説明

永久磁石及び永久磁石の製造方法

【課題】焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジウム磁石の微粉末に対して、M−(OR)(式中、MはDy又はTbであるRは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、永久磁石及び永久磁石の製造方法に関する。
【背景技術】
【0002】
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm−Co系磁石、Nd−Fe−B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd−Fe−B系磁石が永久磁石モータ用の永久磁石として用いられる。
【0003】
ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では800℃〜1150℃)で焼結することにより製造する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第3298219号公報(第4頁、第5頁)
【発明の概要】
【発明が解決しようとする課題】
【0005】
一方、Nd−Fe−B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の残留磁束密度が徐々に低下することとなっていた。また、不可逆減磁も生じることとなっていた。そこで、Nd系磁石を永久磁石モータに用いる場合には、Nd系磁石の耐熱性を向上させるために、磁気異方性の高いDy(ジスプロシウム)やTb(テルビウム)を添加し、磁石の保磁力を更に向上させることが図られている。
【0006】
ここで、DyやTbを添加する方法としては、従来より、焼結磁石の表面にDyやTbを付着させ、拡散させる粒界拡散法と、主相と粒界相に対応する粉末を別々に製造し、混合(ドライブレンド)する2合金法がある。前者は、板状や小片には有効だが、大型の磁石では内部の粒界相までDyやTbの拡散距離を伸ばせない欠点がある。後者は、2つの合金をブレンドしプレスして磁石を作製するため、DyやTbが粒内に拡散してしまい、粒界に偏在させることが出来ない欠点がある。
【0007】
また、DyやTbは希少金属であり、産出地も限られていることから、Ndに対するDyやTbの使用量は少しでも抑えることが望ましい。更に、DyやTbを多量に添加すると、磁石の強さを示す残留磁束密度が低下してしまう課題もある。そこで、微量のDyやTbを効率よく粒界に偏在させることによって、残留磁束密度を低下させることなく磁石の保磁力を大きく向上させる技術が望まれていた。
【0008】
また、DyやTbを有機溶媒中に分散させた状態でNd系磁石に添加することにより、DyやTbを磁石の粒界に対して偏在配置することも考えられる。しかしながら、一般的に有機溶媒を磁石に添加すると、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしてもC含有物が磁石内に残留することとなる。そして、Ndと炭素との反応性が非常に高いため、焼結工程において高温までC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相と粒界相との間に空隙が生じ、磁石全体を緻密に焼結できずに磁気性能が著しく低下する問題があった。また、空隙が生じなかった場合でも、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題があった。
【0009】
本発明は前記従来における問題点を解消するためになされたものであり、有機金属化合物に含まれる微量のDyやTbを磁石の粒界に対して効率よく偏在配置することが可能となるとともに、有機金属化合物が添加された磁石粉末の成形体を、焼結前に水素雰囲気で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができ、その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
前記目的を達成するため本願の請求項1に係る永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M−(OR)(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、前記成形体を水素雰囲気で仮焼して仮焼体を得る工程と、前記仮焼体を焼結する工程と、により製造されることを特徴とする。
【0011】
また、請求項2に係る永久磁石は、請求項1に記載の永久磁石において、前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする。
【0012】
また、請求項3に係る永久磁石は、請求項1又は請求項2に記載の永久磁石において、前記構造式M−(OR)のRが、アルキル基であることを特徴とする。
【0013】
また、請求項4に係る永久磁石は、請求項3に記載の永久磁石において、前記構造式M−(OR)のRが、炭素数2〜6のアルキル基のいずれかであることを特徴とする。
【0014】
また、請求項5に係る永久磁石は、請求項1乃至請求項4のいずれかに記載の永久磁石において、焼結後に残存する炭素量が0.2wt%未満であることを特徴とする。
【0015】
また、請求項6に係る永久磁石は、請求項1乃至請求項5のいずれかに記載の永久磁石において、前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする。
【0016】
また、請求項7に係る永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M−(OR)(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、前記成形体を水素雰囲気で仮焼して仮焼体を得る工程と、前記仮焼体を焼結する工程と、を有することを特徴とする。
【0017】
