説明

流体搬送路、流体処理装置および流体処理システム

【課題】流路を流れる流体の速度分布を流路中心軸に対して対象にし、下流に設けられた分岐部において、流体を略均等に分配させる流体搬送路を提供する。
【解決手段】流体を流入させる流入口と、流体を搬送する流路と、前記流路中に設けられた流体の進行方向を変化させ分岐させる分岐部と、該分岐部を経た流体を流出させる複数の流出口とを有する流体搬送路であって、前記流入口と、前記分岐部との間に流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有し、第二の円弧は(A−1)×θの角度を有する流体搬送路。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体搬送路、流体同士を混合または反応させるための流体処理装置および流体処理システムに関し、特に流体を高速で搬送する流体搬送路および流体処理装置に好適なものである。
【背景技術】
【0002】
近年、インクジェットプリンタに用いられる顔料等の製造に係る化学工業や、医薬品、試薬等の製造に係る医薬品工業の分野では、マイクロミキサ又はマイクロリアクタと呼ばれる微小容器を用いた新しい製造プロセスの開発が進められている。従来のバッチ式の反応装置においては一次生成物が反応装置内で引き続き反応をすることから、生成物の不均一性が生じる恐れがある。特に微粒子を製造する場合においては、いちど生成した微粒子の一次粒子が反応によりさらに成長し、微粒子の大きさに不均一さが生じてしまう可能性がある。それに対しマイクロミキサでは流体同士がマイクロスケールの流路内を連続的に殆ど滞留することなく流通するため、一度生成した微粒子が再び反応することを防止でき、微粒子の大きさの均一性を高めることができる。なお、マイクロミキサとマイクロリアクタとは基本的な構造が共通とされているが、特に、複数の溶液を混合する際に化学反応を伴うものをマイクロリアクタと言う場合がある。このことから、マイクロミキサには、マイクロリアクタが含まれるものとして以下の説明を行う。
【0003】
このようなマイクロミキサとしては、図21に示すように、2つの液体を高速で混合して固体析出物を生成する方法が開示されている(特許文献1)。これは、2つの液体がオリフィス2101、2102に供給され、続いて末広がり遮蔽部2103を高速で通過することにより、ジェット衝突混合室2104にて固体析出物を生成する方法である。また、図22に示すように、斜めのノズルが機械加工により形成された金属製のマイクロミキサが販売されている(Institut fur Mikrotechnik Mainz社製、Impinging Jet Micro Mixer)。これは、ノズル2201、2202より液体を噴出させ、噴出された液体を空気中で混合させるマイクロミキサである。上記のような特徴を有するマイクロミキサを用いれば、混合及び反応の場として大容積のタンク等を用いた従来のバッチ法と比較し、微小でかつ狭い粒度分布を有する粒子を生成することができる。
【0004】
上記のような技術について、生産性を上げるためには、ノズルを多数作製する必要がある。また、多数のノズルに均等に液体を供給するための流路が必要である。このような流路としては、図23に示すように流路の出口から入口までの流路長さを等しくする方法が開示されている(特許文献2)。これは、入口2301から出口2302までの流抵抗が等しいため、流出口ごとの流体の流出圧力を均一にすることができる。
【特許文献1】特開2002−336667号公報
【特許文献2】特開平07−090572号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上記のような供給用流路において、供給する流量を増加させると、供給用流路を流れる流体の流速は大きくなる。流速が大きいとき、流路の曲がった部分を通過した流体は、進行方向の変化に依存した速度分布の偏りを形成する。速度分布に偏りをもったまま、下流に設けられた分岐部に進入すると、分配量に差が生じる。分岐を何度も繰り返すことにより、流出口での流量のばらつきが大きくなる。その結果、混合もしくは反応の均一性が保ちにくくなる問題があった。
【0006】
また、ノズルから噴出させた2つの流体を衝突させて混合・反応させる流体処理装置において、ノズルを複数組設けて生産性を上げようとすると、供給する流量が増加する。このとき、ノズルごとの噴出流量のばらつきが大きくなり、反応の均一化の妨げとなる場合がある。
【0007】
本発明はこの様な背景技術に鑑みてなされたものである。
本発明は、高速で流体を搬送し、複数の流出口に分配させる流体搬送路において、流体の速度分布を流路の中心軸に対して対象にすることにより、分配される流量のばらつきを低減できる流体搬送路を提供するものである。
【0008】
また、本発明は、多数のノズルから流体を衝突させて、流体の混合または反応を行う流体処理装置において、噴出流量のばらつきを低減することにより、混合または反応の均一性を向上した流体処理装置を提供するものである。
【0009】
また、本発明は、上記の混合または反応の均一性を向上した流体処理装置を用いた流体処理システムを提供するものである。
【課題を解決するための手段】
【0010】
上記課題を解決するための流体搬送路は、流体を流入させる流入口と、流体を搬送する流路と、前記流路中に設けられた流体の進行方向を変化させ分岐させる分岐部と、該分岐部を経た流体を流出させる複数の流出口とを有する流体搬送路であって、前記流入口と、前記分岐部と、の間に流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有しており、第二の円弧は(A−1)×θの角度を有していることを特徴とする。
【0011】
また、上記課題を解決するための流体搬送路は、流体を流入させる1個の流入口から、流体の進行方向を変化させ分岐させる分岐部で第一の分岐をして2個の第一の分岐路が設けられ、該第一の分岐路の各々から第二の分岐をして各々第二の分岐路が設けられて、さらに順次分岐をして設けられた分岐路の、流入口から流出口に至る1系列の流体搬送路であって、前記分岐路中には流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有しており、第二の円弧は(A−1)×θの角度を有していることを特徴とする。
