ジメチルエーテルから水素を製造する水素製造装置、水素製造システムおよび水素製造方法に関する。
【背景技術】
【0002】
未来社会の1つのビジョンとして水素をエネルギー媒体とした水素エネルギー社会の実現が注目されており、いくつかの有力な水素製造方法が考えられている。現在主流の水素製造方法では、天然ガスや液化石油ガス等を原料として、触媒の存在下、700℃以上の反応温度で水蒸気改質法によって水素を製造する。この方法では、原料中に硫黄などの不純物を含むため前処理が必要であり、また、反応温度が高いため反応器構造材に耐熱性が高い材料を用いる必要がある。
【0003】
一方、ジメチルエーテルは合成燃料であり、天然ガスや液化石油ガスなどに比べ硫黄などの不純物が少ない。また、より低い温度である400℃以下の温度で、ジメチルエーテルの水蒸気改質によって水素生成が可能であることが示されている。
【0004】
また、700℃以上の高温で水蒸気改質する方法では、熱源として化石燃料の燃焼熱を利用する場合がある。この場合、水素製造に際して、燃料改質に伴って生成する二酸化炭素の他に、熱源での化石燃料燃焼により二酸化炭素が生成する。水素は、エネルギー源として利用する際には地球温暖化ガスである二酸化炭素が発生しない特徴がある一方で、その製造には二酸化炭素発生を伴っている。また、熱源に化石燃料の燃焼熱を利用した場合には、二酸化炭素の他に、硫黄酸化物といった大気汚染物質が同時に生成する。
【0005】
このように水素製造において環境負荷軽減の可能性のあるジメチルエーテルを用いる水素製造方法が知られている。また、天然ガスと比べて低温で水素生成するジメチルエーテルの特性に着目し、外部の熱源をジメチルエーテルの水蒸気改質熱に利用して原動機燃料とする方法が特許文献1に開示されている。また、発電システムの熱を利用してジメチルエーテルから水素製造する方法が特許文献2に開示されている。
【特許文献1】特開平11−106770号公報
【特許文献2】特開2003−165704号公報
【非特許文献1】岩崎和市、他、「水素利用技術集成 製造・貯蔵・エネルギー利用」、株式会社エヌ・ティー・エス、2003年11月
【発明の開示】
【発明が解決しようとする課題】
【0006】
水蒸気改質プロセスにより水素を製造する際、製造水素の純度を上げるために水蒸気改質プロセスの後段に副生成物を分離するための後処理プロセスを設けると水素製造プロセスが煩雑になる。また、ジメチルエーテルを原料として水蒸気改質によって水素製造する場合に、300℃以下の低温の熱源を用いると、水素生成率が高温操作に比べて低い。さらに、水素製造装置と水素ユーザーが離れている場合、水素製造装置で製造した水素をタンクで一時貯蔵した後、移送容器に圧縮充填して、ユーザーのもとに運搬するのが一般的である。水素は密度が小さいので、運搬効率を上げるために低温や高圧にする必要があり、安全に十分な注意が必要となる。
【0007】
そこで、本発明は、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できるようにすることを目的とする。
【課題を解決するための手段】
【0008】
上述の課題を解決するため、本発明は、ジメチルエーテルから水素を製造する水素製造装置において、ジメチルエーテル気化器と、水蒸気発生器と、前記ジメチルエーテル気化器から供給されるガス状のジメチルエーテルおよび前記水蒸気発生器から供給される水蒸気を混合して混合ガスを生成する混合器と、前記混合ガスを予熱する混合ガス予熱器と、水蒸気改質触媒および取り出し可能に収容された水素吸蔵材を備え、前記水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成し、この改質ガスを前記水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を前記水素吸蔵材に吸蔵させる改質分離器と、を有することを特徴とする。
【0009】
また、本発明は、ジメチルエーテルから水素を製造する水素製造システムにおいて、ジメチルエーテル気化器と、水蒸気発生器と、前記ジメチルエーテル気化器から供給されるガス状のジメチルエーテルおよび前記水蒸気発生器から供給される水蒸気を混合して混合ガスを生成する混合器と、前記混合ガスを予熱する混合ガス予熱器と、水蒸気改質触媒および取り出し可能に収容された水素吸蔵材を備え、前記水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成し、この改質ガスを前記水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を前記水素吸蔵材に吸蔵させる改質分離器と、を備える水素製造装置と、前記水素製造装置から取り出された前記水素吸蔵材に吸蔵された水素を放出させる水素取出装置と、を有することを特徴とする。