また、請求項8に係る永久磁石の製造方法は、請求項7に記載の永久磁石の製造方法において、前記構造式M−(OR)のRが、アルキル基であることを特徴とする。
【0018】
また、請求項9に係る永久磁石の製造方法は、請求項8に記載の永久磁石の製造方法において、前記構造式M−(OR)のRが、炭素数2〜6のアルキル基のいずれかであることを特徴とする。
【0019】
更に、請求項10に係る永久磁石の製造方法は、請求項7乃至請求項9のいずれかに記載の永久磁石の製造方法において、前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする。
【発明の効果】
【0020】
前記構成を有する請求項1に記載の永久磁石によれば、添加された有機金属化合物に含まれる微量のDyやTbを磁石の粒界に効率よく偏在させることができる。また、有機金属化合物が添加された磁石粉末の成形体を、焼結前に水素雰囲気で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
【0021】
また、請求項2に記載の永久磁石によれば、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在するので、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。また、DyやTbの添加量が従来に比べて少ないので、残留磁束密度の低下を抑制することができる。
【0022】
また、請求項3に記載の永久磁石によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で成形体を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、成形体中の炭素量をより確実に低減させることが可能となる。
【0023】
また、請求項4に記載の永久磁石によれば、磁石粉末に添加する有機金属化合物として、炭素数2〜6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を成形体全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
【0024】
また、請求項5に記載の永久磁石によれば、焼結後に残存する炭素量が0.2wt%未満であるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
【0025】
また、請求項6に記載の永久磁石によれば、成形体を仮焼する工程は、200℃〜900℃の温度範囲で成形体を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
【0026】
また、請求項7に記載の永久磁石の製造方法によれば、添加された有機金属化合物に含まれる微量のDyやTbを磁石の粒界に効率よく偏在させた永久磁石を製造することが可能となる。また、有機金属化合物が添加された磁石粉末の成形体を、焼結前に水素雰囲気で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
【0027】
また、請求項8に記載の永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で成形体を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、成形体中の炭素量をより確実に低減させることが可能となる。
【0028】
また、請求項9に記載の永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、炭素数2〜6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を成形体全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
【0029】
更に、請求項10に記載の永久磁石の製造方法によれば、成形体を仮焼する工程は、200℃〜900℃の温度範囲で成形体を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
【図面の簡単な説明】
【0030】
【図1】本発明に係る永久磁石を示した全体図である。
【図2】本発明に係る永久磁石の粒界付近を拡大して示した模式図である。
【図3】強磁性体のヒステリシス曲線を示した図である。
【図4】強磁性体の磁区構造を示した模式図である。
【図5】本発明に係る永久磁石の第1の製造方法における製造工程を示した説明図である。
【図6】本発明に係る永久磁石の第2の製造方法における製造工程を示した説明図である。
【図7】水素中仮焼処理を行った場合と行わなかった場合の酸素量の変化を示した図である。
【図8】実施例1、2と比較例1、2の永久磁石の永久磁石中の残存炭素量を示した図である。
【図9】実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。
【図10】実施例2の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。
【図11】実施例3と比較例3、4の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量を示した図である。
【発明を実施するための形態】
【0031】
以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。
【0032】
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は円柱形状を備えるが、永久磁石1の形状は成形に用いるキャビティの形状によって変化する。
本発明に係る永久磁石1としては例えばNd−Fe−B系磁石を用いる。また、永久磁石1を形成する各Nd結晶粒子の界面(粒界)には、永久磁石1の保磁力を高める為のDy(ジスプロシウム)やTb(テルビウム)が偏在する。尚、各成分の含有量はNd:25〜37wt%、Dy(又はTb):0.01〜5wt%、B:1〜2wt%、Fe(電解鉄):60〜75wt%とする。また、磁気特性向上の為、Co、Cu、Al、Si等の他元素を少量含んでも良い。