【0012】
また、上記課題を解決するための流体搬送路は、前記流入口と前記分岐部との間、または、前記分岐部と前記分岐部との間に流体の進行方向を変化させる領域が2つ有することを特徴とする。
【0013】
また、上記課題を解決するための流体処理装置は、第一の流体分配流路と、該第一の流体分配流路に対応して設けられた第二の流体分配路を有し、該第一の流体分配路の流出口から流出する第一の流体と、該第二の流体分配路の流出口から流出する第二の流体とを衝突させて流体の混合または反応を行う流体処理装置であって、前記第一の流体分配流路および第二の流体分配路に上記の流体搬送路が設けられていることを特徴とする。
【0014】
また、上記課題を解決するための流体処理システムは、上記の流体処理装置と、流体を搬送する搬送手段と、該搬送手段を制御する流体制御手段と、前記流体処理装置に供給する流体を貯留する供給流体貯留装置と、前記流体処理装置から流出する流体を貯留する流出流体貯留装置とを備えていることを特徴とする。
【発明の効果】
【0015】
本発明によれば、高速で流体を搬送し、複数の流出口に分配させる流体搬送路において、流体の速度分布を流路の中心軸に対して対象にすることにより、分配される流量のばらつきを低減することができる。
【0016】
また、本発明は、多数のノズルから流体を衝突させて、流体の混合または反応を行う流体処理装置において、各ノズルの噴出流量のばらつきを低減することにより、混合または反応の均一性を向上した流体処理装置を提供することができる。
【0017】
また、本発明は、上記の混合または反応の均一性を向上した流体処理装置を用いた流体処理システムを提供することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の概略を説明した後、本発明の流体搬送路について詳細に説明する。
本発明の流体搬送路は、流体を流入させる流入口と、流体を搬送する流路と、前記流路中に設けられた流体の進行方向を変化させ分岐させる分岐部と、該分岐部を経た流体を流出させる複数の流出口とを有する流体搬送路であって、前記流入口と、前記分岐部と、の間に流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有しており、第二の円弧は(A−1)×θの角度を有していることを特徴とする。
【0019】
前記Aの範囲は1.8以上2.2以下であることが好ましい。
前記第一の円弧の半径をR1、前記第二の円弧の半径をR2とすると、該R1と該R2との比(R1/R2)が、0.5以上1.5以下であることが好ましい。
【0020】
前記二つの円弧は連続的に組み合わされたものであることが好ましい。
前記第一の円弧と前記第二の円弧との間に前記円弧を形成する流路の直径の1/10以下の長さを有する直線状の流路を有していてもよい。
【0021】
また、本発明の流体搬送路について、円弧の形状は特に限定されず、円、楕円、複数の辺を組合わせて円弧状にしたものであってもよい。
次に、流体搬送路について詳細に説明する。図12は、本発明の流体搬送路1000を説明するための概略図である。図12に示すように流入口1001と分岐部1002が連結している。分岐部1002は2つに分岐し、分岐部1002の出口は分岐路1021、1022に連結され、分岐路1021、1022は分岐部1003の入口に連結される。また、分岐部1003は2つに分岐し、分岐部1003の出口は分岐部1004の入口に連結されている。また、分岐部1004の出口は分岐部1005の入口に連結されている。そして、分岐部1005の出口は流出口1006に連結されている。流入口1001から流入した流体は、分岐部1002から1005を通って、流出口1006から流出する。
【0022】
分岐部1002と分岐部1003との間には、流体の進行方向を変化させる領域(以後、進行方向変化部と称する)1007、1008が存在する。また、分岐部1003と分岐部1004との間には、進行方向変化部1009、1010、1011、1012が存在する。進行方向変化領域1008は、1007を左右反転したものと同一である。また、進行方向変化部1009と1011は同一であり、これらは進行方向変化部1010および1012を左右反転したものと同一である。
【0023】
進行方向変化部1007について図13を用いて説明する。前記の領域は、流路1013中の流体の進行方向における中心線1014が、中心1015を中心とする半径R1の第一の円弧1017と、中心1016を中心とする半径R2の第二の円弧1018の連なりに沿うように連結されている。また、第一の円弧1017と第二の円弧1018は流体の回転方向が互いに逆となるように組み合わされている。また、変化させたい流体の進行方向の変化を角度θとすると、第一の円弧1017の角度α11はA×θの角度を有しており、第二の円弧1018の角度α12は(A−1)×θの角度を有している。
【0024】
進行方向変化部1009について図14を用いて説明する。進行方向変化部1009は従来の曲がり管と進行方向変化部1007で説明した流体搬送路とが組み合わさったものである。流体は分岐部1003を通過した後、円弧1020を経て進行方向を角度α13変化する。その後、流体は第一の円弧1017、第二の円弧1018を通過することにより、進行方向を角度θ変化する。これにより、流体は進行方向を角度α13+θ変化し、かつ流路1013の中心軸に対して対称の速度分布を形成して分岐部1014へ進入する。
【0025】
次に、本発明の流体搬送路の効果を説明するために、流体数値計算でシミュレーションを行った結果について図を用いて説明する。図15は本発明の流体搬送路と比較するための従来の流体搬送路である。また、図16は従来の流体搬送路を流れる流体の速度分布について説明する図である。また、図17は本発明の流体搬送路を流れる流体の速度分布について説明する図である。
【0026】
まず、従来の流体搬送路について図15を用いて説明する。流体搬送路1100は、流入1101、流出口1106を有している。また、図12の流体搬送路の分岐部1002から1005と同様に、分岐部1102から1105を有している。また、図12の進行方向変化部1007から10012に対応して、従来の曲がり管を有する進行方向変化部1107から1112を有している。