【0010】
また、本発明は、ジメチルエーテルから水素を製造する水素製造方法において、ジメチルエーテルを気化させるジメチルエーテル気化工程と、水を蒸発させる水蒸気発生工程と、前記ジメチルエーテル気化工程で生成されたガス状のジメチルエーテルおよび前記水蒸気発生工程で生成された水蒸気を混合した混合ガスを生成する混合工程と、前記混合ガスを予熱する混合ガス予熱工程と、水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成する改質工程と、前記改質ガスを水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を水素吸蔵材に吸蔵させる水素分離工程と、前記水素吸蔵材を水素の使用場所に輸送する輸送工程と、前記輸送工程の後に、前記水素吸蔵材から水素を放出させる工程と、を有することを特徴とする。
【発明の効果】
【0011】
本発明によれば、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。
【発明を実施するための最良の形態】
【0012】
本発明に係る水素製造装置の実施の形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。
【0013】
[第1の実施の形態]
図1は、本発明に係る水素製造装置の第1の実施の形態におけるブロック図である。
【0014】
本実施の形態の水素製造装置は、ジメチルエーテル気化器3、水蒸気発生器4、混合器5、混合ガス予熱器6および改質分離器20とを有している。
【0015】
ジメチルエーテル気化器3は、原料供給器11から供給されるジメチルエーテルを気化する。また、水蒸気発生器4は、水供給器12から供給される水から水蒸気を発生させる。混合器5は、ジメチルエーテル気化器3から供給されるガス状のジメチルエーテルおよび水蒸気発生器4から供給される水蒸気を混合して混合ガス13を生成する。この混合ガス13は、混合ガス予熱器6で水蒸気改質反応に適した温度に予熱される。ジメチルエーテルを原料とした水蒸気改質反応は、300℃以下の低温でも生じる。
【0016】
改質分離器20は、改質反応器1および水素分離器2を有している。改質反応器1には、水蒸気改質触媒が収容されている。水素分離器2には、水素吸蔵材が収容されている。予熱された混合ガス14は改質反応器1で水蒸気改質触媒と接触し、予熱された混合ガス14に含まれるジメチルエーテルおよび水蒸気を水蒸気改質原料として水蒸気改質され、改質ガス22を生成する。この改質ガス22には、次の(1)式で表される水蒸気改質反応によって生成された水素が含まれている。
【0017】
CHOCH + 3HO → 6H + 2CO (1)
改質反応器1に流入する成分の全てが(1)式の水蒸気改質反応に用いられるわけではなく、また、(1)式の水蒸気改質反応以外の副反応が生じる場合もある。このため、改質ガス22には、水素、二酸化炭素のほか、一酸化炭素、メタン、未反応のジメチルエーテル、水蒸気などが存在する。この改質ガス22は水素分離器2に送られて、水素分離器2に収容された水素吸蔵材に接触し、改質ガス22に含まれる水素の少なくとも一部は、この水素吸蔵材に吸蔵される。改質ガス22に含まれる水素は、水素吸蔵材に選択的に吸蔵されるため、水素を分離することができる。
【0018】
水素吸蔵材としては、たとえばMgNiを用いることができる。上述のような不純物に対する水素吸蔵材の耐性を高めるために、マイクロカプセル化やフッ化処理を施してもよい。MgNiの平衡水素圧は253℃において0.1MPaであり、この条件でMgNiは3.6wt%の水素を吸蔵することができる(たとえば非特許文献1参照)。つまり、ジメチルエーテルの水蒸気改質反応に適した300℃以下の温度に近い温度で、大量の水素を吸蔵することができる。
【0019】
一般的に、水素吸蔵材は低温・高圧で水素を吸蔵し、高温・低圧で水素を放出する。本実施の形態では、水素吸蔵材が水素を吸蔵する温度と同程度の低温で、水蒸気改質反応を生じさせる。このため、水素吸蔵材に水素を吸蔵させるために改質ガス22の温度を下げる工程を設ける必要がない。したがって、改質ガス22から直接水素を分離することが可能である。よって、水素を低温で効率よく製造することができる。