【0033】
具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子10の表面にDy層(又はTb層)11をコーディングすることにより、DyやTbをNd結晶粒子10の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子10を拡大して示した図である。
【0034】
図2に示すように永久磁石1は、Nd結晶粒子10と、Nd結晶粒子10の表面をコーディングするDy層(又はTb層)11から構成される。尚、Nd結晶粒子10は、例えばNdFe14B金属間化合物から構成され、Dy層11は例えば(DyNd1-xFe14B金属間化合物から構成される。
【0035】
以下に、Dy層(又はTb層)11による永久磁石1の保磁力向上の機構について図3及び図4を用いて説明する。図3は強磁性体のヒステリシス曲線を示した図、図4は強磁性体の磁区構造を示した模式図である。
図3に示すように永久磁石の保磁力は、磁化された状態から逆方向への磁場を加えていった際に、磁気分極を0にする(即ち、磁化反転する)のに必要な磁場の強さである。従って、磁化反転を抑制することができれば、高い保磁力を得ることができる。尚、磁性体の磁化過程には、磁気モーメントの回転に基づく回転磁化と、磁区の境界である磁壁(90°磁壁と180°磁壁からなる)が移動する磁壁移動がある。また、本発明が対象とするNd−Fe−B系のような焼結体磁石では、逆磁区は主相である結晶粒の表面近傍において最も発生しやすい。従って、本発明ではNd結晶粒子10の結晶粒の表面部分(外殻)において、Ndの一部をDy又はTbで置換した相を生成し、逆磁区の生成を抑制する。尚、NdFe14B金属間化合物の保磁力を高める(磁化反転を阻止する)という効果の点において、磁気異方性の高いDyとTbはいずれも有効な元素である。
【0036】
ここで、本発明ではDy、Tbの置換は、後述のように粉砕された磁石粉末を成形する前にDy(又はTb)を含む有機金属化合物が添加されることにより行われる。具体的には、Dy(又はTb)を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd磁石粒子の粒子表面に均一付着された該有機金属化合物中のDy(又はTb)が、Nd磁石粒子の結晶成長領域へと拡散侵入して置換が行われ、図2に示すDy層(又はTb層)11を形成する。その結果、図4に示すようにNd結晶粒子10の界面にDy(又はTb)が偏在化され、永久磁石1の保磁力を向上させることができる。
【0037】
また、本発明では、特に後述のようにM−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるDy(又はTb)を含む有機金属化合物(例えば、ジスプロシウムn−プロポキシド、ジスプロシウムn−ブトキシドなど)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Dy(又はTb)を含む有機金属化合物を有機溶媒中で分散させ、Nd磁石粒子の粒子表面にDy(又はTb)を含む有機金属化合物を効率よく付着することが可能となる。
【0038】
ここで、上記M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドは、一般式M−(OR)n(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、Dy又はTbを用いる。
【0039】
また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特にRに含まれる炭素数が2〜6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。即ち、本発明では、特に磁石粉末に添加する有機金属化合物としてM−(OR)x(式中、MはDy又はTbである。Rはアルキル基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物、より好ましくは、M−(OR)x(式中、MはDy又はTbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を用いることが望ましい。
【0040】
また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、DyやTbが結晶粒子10内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、DyやTbを添加したとしてもDyやTbによる置換領域を外殻部分のみとすることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
【0041】
尚、Dy層(又はTb層)11はDy化合物(又はTb化合物)のみから構成される層である必要はなく、Dy化合物(又はTb化合物)とNd化合物との混合体からなる層であっても良い。その場合には、Nd化合物を添加することによって、Dy化合物(又はTb化合物)とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。尚、添加するNd化合物としては、NdH、酢酸ネオジム水和物、ネオジム(III)アセチルアセトナート三水和物、2−エチルヘキサン酸ネオジム(III)、ネオジム(III)ヘキサフルオロアセチルアセトナート二水和物、ネオジムイソプロポキシド、リン酸ネオジニウム(III)n水和物、ネオジムトリフルオロアセチルアセトナート、トリフルオロメタンスルホン酸ネオジム等が望ましい。
【0042】
尚、Dy又はTbをNd結晶粒子10の粒界に対して偏在させる構成としては、Nd結晶粒子10の粒界に対してDy又はTbからなる粒を点在させる構成としても良い。そのような構成であっても、同様の効果を得ることが可能となる。尚、Dy又はTbがNd結晶粒子10の粒界に対してどのように偏在しているかは、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。