【0027】
従来の流体搬送路1100の寸法について説明する。流入口1101から流出口1106に至るまで流路の幅は1.0mmであり、本発明の流体搬送路1000と同じである。進行方向変化部1107および1108において、流体の進行方向を90°変化させる。また、進行方向変化部1109から1112において、流体の進行方向を180°変化させる。
【0028】
流体搬送路1100における、進行方向変化部1107から1112を除いた流路長は、流体搬送路1000における進行方向変化部1007から10012を除いた流路長と同じである。
【0029】
次に、本発明の流体搬送路1000の寸法について説明する。流入口1001から流出口1006に至るまで流路の幅は1.0mmである。進行方向変化部1007および1008において、流体の進行方向を変化させる角度θは90°とし、Aは2とする。このとき、第一の円弧1017の角度α11は180°、第二の円弧1018の角度α12は90°である。また、第一の円弧の半径R1および第二の円弧の半径R2は1.0mmである。また、進行方向変化部1009から1012において、流体の進行方向を180°変化させる。このとき、円弧1020の角度α13は90°である。
【0030】
次に、流出口での流量のばらつきについて説明する。流入口1001、1101から、質量流量9.6kg/s/mの流量で水を送液させたときの、流出口1006と1106から流出した流量のばらつきは次の通りである。いずれも、流体は水とし、密度は997.8kg/m3、粘度は0.0012825kg/(m・s)とする。まず、従来の流体搬送路の流出口1106から流出した流量は、それぞれ0.64kg/s/mから0.68kg/s/mであった。このときの流量の平均ばらつきは9.8%である。これに対し、本発明の流体搬送路の流出口1006から流出した流量は、それぞれ0.61kg/s/mから0.63kg/s/mであった。このときの流量の平均ばらつきは3.9%である。
【0031】
本発明の流体搬送路において、流出口での流量のばらつきが低減された理由について、図16および図17を用いて説明する。図16(a)は、進行方向変化部1107の流れの様子を説明するためのシミュレーション結果である。図17(a)は、進行方向変化部1007の流れの様子を説明するためのシミュレーション結果である。流入口1601および1701から流体の進行方向が変化する位置までの距離は5.0mmである。また、曲がり部1603から出口1602までの距離と、進行方向変化部1703から出口1702までの距離は10mmである。いずれも、流体は水とし、密度は997.8kg/m3、粘度は0.0012825kg/(m・s)とする。
【0032】
図16(a)において、水は質量流量4.8kg/s/mで入口1601から進入し曲がり部1603を経て、出口1602へ流出する。図16(b)は出口1620のB−B’断面における水の速度分布を示すグラフである。図16(b)から分かるように、速度分布に偏りが生じている。入口1601から進入した水は、曲がり部1603を経た後、回転方向に依存した速度分布を形成する。この速度分布の偏りが維持されたまま次の分岐部1103に進入すると、進行方向変化部1109を有する流路側の流量が進行方向変化部1110を有する流路側の流量に比べて大きくなる。また、分岐部1103と同様に、分岐部1104、においても、流体の分配量に差が生じる。これにより、流出口1106の流量のばらつきが大きくなる。
【0033】
図17(a)においても同様に、水は質量流量4.8kg/s/mの速度で入口1701から進入し進行方向変化部1703を経て、出口1702へ流出する。図17(b)は出口1702のC−C’断面における水の速度分布を示すグラフである。図17(b)から分かるように、速度分布は流路の中心軸に対して対称である。入口1701から進入した水は、第一の円弧により回転方向に依存した速度分布を形成しようとする。次に第二の円弧により逆の回転方向に依存した速度分布が形成される。これにより、出口1702において流路の中心軸に対して対称の速度分布が形成される。この結果、分岐部1003に進入した水は均等に分配される。また、進行方向変化部1007と同様に、進行方向変化部1009から1012を通過した水は、流路の中心軸に対して対称の速度分布が形成される。これにより、分岐部1004に進入した水は略均等に分配される。この結果、流出口1006の流量のばらつきが小さくなる。
【0034】
本発明によれば、分岐部1003から1004に進入する水の速度分布が流路の中心軸に対して対称となるので、分岐部1003から1004で水が略均等に分配される。これにより、従来の流体搬送路に比べて、分配する流量のばらつきを低減できる。
【0035】
次に、本発明の流体搬送路の構成について詳細に説明する。
Aの範囲について詳細に説明する。Aの範囲は、1.8以上2.2以下、好ましくは1.9以上2.1以下、特に好ましくは2とすることが適切である。図18(a)、(b)の流体搬送路は流体の進行方向を変化させる角度が90°、流路幅が1.0mm、第一の円弧の半径R21、第二の円弧の半径R22がともに1.0mmである。また、第一の円弧と第二の円弧は連続的に組み合わされている。図18(a)はAが1.8の場合を示す図であり、第一の円弧1801の角度α21は162°、第二の円弧1802の角度α22は72°である。また、図18(b)はAが2.2の場合を示す図であり、第一の円弧1806の角度α31は198°、第二の円弧1807の角度α32は108°である。いずれの場合も、流体の速度分布が流路の中心軸に対して対称となるので、下流に位置する分岐部において流体は略均等に分配される。なお、Aの範囲が1.8以上2.2以下のとき本発明の効果が顕著であるが、それ以外の範囲であっても本発明の効果を得ることができる。また、R21とR22との比の範囲が0.5以上1.5以下、第一の円弧1801と第二の円弧1802との間に流路の直径の1/10以下の長さを有する直線状の流路を設けてもよい。
【0036】