【0020】
高温の水素が分離された改質ガス15は、たとえばジメチルエーテル気化器3に送られてジメチルエーテルと熱交換して、ジメチルエーテルの気化に用いられる。さらに、この高温の水素が分離された改質ガス15を水蒸気発生器4に送って水と熱交換して、水蒸気の生成に用いてもよい。その後、水素が分離された改質ガス15は、たとえば排気処理器21に送られて、必要な処理を施される。
【0021】
図2は、本実施の形態における水素分離器の縦断面図である。
【0022】
水素分離器2は、水素吸蔵材容器32を有している。この水素吸蔵材容器32には、いわゆる固定床として水素吸蔵材31が収容されている。水素吸蔵材容器32には、ガス供給口33およびガス排出口34が設けられている。ガス供給口33は、改質反応器1から延びる供給配管41に着脱可能に接続されている。ガス排出口34は、ジメチルエーテル気化器3まで延びる排出配管42に着脱可能に接続されている。つまり、水素吸蔵材容器32はこの水素製造装置に着脱可能である。
【0023】
ガス供給口33から流入する改質ガス22に含まれる水素の一部は、水素吸蔵材容器32に収容された水素吸蔵材31に吸蔵される。水素が分離された改質ガス15は、ガス排出口34から排出される。水素を吸蔵した水素吸蔵材31は、水素吸蔵材容器32とともに水素製造装置から取り出すことができる。
【0024】
水素製造装置から取り外されて水素吸蔵材31を収容した水素吸蔵材容器32は、たとえばガス供給口33およびガス排出口34に蓋をすることなどにより、水素貯蔵容器あるいは輸送容器として用いることができる。つまり、この水素製造装置は、水素吸蔵材31に吸蔵させて貯蔵、輸送が容易な形態で、水素を製造することができる。
【0025】
図3は、本実施の形態における水素取出装置のブロック図である。
【0026】
この水素取出装置は、水素製造装置とともに、ジメチルエーテルから水素を製造し、その水素を適宜貯蔵、輸送した後に、エネルギー媒体として用いることができるように水素を取り出すことができる水素製造システムの一部となっている。水素取出装置は、たとえば水素吸蔵材容器32のガス排出口34に接続可能な水素取出配管51、水素取出配管51に接続されたポンプ52、および、水素吸蔵材容器32に収容された水素吸蔵材31を加熱するヒーター53を有している。
【0027】
水素製造装置から取り外された水素吸蔵材容器32は、適宜貯蔵あるいは輸送に用いられた後に、水素取り出し装置の水素取出配管51に接続される。水素吸蔵材容器32に収容された水素吸蔵材31はヒーター53によって加熱され、また、水素吸蔵材容器32の内部はポンプ52によって減圧されて、水素が放出される条件にされる。これにより、水素吸蔵材31から純度の高い水素が放出される。この水素は水素取出配管51から取り出されて、エネルギー媒体として用いられる。
【0028】
このように本実施の形態の水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。
【0029】
[第2の実施の形態]
本発明に係る水素製造装置の第2の実施の形態は、第1の実施の形態と水素分離器2が異なるものである。
【0030】
図4は、本実施の形態における水素分離器の縦断面図である。
【0031】
この水素分離器2は、容器37を有している。この容器37には、ガス供給口33、ガス排出口34、水素吸蔵材31の導入口35および取出口36が設けられている。ガス供給口33は、改質反応器1(図1参照)から延びる供給配管41に接続されている。ガス排出口34は、ジメチルエーテル気化器3まで延びる排出配管42に接続されている。容器37には、水素吸蔵材31が導入口35から導入され、取出口36から取り出されて、いわゆる移動床として水素吸蔵材31が収容されている。
【0032】
ガス供給口33から流入する改質ガス22に含まれる水素の一部は、水素吸蔵材容器32に収容された水素吸蔵材31に吸蔵される。水素が分離された改質ガス15は、ガス排出口34から排出される。水素を吸蔵した水素吸蔵材31は、取出口36から取り出される。このようにして、水素を吸蔵した水素吸蔵材31を水素製造装置から取り出すことができる。導入口35からは、取り出された水素吸蔵材31に見合う量の新品の水素吸蔵材31を導入する。
【0033】
このようにして取り出された水素吸蔵材31は、適宜容器などに収容して、水素の貯蔵あるいは輸送に用いる。この水素吸蔵材31から、たとえば第1の実施の形態における水素取出装置のような装置によって水素を取り出されて、エネルギー媒体として用いられる。