【0043】
[永久磁石の製造方法1]
次に、本発明に係る永久磁石1の第1の製造方法について図5を用いて説明する。図5は本発明に係る永久磁石1の第1の製造方法における製造工程を示した説明図である。
【0044】
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
【0045】
次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、所定サイズ以下(例えば0.1μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
【0046】
一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液を作製する。ここで、有機金属化合物溶液には予めDy(又はTb)を含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M−(OR)x(式中、MはDy又はTbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ジスプロシウムn−プロポキシド、ジスプロシウムn−ブトキシドなど)を用いることが望ましい。また、溶解させるDy(又はTb)を含む有機金属化合物の量は特に制限されないが、前記したように焼結後の磁石に対するDy(又はTb)の含有量が0.001wt%〜10wt%、好ましくは0.01wt%〜5wt%となる量とするのが好ましい。
【0047】
続いて、ジェットミル41にて分級された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
【0048】
その後、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末を成形装置50により所定形状に圧粉成形する。尚、圧粉成形には、上記の乾燥した微粉末をキャビティに充填する乾式法と、溶媒などでスラリー状にしてからキャビティに充填する湿式法があるが、本発明では乾式法を用いる場合を例示する。また、有機金属化合物溶液は成形後の焼成段階で揮発させることも可能である。
【0049】
図5に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。
また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填された磁石粉末43に印加する。印加させる磁場は例えば1MA/mとする。
【0050】
そして、圧粉成形を行う際には、先ず乾燥した磁石粉末43をキャビティ54に充填する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填された磁石粉末43に対して矢印61方向に圧力を加え、成形する。また、加圧と同時にキャビティ54に充填された磁石粉末43に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。それによって、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、磁石粉末43から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。
また、湿式法を用いる場合には、キャビティ54に磁場を印加しながらスラリーを注入し、注入途中又は注入終了後に、当初の磁場より強い磁場を印加して湿式成形しても良い。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。
【0051】
次に、圧粉成形により成形された成形体71を水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が0.2wt%未満、より好ましくは0.1wt%未満とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
【0052】
ここで、上述した水素中仮焼処理によって仮焼された成形体71には、NdHが存在し、酸素と結び付きやすくなる問題があるが、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく後述の焼成に移るため、脱水素工程は不要となる。焼成中に成形体中の水素は抜けることとなる。
【0053】
続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。尚、成形体71の焼結方法としては、一般的な真空焼結以外に成形体71を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃〜1080℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10−4Torr以下とすることが好ましい。その後冷却し、再び600℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
【0054】
一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を30MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び600℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
【0055】
[永久磁石の製造方法2]
次に、本発明に係る永久磁石1の他の製造方法である第2の製造方法について図6を用いて説明する。図6は本発明に係る永久磁石1の第2の製造方法における製造工程を示した説明図である。
【0056】
尚、スラリー42を生成するまでの工程は、図5を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
【0057】