第一の円弧の半径R1と、第二の円弧の半径R2との比について詳細に説明する。R1とR2の比は、0.5以上1.5以下、好ましくは0.75以上1.25以下、特に好ましくは1とすることが適切である。図19は、流体の進行方向を変化させる角度が90°、第一の円弧1901の半径R31は1.0mm、第二の円弧1902の半径R32は0.8mm、第一の円弧1901の角度α41は180°、第二の円弧1902の角度α42は90°であり、第一の円弧と第二の円弧が連続的に組み合わされたものである。このとき、流体の速度分布が流路の中心軸に対して対称となるので、下流に位置する分岐部において流体は略均等に分配される。なお、R31とR32の比が0.5以上1.5以下の範囲のとき本発明の効果が顕著であるが、それ以外の範囲であっても本発明の効果を得ることができる。また、Aの範囲を1.8以上2.2以下、第一の円弧1901と第二の円弧1902との間に流路の直径の1/10以下の長さの直線状の流路を設けてもよい。
【0037】
第一の円弧と第二の円弧とは連続的に組み合わされていることが好ましい。ただし、第一の円弧と第二の円弧との間に、前記円弧を形成する流路の直径の1/10以下の長さの直線状の流路を設けても良い。図20は、第一の円弧2001と第二の円弧2002との間に直線状の流路2006が組み合わされたものである。図20の流体搬送路は、流体の進行方向を変化させる角度が90°、第一の円弧の半径R41が1.0mm、第二の円弧の半径R42が1.0mm、第一の円弧の角度α51は180°、第二の円弧の角度α52は90°、流路の幅は1.0mm、直線状の流路2006の長さは0.1mmである。このとき、流体の速度分布が流路の中心軸に対して対称となるので、下流に位置する分岐部において流体は略均等に分配される。また、Aの範囲が1.8以上2.2以下、R41とR42との比の範囲が0.5以上1.5以下であってもよい。
【0038】
本発明の流体搬送路の各部分の寸法について説明する。
流路の幅は、特に限定されるものではないが、0.01mm以上1000mm以下、好ましくは、0.05mm以上100mm以下、特に好ましくは、0.1mm以上10mm以下の範囲とすることが適切である。
【0039】
流路の深さは、特に限定されるものではないが、0.01mm以上1000mm以下、好ましくは、0.05mm以上100mm以下、特に好ましくは、0.1mm以上10mm以下の範囲とすることが適切である。
【0040】
本発明において、流体の流速は速いほど効果がある。従って、流体の流速は、0.1m/s以上とすることが適切である。好ましくは、0.5m/s以上、特に好ましくは、1m/s以上とすることが適切である。
【0041】
本発明に用いる流体は粘度の大きさに関わらず用いることができる。しかし、一般的に流体の粘度が高くなるほど流体搬送路を通過する際の圧力損失は大きくなる。従って、搬送する流体の粘度が高い場合には、流路の断面積を大きくすることが望ましい。
【0042】
また、本発明の流体搬送路について、流路の断面形状は、特に限定されず、多角形、円、半円、楕円であってもよい。
【実施例】
【0043】
以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
図を用いて本発明の流体処理装置を説明する。図1は本発明の実施例1の流体処理装置を示す斜視図である。また、図2(a)は、本実施例1の流体処理装置を下側から見た図、図2(b)は、図2(a)のB−B’における断面図、図2(c)は図2(b)のC−C’における断面図である。図2(d)は図2(c)のD−D’における断面図、図2(e)は図2(a)のE−E’における断面図である。本実施例のアレイ型マイクロミキサーは、流体分配流路基板118と、ノズル基板117を積層することで作製されている。101aから116a、101bから116bは、ノズル基板117に形成されたノズルであり、119aと119bはチューブコネクタである。
【0044】
流体分配流路基板118とノズル基板117は、シリコン基板を両面から垂直にエッチングを行うことで形成されている。ノズル基板117に形成されているノズル101aから116a、101bから116bは、片面からエッチングした穴と他面からエッチングした穴が連結することで形成されており、その際に穴同士の重心がずれるように構成されている。このように構成することで、各ノズルから噴出する流体は、基板に垂直ではなくある角度を持って噴出する。そして、ノズル101aから116aとノズル101bから116bは、それぞれ噴出方向が互いに交差するように配置されており、それぞれが混合ユニットを構成している。チューブコネクタ119aと119bは、ステンレスを加工して作られており、流体分配流路基板118と接着剤で接合されている。
【0045】
流体分配流路について説明する。流体分配流路121a、121bは上記発明を実施するための最良の形態の欄で説明した流体搬送路1000と同じである。また、流体分配流路121a、121bの深さは0.8mmである。
【0046】
以下で本実施例の動作の説明を行う。チューブコネクタ119aから流体をポンプで流入すると、流体は流入口120aから流入し、流体分配流路基板118に形成された流体分配流路121aにおいて流体は16に分岐する。そして、分配された流体はノズル基板117に形成されたノズル101aから116aより噴出する。また、チューブコネクタ119bから流入した流体もまったく同様にして101bから116bより噴出する。そして、ノズル101aから116aとノズル101bから116bの噴出方向は互いに交差するように配置されているため噴出した流体は衝突し、衝突部において混合もしくは反応が生じる。
【0047】
本実施例によれば、流体分配流路中を流れる流体の速度分布が流路の中心軸に対して対称となるので、分岐部で流体が略均等に分配される。これにより、各ノズルに供給される流量のばらつきが低減されるため、混合もしくは反応の均一性を向上することができる。
【0048】
実施例2