【0034】
このように本実施の形態の水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。また、粒状の水素吸蔵材を用いるため、適宜必要な量だけ水素吸蔵材を取り出して、そこから水素を取り出すことができる。さらに、水素吸蔵材を連続的に供給しながら、水素を吸蔵した水素を連続的に取り出すこともできる。
【0035】
[第3の実施の形態]
本発明に係る水素製造装置の第3の実施の形態は、第2の実施の形態と水素分離器2が異なるものである。
【0036】
図5は、本実施の形態における水素分離器の縦断面図である。
【0037】
この水素分離器2は、容器37を有している。この容器37には、ガス供給口33、ガス排出口34、水素吸蔵材31の導入口35および取出口36が設けられている。ガス供給口33は、改質反応器1(図1参照)から延びる供給配管41に接続されている。ガス排出口34は、ジメチルエーテル気化器3まで延びる排出配管42に接続されている。容器37には、水素吸蔵材31が導入口35から導入され、取出口36から取り出される。水素吸蔵材31は、ガス供給口33から流入する改質ガス22の作用により容器37の内部で流動する、いわゆる流動床として収容されている。
【0038】
ガス供給口33から流入する改質ガス22に含まれる水素の一部は、水素吸蔵材容器32に収容された水素吸蔵材31に吸蔵される。水素が分離された改質ガス15は、ガス排出口34から排出される。水素を吸蔵した水素吸蔵材31は、取出口36から取り出される。このようにして、水素を吸蔵した水素吸蔵材31を水素製造装置から取り出すことができる。導入口35からは、取り出された水素吸蔵材31に見合う量の新品の水素吸蔵材31を導入する。
【0039】
このようにして取り出された水素吸蔵材31は、適宜容器などに収容して、水素の貯蔵あるいは輸送に用いる。この水素吸蔵材31から、たとえば第1の実施の形態における水素取出装置のような装置によって水素を取り出されて、エネルギー媒体として用いられる。
【0040】
このように本実施の形態の水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。また、水素吸蔵材を流動床として収容しているため、水素吸蔵材は改質ガス22と効率よく接触し、効率よく水素を吸蔵する。
【0041】
[第4の実施の形態]
図6は、本発明に係る水素製造装置の第4の実施の形態におけるブロック図である。
【0042】
本実施の形態の水素製造装置は、第1の実施の形態と異なる改質分離器を用いたものである。本実施の形態の改質分離器24は、1台の改質反応器1、4台の水素分離器2および各水素分離器2の上流側並びに下流側に弁23を設けたものである。4台の水素分離器2は、改質反応器1とジメチルエーテル気化器3の間に並列に設けられている。弁23は、改質反応器1から送られる改質ガス22が少なくとも一つの水素分離器2に収容された水素吸蔵材31(図2参照)に接触するように切り替える切替手段である。なお、ここでは水素分離器2を4台設けた例を示しているが、水素分離器2は4台に限定されるわけではない。
【0043】
このような水素製造装置では、水素分離器2で吸蔵した水素が水素吸蔵材31の容量近くに到達したら、この水素分離器2の上流側および下流側の弁23を閉じて水素製造装置から切り離し、適宜貯蔵あるいは輸送に用いる。全ての水素分離器2を水素製造装置に取り付けて水素を製造してもよいし、一部の水素分離器2を順次水素製造装置に取り付けて水素を製造してもよい。
【0044】
このような水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。また、一部の水素分離器2を取り外した際に、他の水素分離器2を取り付けたままとしておくことにより、水素の製造を継続することができる。
【0045】
[第5の実施の形態]
図7は、本発明に係る水素製造装置の第5の実施の形態におけるブロック図である。
【0046】
本実施の形態の水素製造装置は、第4の実施の形態の改質分離器24を直列に3台設けたものである。なお、ここでは改質分離器24を3台設けた例を示しているが、改質分離器24は3台に限定されるわけではない。
【0047】
このような水素製造装置では、混合ガス予熱器6で予熱された混合ガス14は、まず1台目の改質分離器24に送られて水蒸気改質触媒と接触し、改質分離器24では(1)式で表される水蒸気改質反応が起きる。ここで生成された水素の少なくとも一部は、1台目の改質分離器24に収容された水素吸蔵材31(図2参照)に吸蔵される。改質反応器1に流入する成分の全てが(1)式の水蒸気改質反応に用いられるわけではない。このため、1台目の改質分離器24から排出されるガスにも、未反応のジメチルエーテル、水蒸気が存在する。