先ず、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末43を水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、残存する有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が0.2wt%未満、より好ましくは0.1wt%未満とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
【0058】
次に、水素中仮焼処理によって仮焼された粉末状の仮焼体82を真空雰囲気で200℃〜600℃、より好ましくは400℃〜600℃で1〜3時間保持することにより脱水素処理を行う。尚、真空度としては0.1Torr以下とすることが好ましい。
【0059】
ここで、上述した水素中仮焼処理によって仮焼された仮焼体82には、NdHが存在し、酸素と結び付きやすくなる問題がある。
図7は水素中仮焼処理をしたNd磁石粉末と水素中仮焼処理をしていないNd磁石粉末とを、酸素濃度7ppm及び酸素濃度66ppmの雰囲気にそれぞれ暴露した際に、暴露時間に対する磁石粉末内の酸素量を示した図である。図7に示すように水素中仮焼処理した磁石粉末は、高酸素濃度66ppm雰囲気におかれると、約1000secで磁石粉末内の酸素量が0.4%から0.8%まで上昇する。また、低酸素濃度7ppm雰囲気におかれても、約5000secで磁石粉末内の酸素量が0.4%から同じく0.8%まで上昇する。そして、Ndが酸素と結び付くと、残留磁束密度や保磁力の低下の原因となる。
そこで、上記脱水素処理では、水素中仮焼処理によって生成された仮焼体82中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、水素仮焼中処理により活性化された仮焼体82の活性度を低下させる。それによって、水素中仮焼処理によって仮焼された仮焼体82をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
【0060】
その後、脱水素処理が行われた粉末状の仮焼体82を成形装置50により所定形状に圧粉成形する。成形装置50の詳細については図5を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
【0061】
その後、成形された仮焼体82を焼結する焼結処理を行う。尚、焼結処理は、上述した第1の製造方法と同様に、真空焼結や加圧焼結等により行う。焼結条件の詳細については既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。そして、焼結の結果、永久磁石1が製造される。
【0062】
尚、上述した第2の製造方法では、粉末状の磁石粒子に対して水素中仮焼処理を行うので、成形後の磁石粒子に対して水素中仮焼処理を行う前記第1の製造方法と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる利点がある。即ち、前記第1の製造方法と比較して仮焼体中の炭素量をより確実に低減させることが可能となる。
一方、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく焼成に移るため、脱水素工程は不要となる。従って、前記第2の製造方法と比較して製造工程を簡略化することが可能となる。但し、前記第2の製造方法においても、水素仮焼後に外気と触れさせることがなく焼成を行う場合には、脱水素工程は不要となる。
【実施例】
【0063】
以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
実施例1のネオジム磁石粉末の合金組成は、化学量論組成に基づく分率(Nd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)よりもNdの比率を高くし、例えばwt%でNd/Fe/B=32.7/65.96/1.34とする。また、粉砕したネオジム磁石粉末にDy(又はTb)を含む有機金属化合物としてジスプロシウムn−プロポキシドを5wt%添加した。また、仮焼処理は、磁石粉末の成形体を水素雰囲気において600℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。また、成形された仮焼体の焼結はSPS焼結により行った。尚、他の工程は上述した[永久磁石の製造方法1]と同様の工程とする。
【0064】
(実施例2)
添加する有機金属化合物をジスプロシウムn−ブトキシドとした。他の条件は実施例1と同様である。
【0065】
(実施例3)
成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
【0066】
(比較例1)
添加する有機金属化合物をジスプロシウムn−プロポキシドとし、水素中仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
【0067】
(比較例2)
添加する有機金属化合物をジスプロシウムn−ブトキシドとし、水素中仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
【0068】
(比較例3)
仮焼処理を水素雰囲気ではなくHe雰囲気で行った。また、成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
【0069】
(比較例4)
仮焼処理を水素雰囲気ではなく真空雰囲気で行った。また、成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
【0070】
(実施例と比較例の残炭素量の比較検討)
図8は実施例1、2と比較例1、2の永久磁石の永久磁石中の残存炭素量[wt%]をそれぞれ示した図である。
図8に示すように、実施例1、2は比較例1、2と比較して磁石粒子中に残存する炭素量を大きく低減させることができることが分かる。特に、実施例1、2では、磁石粒子中に残存する炭素量を0.2wt%未満とすることができる。
【0071】