図3は本発明の実施例2の流体処理装置を説明する説明図である。図3(a)は、実施例2の流体処理装置を下側から見た図、図3(b)は図3(a)のB−B’における断面図、図3(c)は図3(b)のC−C’における断面図、図3(d)は図3(c)のD−D’における断面図、図3(e)は図3(a)のE−E’における断面図である。本実施例のアレイ型マイクロミキサーは、流体分配流路基板206とノズル基板205を積層することで作製されている。201aから204a、201bから204bはノズルであり、209aと209bはチューブコネクタである。
【0049】
流体分配流路基板206は、シリコン基板を両面から垂直にエッチングを行うことで流体分配流路207a、bと流入口208a、bが形成されている。ノズル基板205に形成されているノズル201aから204a、201bから204bは、片面からエッチングした穴と他面からエッチングした穴が連結することで形成されており、その際に穴同士の重心がずれるように構成されている。このように構成することで、各ノズルから噴出する流体は、基板に垂直ではなくある角度を持って噴出する。そして、ノズル201aから204aとノズル201bから204bは、それぞれ噴出方向が互いに交差するように配置されており、それぞれが混合ユニットを構成している。チューブコネクタ209aと209bは、ステンレスを加工して作られており、流体分配流路基板206と接着剤で接合されている。
【0050】
本実施例の流体分配流路について図4を用いて説明する。図4は図3(c)の領域218を拡大した図である。流路210中の流体の進行方向における中心線211が、中心213を中心とする半径R21の第一の円弧212と、中心215を中心とする半径R22の第二の円弧214の連なりに沿うように連結されている。また、第一の円弧212と第二の円弧212は流体の回転方向が互いに逆となるように組み合わされている。また、変化させたい流体の進行方向の変化を角度θ2とすると、第一の円弧212の角度α21はA×θの角度を有しており、第二の円弧214の角度α22は(A−1)×θの角度を有している。なお、流体分配流路207bは、領域218で説明した流路を反転した流路が組み合わされたものである。また、流体分配流路207aは、流体分配流路207bを反転したものである。
【0051】
本実施例では、流体の進行方向を45°変化させる。Aの値は2とすると、第一の円弧212の角度α21は90°、第二の円弧214の角度α22は45°である。また、R21=R22=1.0mmである。分岐部216に進入する流体の速度分布は流路の中心軸に対して対称となるので、流出口217a、bに流体が均等に分配される。
【0052】
以下で本実施例の動作の説明を行う。チューブコネクタ209aから流体をポンプで流入すると、流体は流入口208aから流入し、流体分配流路基板206に形成された流体分配流路207aにおいて4つに分岐する。そして、分配された流体はノズル基板205に形成されたノズル201aから204aより噴出する。また、流入口207bから流入した流体もまったく同様にして201bから204bより噴出する。そして、ノズル201aから204aとノズル201bから204bの噴出方向は互いに交差するように配置されているため噴出した流体は衝突し、衝突部において混合もしくは反応が生じる。
【0053】
本実施例によれば、分岐部に進入する流体の速度分布が流路の中心軸に対して対称となるので、流出口で流体が略均等に分配される。これにより、各ノズルに供給される流量のばらつきを低減できるため、混合もしくは反応の均一性を向上することができる。
【0054】
実施例3
図5は、本発明の実施例3の流体処理装置の説明図である。本実施例では、実施例1と同様に、流体分配流路基板とノズル基板を積層し、チューブコネクタを接続することで作製される。
【0055】
流体分配流路基板300について、シリコン基板を一面から垂直にエッチングを行うことで流体分配流路301a、bが形成される。流体は、流入口302a、bから進行方向変化部303a、b、304a、bを通過し、流出口305a、bから320a、bを経て、ノズルから噴出される。進行方向変化部303a、b、304a、bを除く他の流路の働きは実施例1と同一のため、進行方向変化部303a、b、304a、bの働きについて説明を行う。図6は、進行方向変化部303aの拡大図である。進行方向変化部303aは、流体の進行方向を45°変化させる進行方向変化部321と322とが2つ組み合わさったものである。流入口302aから流入した流体は、まず、第一の進行方向変化部321において進行方向を45°変化させる。第一の進行方向変化部321は、実施例2と同様に90°変化する第一の円弧と、45°変化する第二の円弧が連続的に組み合わされたものである。これにより、第一の進行方向変化部321を通過した流体は、流路の中心軸に対して対称な速度分布を形成する。同様に、第二の進行方向変化部322を通過した流体は、45°進行方向を変化した後、流路の中心軸に対して対称な速度分布を形成する。これにより、流体は分岐部323で略均等に分配される。
【0056】
本実施例においても、各ノズルに分配される流量のばらつきを低減できるため、混合もしくは反応の均一性を向上することができる。
【0057】
実施例4
図7は本発明の実施例4の流体処理装置を説明する説明図である。図7(a)は、実施例4の流体処理装置を下側から見た図、図7(b)は図7(a)のB−B’における断面図、図7(c)は図7(b)のC−C’における断面図、図7(d)は図7(c)のD−D’における断面図、図7(e)は図7(a)のE−E’における断面図である。本実施例のアレイ型マイクロミキサーは、流体分配流路基板434とノズル基板433を積層することで作製されている。401aから432a、401bから432bはノズルであり、437aと437bはチューブコネクタである。
【0058】
流体分配流路基板435は、シリコン基板を両面から垂直にエッチングを行うことで流体分配流路435a、bと流入口436a、bが形成されている。ノズル基板433はガラス板からできており、図7(e)に示すような斜め穴をレーザー加工であけることでノズル401aから432a、401bから432bが形成されている。このように構成することで、各ノズルから噴出する流体はある角度を持って噴出する。そして、ノズル401aから432aとノズル401bから432bは、それぞれ噴出方向が互いに交差するように配置されており、それぞれが混合ユニットを構成している。チューブコネクタ437aと437bは、ステンレスを加工して作られており、流体分配流路基板434と接着剤で接合されている。