【0048】
1台目の改質分離器24から排出される改質ガスは、2台目の改質分離器24に送られる。2台目の改質分離器24に送られた改質ガスに含まれる未反応のジメチルエーテル、水蒸気の少なくとも一部は、(1)式で表される水蒸気改質反応を起こして、水素を含む再改質ガスが生成される。生成された水素および1台目の改質分離器24で水素吸蔵材31に吸蔵されなかった水素の少なくとも一部は、2台目の改質分離器24に収容された水素吸蔵材31に吸蔵される。3台目の改質分離器24でも、同様に未反応のジメチルエーテルおよび水蒸気を用いて水素を生成し、水素吸蔵材31に吸蔵させる。
【0049】
このような水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。また、下流側の改質分離器24において上流側の改質分離器24で未反応のジメチルエーテルを用いて水素を生成するため、水素の製造効率を向上させることができる。上流側の改質分離器24で水素吸蔵材31に吸蔵されなかった水素がある場合には、下流側の改質分離器24において水素吸蔵材31に吸蔵されることができるため、水素の回収効率を向上させることができる。
【0050】
[第6の実施の形態]
図8は、本発明に係る水素製造装置の第6の実施の形態におけるブロック図である。
【0051】
本実施の形態の水素製造装置は、第4の実施の形態における水素製造装置の改質分離器24(図6参照)を、4台の水素吸蔵材入り改質反応器10およびこれらの上流側および下流側に設けた弁23に代えたものである。水素吸蔵材入り改質反応器10は、たとえば第1の実施の形態における水素分離器2(図2参照)の水素吸蔵材31を、水素吸蔵材と水蒸気改質触媒との混合物に代えたものである。
【0052】
予熱された混合ガス14は水素吸蔵材入り改質反応器10で水蒸気改質触媒と接触し、水蒸気改質され、改質ガスを生成する。この改質ガスに含まれる水素の少なくとも一部は、水素吸蔵材入り改質反応器10に収容された水素吸蔵材に吸蔵される。水素吸蔵材に吸蔵した水素が、容量近くに達したらその水素吸蔵材入り改質反応器10を水素製造装置から切り離して、適宜貯蔵、輸送に用いる。なお、貯蔵、輸送に用いる前に、水蒸気改質触媒と水素吸蔵材とを分離して、水素吸蔵材のみを貯蔵、輸送に用いてもよい。
【0053】
このような水素製造装置では、ジメチルエーテルを原料として低温で効率よく、貯蔵、輸送が容易な形態で水素を製造できる。特に、このような水素吸蔵材入り改質反応器10を用いると、ジメチルエーテルと水蒸気から水素が生成されるとすぐに生成された水素が水素吸蔵材に吸蔵されるため、水素吸蔵材入り改質反応器10の内部の雰囲気の水素を低減することができる。したがって、(1)式で表される水蒸気改質反応は右に進むこととなり、反応率が向上する。
【0054】
[他の実施の形態]
上述の各実施の形態は単なる例示であり、本発明はこれらに限定されない。また、各実施の形態の特徴を組み合わせて実施することもできる。
【図面の簡単な説明】
【0055】
【図1】本発明に係る水素製造装置の第1の実施の形態におけるブロック図である。
【図2】本発明に係る水素製造装置の第1の実施の形態における水素分離器の縦断面図である。
【図3】本発明に係る水素製造装置の第1の実施の形態における水素取出装置のブロック図である。
【図4】本発明に係る水素製造装置の第2の実施の形態における水素分離器の縦断面図である。
【図5】本発明に係る水素製造装置の第3の実施の形態における水素分離器の縦断面図である。
【図6】本発明に係る水素製造装置の第4の実施の形態におけるブロック図である。
【図7】本発明に係る水素製造装置の第5の実施の形態におけるブロック図である。
【図8】本発明に係る水素製造装置の第6の実施の形態におけるブロック図である。
【符号の説明】
【0056】
1…改質反応器、2…水素分離器、3…ジメチルエーテル気化器、4…水蒸気発生器、5…混合器、6…混合ガス予熱器、10…水素吸蔵材入り改質反応器、11…原料供給器、12…水供給器、13…混合ガス、14…予熱された混合ガス、15…水素が分離された改質ガス、20…改質分離器、22…改質ガス、23…弁、24…改質分離器、31…水素吸蔵材、32…水素吸蔵材容器、33…ガス供給口、34…ガス排出口、35…導入口、36…取出口、37…容器、41…供給配管、42…排出配管、51…水素取出配管、52…ポンプ、53…ヒーター