また、実施例1、2と比較例1、2とを比較すると、同一の有機金属化合物を添加しているにもかかわらず、水素中仮焼処理を行った場合は、水素中仮焼処理を行わない場合と比較して、磁石粒子中の炭素量を大きく低減させることができることが分かる。即ち、水素中仮焼処理によって有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンを行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
【0072】
また、実施例1、2の永久磁石中の残存炭素量を参照すると、M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を添加した場合には、磁石粒子中の炭素量を大きく低減させることができることが分かる。即ち、添加する有機金属化合物を、M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物とすることにより、水素中仮焼処理において脱カーボンを容易に行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物、より好ましくは炭素数2〜6のアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を成形体全体に対してより容易に行うことができる。
【0073】
(実施例の永久磁石におけるXMAによる表面分析結果検討)
実施例1、2の永久磁石についてXMAによる表面分析を行った。図9は実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。図10は実施例2の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。
図9、図10に示すように実施例1、2の各永久磁石では、粒界相から酸化物又は非酸化物としてのDyが検出されている。即ち、実施例1、2の永久磁石では、粒界相から主相へとDyが拡散し、主相粒子の表面部分(外殻)において、Ndの一部をDyで置換した相が主相粒子の表面(粒界)に生成されていることが分かる。即ち、実施例1、2の永久磁石は、磁石の粒界にDyを偏在させることができていることが分かる。
【0074】
(実施例のSEM写真の検討)
また、実施例1、2の各SEM写真を参照すると、残留炭素量が一定量以下(例えば0.2wt%以下)である実施例1、2では、基本的にネオジム磁石の主相(NdFe14B)91と白い斑点状に見える粒界相92から焼結後の永久磁石が形成されている。また、少量ではあるがαFe相についても形成されている。それに対して、実施例1、2に比べて残留炭素量が多い比較例1、2は、主相91や粒界相92に加えてαFe相が多数形成されることが予想される。ここで、αFeは焼結時において残留しているカーバイドによって生じるものである。即ち、NdとCとの反応性が非常に高いため、比較例1、2のように焼結工程において高温まで有機金属化合物中のC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させることとなる。
【0075】
一方、実施例1、2では、上述したように適切な有機金属化合物を用い、且つ水素中仮焼処理を行うことによって、有機金属化合物を熱分解させ、含有する炭素を予め焼失(炭素量を低減)させることができる。特に、仮焼する際の温度を200℃〜900℃、より好ましくは400℃〜900℃とすることによって、含有する炭素を必要量以上焼失させることができ、焼結後に磁石内に残存する炭素量を0.2wt%未満、より好ましくは0.1wt%未満とすることが可能となる。そして、磁石内に残存する炭素量が0.2wt%未満である実施例1、2では、焼結工程でカーバイドがほとんど形成されることがなく、比較例1、2のようにαFe相が多数形成される虞がない。その結果、図9、図10に示すように、焼結処理で永久磁石1全体を緻密に焼結させることが可能となる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。更に、保磁力向上に寄与するDy又はTbのみを選択的に主相粒界に偏在させることも可能となる。尚、本発明はこのように低温分解で残炭を抑制するという観点から、添加する有機金属化合物としては低分子量のもの(例えば、炭素数2〜6のアルキル基から構成されるもの)が好ましく用いられる。
【0076】
(水素中仮焼処理の条件に基づく実施例と比較例との比較検討)
図11は実施例3と比較例3、4の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量[wt%]を示した図である。尚、図11では仮焼中の水素及びヘリウムの供給量を1L/minとし、3時間保持した結果を示す。
図11に示すように、He雰囲気や真空雰囲気で仮焼した場合と比較して、水素雰囲気で仮焼した場合には磁石粒子中の炭素量をより大きく低減させることができることが分かる。また、図11からは、磁石粉末を水素雰囲気で仮焼する際の仮焼温度を高温にすれば炭素量がより大きく低減し、特に400℃〜900℃とすることによって炭素量を0.2wt%未満とすることが可能であることが分かる。
【0077】
尚、上記実施例1〜3及び比較例1〜4は、[永久磁石の製造方法1]の工程で製造された永久磁石を用いたが、[永久磁石の製造方法2]の工程で製造された永久磁石を用いた場合でも同様の結果を得られる。
【0078】
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕されたネオジム磁石の微粉末に対して、M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、真空焼結や加圧焼結を行うことによって永久磁石1を製造する。それにより、従来に比べてDyやTbの添加する量を少量としたとしても、添加されたDyやTbを磁石の粒界に効率よく偏在させることができる。その結果、DyやTbの使用量を減少させ、残留磁束密度の低下を抑制できるとともに、DyやTbによる保磁力の向上を十分に図ることが可能となる。また、他の有機金属化合物を添加する場合と比較して脱カーボンを容易に行うことが可能であり、焼結後の磁石内に含まれる炭素によって保磁力が低下する虞が無く、また、磁石全体を緻密に焼結することが可能となる。