【0059】
次に、流体分配流路基板434に形成された流体分配流路435について詳細に説明する。図8は、流体分配流路435の拡大図である。図8に示すように流入口436と分岐部438が連結している。分岐部438は2つに分岐し、分岐部438の出口は分岐部439の入口に連結され、また、分岐部439は2つに分岐し、分岐部439の出口は分岐部440の入口に連結されている。また、分岐部440の出口は分岐部441の入口に連結されている。また、分岐部441の出口は分岐部442の入口に連結されている。そして、分岐部442の出口は流出口457に連結されている。流入口436から流入した流体は、分岐部439から442を通って、流出口457から流出する。
【0060】
分岐部438と分岐部439との間には、進行方向変化部443、444が存在する。また、分岐部439と分岐部404との間には、進行方向変化部445から448が存在する。また、分岐部440と分岐部441との間には、進行方向変化部449から458が存在する。
【0061】
進行方向変化部443および444、進行方向変化部449から456の働きは実施例1と同一のため、進行方向変化部445から448について説明する。
進行方向変化部445から448は、流体の進行方向が180°変化する領域である。本実施例では、発明を実施するための最良の形態の欄で説明した流体の進行方向を90°変化させる流体分配流路を2つ組み合わせることにより、流体の進行方向を180°変化させる。以下、図9を用いて詳細に説明する。
【0062】
図9は、進行方向変化部445の拡大図である。分岐部439を通過した流入した流体は、第一の進行方向変化部464において進行方向を90°変化される。第一の進行方向変化部464は、180°変化する第一の円弧と90°変化する第二の円弧が連続的に組み合わされたものである。これにより、第一の進行方向変化部464を通過した流体は、流路の中心軸に対して対称な速度分布を形成する。同様に、第二の進行方向変化部465を通過した流体は、90°進行方向を変化した後、流路の中心軸に対して対称な速度分布を形成する。これにより、流体は分岐部440で、均等に分配される。
【0063】
以下で本実施例の動作の説明を行う。チューブコネクタ437aから流体をポンプで流入すると、流体は流入口436aから流入し、流体分配流路基板435に形成された流体分配流路435において32に分岐する。そして、分岐した流体はノズル基板433に形成されたノズル401aから432aより噴出する。また、流入口436bから流入した流体もまったく同様にして401bから432bより噴出する。そして、ノズル401aから432aとノズル401bから432bの噴出方向は互いに交差するように配置されているため噴出した流体は衝突し、衝突部において混合もしくは反応が生じる。
【0064】
本実施例においても、各ノズルに分配される流量のばらつきを低減できるため、混合もしくは反応の均一性を向上することができる。
【0065】
実施例5
図10は本発明の実施例5の流体処理装置を説明する説明図である。図10(a)は、実施例5の流体処理装置を下側から見た図、図10(b)は図10(a)のB−B’における断面図、図10(c)は図10(b)のC−C’における断面図、図10(d)は図10(c)のD−D’における断面図、図10(e)は図10(a)のE−E’における断面図である。本実施例のアレイ型マイクロミキサーは、流体分配流路基板566とノズル基板565を積層することで作製されている。501aから564a、501bから564bはノズルであり、569aと569bはチューブコネクタである。
【0066】
流体分配流路基板566は、シリコン基板を両面から垂直にエッチングを行うことで流体分配流路567a、bと流入口568a、bが形成されている。ノズル基板565に形成されているノズル501aから564a、501bから564bは、片面からエッチングした穴と他面からエッチングした穴が連結することで形成されており、その際に穴同士の重心がずれるように構成されている。このように構成することで、各ノズルから噴出する流体は、基板に垂直ではなくある角度を持って噴出する。そして、ノズル501aから564aとノズル501bから564bは、それぞれ噴出方向が互いに交差するように配置されており、それぞれが混合ユニットを構成している。チューブコネクタ569aと569bは、ステンレスを加工して作られており、流体分配流路基板566と接着剤で接合されている。
【0067】
本実施例の流体分配流路567について説明する。流体分配流路567は、実施例4で説明した流体分配流路435を2つ並列に組み合わせたものであり、各々の進行方向変化部の働きは実施例4の進行方向変化部と同一である。
【0068】
以下で本実施例の動作の説明を行う。チューブコネクタ569aから流体をポンプで流入すると、流体は流入口568aから流入し、流体分配流路基板566に形成された流体分配流路567aにおいて64に分岐する。そして、分岐した流体はノズル基板565に形成されたノズル501aから564aより噴出する。また、流入口568bから流入した流体もまったく同様にして501bから564bより噴出する。そして、ノズル501aから564aとノズル501bから564bの噴出方向は互いに交差するように配置されているため噴出した流体は衝突し、衝突部において混合もしくは反応が生じる。
【0069】
本実施例においても、各ノズルに分配される流量のばらつきを低減できるため、混合もしくは反応の均一性を向上することができる。
【0070】
実施例6
図11は、本発明の実施例6の流体処理システムを示す概念図である。
【0071】
601は、本発明の流体処理システムである。602は液体を搬送するための高圧ガス、603は搬送圧力を制御するためのレギュレータである。604と605は、反応液を貯留する第1の反応液タンクと第2の反応液タンクであり、606は反応液の流量を監視するための流量計、610は反応生成物を回収する回収タンクである。そして反応容器608には、実施例5で説明した流体処理装置607が組み込まれている。
【0072】