【特許請求の範囲】
【請求項1】
ジメチルエーテルから水素を製造する水素製造装置において、
ジメチルエーテル気化器と、
水蒸気発生器と、
前記ジメチルエーテル気化器から供給されるガス状のジメチルエーテルおよび前記水蒸気発生器から供給される水蒸気を混合して混合ガスを生成する混合器と、
前記混合ガスを予熱する混合ガス予熱器と、
水蒸気改質触媒および取り出し可能に収容された水素吸蔵材を備え、前記水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成し、この改質ガスを前記水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を前記水素吸蔵材に吸蔵させる改質分離器と、
を有することを特徴とする水素製造装置。
【請求項2】
前記改質分離器は、着脱可能に取り付けられて前記水素吸蔵材を収容する水素吸蔵材容器を備えることを特徴とする請求項1に記載の水素製造装置。
【請求項3】
前記水素吸蔵材容器は複数であって、前記改質分離器は前記改質ガスが少なくとも一つの前記水素吸蔵材容器に収容された前記水素吸蔵材に接触するように切り替える切替手段を備えることを特徴とする請求項2に記載の水素製造装置。
【請求項4】
前記水素吸蔵材は粒状に形成され、前記改質分離器は前記水素吸蔵材を取り出す取出口を備えて前記水素吸蔵材を移動床および流動床のいずれかとして保持することを特徴とする請求項1に記載の水素製造装置。
【請求項5】
前記水蒸気改質触媒と前記水素吸蔵材とは混合されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の水素製造装置。
【請求項6】
前記改質分離器は、前記改質ガスをさらに前記水蒸気改質触媒に接触させて再改質ガスを生成し、この再改質ガスをさらに前記水素吸蔵材に接触させてこの再改質ガスに含まれる水素の少なくとも一部を前記水素吸蔵材に吸蔵させることを特徴とする請求項1ないし請求項5のいずれか1項に記載の水素製造装置。
【請求項7】
ジメチルエーテルから水素を製造する水素製造システムにおいて、
ジメチルエーテル気化器と、水蒸気発生器と、前記ジメチルエーテル気化器から供給されるガス状のジメチルエーテルおよび前記水蒸気発生器から供給される水蒸気を混合して混合ガスを生成する混合器と、前記混合ガスを予熱する混合ガス予熱器と、水蒸気改質触媒および取り出し可能に収容された水素吸蔵材を備え、前記水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成し、この改質ガスを前記水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を前記水素吸蔵材に吸蔵させる改質分離器と、を備える水素製造装置と、
前記水素製造装置から取り出された前記水素吸蔵材に吸蔵された水素を放出させる水素取出装置と、
を有することを特徴とする水素製造システム。
【請求項8】
前記水素取出装置は、前記水素吸蔵材を加熱するヒーターと、前記水素吸蔵材の周囲を減圧するポンプを備えることを特徴とする請求項7に記載の水素製造システム。
【請求項9】
ジメチルエーテルから水素を製造する水素製造方法において、
ジメチルエーテルを気化させるジメチルエーテル気化工程と、
水を蒸発させる水蒸気発生工程と、
前記ジメチルエーテル気化工程で生成されたガス状のジメチルエーテルおよび前記水蒸気発生工程で生成された水蒸気を混合した混合ガスを生成する混合工程と、
前記混合ガスを予熱する混合ガス予熱工程と、
水蒸気改質触媒に予熱された前記混合ガスを接触させて水蒸気改質して改質ガスを生成する改質工程と、
前記改質ガスを水素吸蔵材に接触させてこの改質ガスに含まれる水素の少なくとも一部を水素吸蔵材に吸蔵させる水素分離工程と、
前記水素吸蔵材を水素の使用場所に輸送する輸送工程と、
前記輸送工程の後に、前記水素吸蔵材から水素を放出させる工程と、
を有することを特徴とする水素製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−266079(P2008−266079A)
【公開日】平成20年11月6日(2008.11.6)
【国際特許分類】
【出願番号】特願2007−112588(P2007−112588)
【出願日】平成19年4月23日(2007.4.23)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】