更に、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在するので、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。また、DyやTbの添加量が従来に比べて少ないので、残留磁束密度の低下を抑制することができる。
また、有機金属化合物が添加された磁石を、焼結前に水素雰囲気で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物、より好ましくは炭素数2〜6のアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で磁石粉末や成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を磁石粉末全体や成形体全体に対してより容易に行うことができる。
更に、磁石粉末や成形体を仮焼する工程は、特に200℃〜900℃、より好ましくは400℃〜900℃の温度範囲で成形体を所定時間保持することにより行うので、磁石粒子中に含有する炭素を必要量以上焼失させることができる。
その結果、焼結後に磁石に残存する炭素量が0.2wt%未満、より好ましくは0.1wt%未満となるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、特に第2の製造方法では、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。また、仮焼処理後に脱水素処理を行うことによって、仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
また、脱水素処理を行う工程は、200℃〜600℃の温度範囲で磁石粉末を所定時間保持することにより行うので、水素仮焼中処理を行ったNd系磁石中に活性度の高いNdHが生成された場合であっても、残さずに活性度の低いNdHへと移行させることが可能となる。
【0079】
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
また、磁石粉末の粉砕条件、混練条件、仮焼条件、脱水素条件、焼結条件などは上記実施例に記載した条件に限られるものではない。
【0080】
また、上記実施例1〜3では磁石粉末に添加するDy又はTbを含む有機金属化合物としてジスプロシウムn−プロポキシド又はジスプロシウムn−ブトキシドを用いているが、M−(OR)x(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物であれば、他の有機金属化合物であっても良い。例えば、炭素数が7以上のアルキル基から構成される有機金属化合物や、アルキル基以外の炭化水素からなる置換基から構成される有機金属化合物を用いても良い。
【符号の説明】
【0081】
1 永久磁石
10 Nd結晶粒子
11 Dy層(Tb層)
91 主相
92 粒界相

【特許請求の範囲】
【請求項1】
磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末に以下の構造式
M−(OR)
(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、
前記成形体を水素雰囲気で仮焼して仮焼体を得る工程と、
前記仮焼体を焼結する工程と、
により製造されることを特徴とする永久磁石。
【請求項2】
前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする請求項1に記載の永久磁石。
【請求項3】
前記構造式中のRは、アルキル基であることを特徴とする請求項1又は請求項2に記載の永久磁石。
【請求項4】
前記構造式中のRは、炭素数2〜6のアルキル基のいずれかであることを特徴とする請求項3に記載の永久磁石。
【請求項5】
焼結後に残存する炭素量が0.2wt%未満であることを特徴とする請求項1乃至請求項4のいずれかに記載の永久磁石。
【請求項6】
前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする請求項1乃至請求項5のいずれかに記載の永久磁石。
【請求項7】
磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末に以下の構造式
M−(OR)
(式中、MはDy又はTbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、
前記成形体を水素雰囲気で仮焼して仮焼体を得る工程と、
前記仮焼体を焼結する工程と、
を有することを特徴とする永久磁石の製造方法。
【請求項8】
前記構造式中のRは、アルキル基であることを特徴とする請求項7に記載の永久磁石の製造方法。
【請求項9】
前記構造式中のRは、炭素数2〜6のアルキル基のいずれかであることを特徴とする請求項8に記載の永久磁石の製造方法。
【請求項10】
前記成形体を仮焼する工程は、200℃〜900℃の温度範囲で前記成形体を所定時間保持することを特徴とする請求項7乃至請求項9のいずれかに記載の永久磁石の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図11】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−228658(P2011−228658A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2011−69066(P2011−69066)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(000003964)日東電工株式会社 (5,557)
【Fターム(参考)】