本実施例の流体処理システムを利用し、マゼンタ顔料の分散体を多量に製造する実際の例について説明する。第1の反応液タンク604には顔料溶解液、第2の反応液タンク605にはイオン交換水が室温で貯留されている。この例において用いる顔料溶解液の調製法について説明する。C.I.Pigment Red 122のキナクリドン顔料10部にジメチルスルホキシド100部を加え懸濁させる。つづいて分散剤として、ポリオキシエチレンラウリルエーテルを40部加え、これらが溶解するまで25%水酸化カリウム水溶液を加えていき第2の反応液を調製する。それぞれの反応液は、高圧ガス602の圧力により反応容器608へ搬送される。このとき、流量計606を監視しレギュレータ603を調節することにより、反応液の流量を制御する。これにより、顔料溶解液は流速7m/s、水は流速3m/sで噴出し、流体処理装置607の下方、反応容器608内で交差し混合される。混合の結果、生成されたマゼンタ顔料の分散体609は回収タンク610に回収される。
【0073】
実施例7
図24は本発明の実施例7の流体処理装置を説明する説明図である。図24(a)は、実施例7の流体処理装置を下側から見た図、図24(b)は図24(a)のB−B’における断面図、図24(c)は図24(b)のC−C’における断面図、図24(d)は図24(c)のD−D’における断面図、図24(e)は図24(a)のE−E’における断面図である。本実施例のアレイ型マイクロミキサーは、流体分配流路基板710とノズル基板709を積層することで作製されている。701aから708a、701bから708bはノズルであり、713aと713bはチューブコネクタである。
【0074】
流体分配流路基板710は、シリコン基板を両面から垂直にエッチングを行うことで流体分配流路711a、bと流入口712a、bが形成されている。ノズル基板709に形成されているノズル701aから708a、701bから708bは、片面からエッチングした穴と他面からエッチングした穴が連結することで形成されており、その際に穴同士の重心がずれるように構成されている。このように構成することで、各ノズルから噴出する流体は、基板に垂直ではなくある角度を持って噴出する。そして、ノズル701aから708aとノズル701bから708bは、それぞれ噴出方向が互いに交差するように配置されており、それぞれが混合ユニットを構成している。チューブコネクタ713aと713bは、ステンレスを加工して作られており、流体分配流路基板710と接着剤で接合されている。
【0075】
次に、本実施例の流体処理装置の作製工程を説明する。図25Aおよび図25Bは、流体処理装置の作製方法を、図24(a)のE−E’における断面図にて示したものである。
【0076】
まず、ノズル基板709で使用するSOI基板について説明する。SOI基板は活性層801の厚さが25μm、シリコン酸化膜層802の厚さが0.5μm、支持基板層803の厚さが200μmである[図25(a)]。
【0077】
まず、活性層801の側にフォトリソグラフィ法を用いて、フォトレジスト804により噴出口708b、708aのパターンを形成する。次に、フォトレジスト804をエッチングマスクとして活性層801を、SF6ガスとC48ガスのプラズマによりドライエッチングし、深さ25μmの噴出口を形成する[図25(b)]。
【0078】
次に、BHF(バッファードフッ酸)によりシリコン酸化膜802を除去した後、SF6ガスとC48ガスのプラズマによりドライエッチングし、深さ50μmの連結部808、809を形成する[図25(c)]。
【0079】
次に、支持基板層803の側にフォトリソグラフィ法を用いて、レジスト805により導入口810、811のパターンを形成する[図25(d)]。
次に、活性層801の側にフォトレジスト806を厚さ15μm成膜する。噴出口のパターンを保護するためである[図25(e)]。
【0080】
次に、支持基板層803の側(先ほどのエッチング面の裏側の面側)より、SF6ガスとC48ガスのプラズマによりエッチングを行う。これによりエッチングストッパーであるシリコン酸化膜802に到達するまでドライエッチングする[図25(f)]。
【0081】
次に、O2プラズマ処理によりフォトレジストを除去した後、液温110℃の硫酸および過酸化水素水の混合溶液により基板を洗浄する[図25(g)]。
最後に、減圧化学的気相成長法(LPCVD法)によりシリコン窒化膜を成膜する[図25(h)]。
【0082】
次に、流体分配流路基板710の作製工程について図25Bを用いて説明する。まず、シリコン基板812を用意する。フォトレジスト813により流体分配流路711b、711aのパターンを形成する。
【0083】
次に、フォトレジスト813をエッチングマスクとしてシリコン基板812を、SF6ガスとC48ガスのプラズマによりドライエッチングし、深さ800μmの流体分配流路を形成する[図25(i)、(j)]
次に、O2プラズマ処理によりフォトレジスト813を除去した後、液温110℃の硫酸および過酸化水素水の混合溶液により基板を洗浄する[図25(k)]。
【0084】
最後に、LPCVD法によりシリコン窒化膜814を成膜する[図25(l)]。
以上の方法で作製されたノズル基板709および流体分配流路基板710は基板間直接接合により接合する[図25(m)]。
【0085】
次に、流体分配流路基板710に形成された流体分配流路711について詳細に説明する。図26は、流体分配流路711の拡大図である。図26に示すように流入口712と分岐部901が連結している。分岐901は2つに分岐し、分岐部901の出口は分岐部902の入口に連結されている。また、分岐部902の出口は分岐部903の入口に連結されている。そして、分岐部903の出口は流出口904に連結されている。流入口712から流入した流体は、分岐部901から903を通って、流出口904から流出する。
【0086】
分岐部901と分岐部902との間には、進行方向変化部905、906が存在する。また、分岐部902と分岐部903との間には、進行方向変化部907から910が存在する。また、分岐部903と流出口904との間には、進行方向変化部911から918が存在する。
【0087】
進行方向変化部905および918の働きは発明を実施するための最良の形態の欄で説明した流体の進行方向を90°変化させる流体分配流路と同一のため、分岐部901から903について説明する。
【0088】
分岐部901から903は流体を2つに分配させると同時に流体の進行方向を90°変化させる領域である。分岐部901から903は、発明を実施するための最良の形態の欄で説明した流体の進行方向を90°変化させる流体分配流路が2つ組み合わされている。これにより、流体を2つに分配させると同時に、流体の進行方向を90°変化させる。また、流体は、90°進行方向を変化した後、流路の中心軸に対して対称な速度分布を形成する。
【0089】
以下で本実施例の動作の説明を行う。チューブコネクタ713aから流体をポンプで流入すると、流体は流入口712aから流入し、流体分配流路基板710に形成された流体分配流路711において8つに分岐する。そして、分岐した流体はノズル基板709に形成されたノズル701aから708aより噴出する。また、流入口712bから流入した流体もまったく同様にして701bから708bより噴出する。そして、ノズル701aから708aとノズル701bから708bの噴出方向は互いに交差するように配置されているため噴出した流体は衝突し、衝突部において混合もしくは反応が生じる。
【0090】
本実施例においても、各ノズルに分配される流量のばらつきを低減できるため、混合もしくは反応の均一性を向上することができる。
【産業上の利用可能性】
【0091】
本発明の流体処理装置は、複数の流出口から流量を均一に流出させることにより、流体の均一な混合または反応を行うことができるので、化学工業、生化学工業、食品工業、製薬工業等の流体処理システムに利用することができる。
【図面の簡単な説明】
【0092】
【図1】本発明の実施例1の流体処理装置を示す斜視図である。
【図2】本発明の実施例1の流体処理装置を説明する説明図である。
【図3】本発明の実施例2の流体処理装置を説明する説明図である。
【図4】本発明の実施例2の流体分配流路を説明する説明図である。
【図5】本発明の実施例3の流体処理装置を説明する説明図である。
【図6】本発明の実施例3の流体分配流路を説明する説明図である。
【図7】本発明の実施例4の流体処理装置を説明する説明図である。
【図8】本発明の実施例4の流体分配流路を説明する説明図である。
【図9】本発明の実施例4の流体分配流路を説明する説明図である。
【図10】本発明の実施例5の流体処理装置を説明する説明図である。
【図11】本発明の実施例6の流体処理システムを説明する説明図である。
【図12】本発明の流体搬送路の実施形態を説明する説明図である。
【図13】本発明の流体搬送路の実施形態を説明する説明図である。
【図14】本発明の流体搬送路の実施形態を説明する説明図である。
【図15】従来の流体搬送路を説明する説明図である。
【図16】従来の流体搬送路を説明する説明図である。
【図17】本発明の流体搬送路の効果を説明する説明図である。
【図18】本発明の流体搬送路の実施形態を説明する説明図である。
【図19】本発明の流体搬送路の実施形態を説明する説明図である。
【図20】本発明の流体搬送路の実施形態を説明する説明図である。
【図21】従来の流体処理装置を説明するための説明図である。
【図22】従来の流体処理装置を説明するための説明図である。
【図23】従来の流体搬送路を説明するための説明図である。
【図24】本発明の実施例7の流体処理装置を説明する説明図である。
【図25A】本発明の実施例7の流体処理装置の作製工程を説明する説明図である。
【図25B】本発明の実施例7の流体処理装置の作製工程を説明する説明図である。
【図26】本発明の実施例7の流体分配流路基板に形成された流体分配流路を説明する説明図である。
【符号の説明】
【0093】
101aから116a、101bから116b、201aから204a、201bから204b、401aから432a、401bから432b、501aから564a、501bから564b、、701aから708a、701bから708b、2201、2202 ノズル
117、205、433、565、709 ノズル基板
118、206、300、434、566、710 流体分配流路基板
119a、119b、209a、209b、437a、437b、569a、569b、713a、713b チューブコネクタ
121a、121b、207a、207b、301a、301b、435a、435b、567a、567b、711a、711b 流体分配流路
1000、1100 流体搬送路
1021、1022 分岐路
120a、120b、208a、208b、302a、302b、436a、436b、568a、568b、712a、712b、1001、1101、2301 流入口
218 領域
210、1013 流路
211、1014、1803、1903、2003 中心線
213、215、1015、1016、1019、1804、1805、1904、1905、2004、2005 中心
212、1017、1801、1806、1901、2001 第一の円弧
214、1018、1802、1807、1902、2002 第二の円弧
1020 円弧
216、323、438から442、901から903、1002から1005、1102から1105 分岐部
217a、217b、305aから320a、305bから320b、457、904、1006、1106、2302 流出口
303a、304a、303b、304b、321、322、443から456、464、465、905から918、1007から1012、1107から1112、 進行方向変化部
601 流体処理システム
602 高圧ガス
603 レギュレータ
604 第1の反応液タンク
605 第2の反応液タンク
606 量計
607 流体処理装置
608 反応容器
609 マゼンタ顔料の分散体
610 回収タンク
801 活性層
802 シリコン酸化膜層
803 支持基板層
804、806、813 フォトレジスト
807、814 シリコン窒化膜
808、809 連結部
810、811 導入口
812 シリコン基板
1601、1701 入口
1602、1702 出口
1603、1703 曲がり部
2006 直線状の流路
2101、2102 オリフィス
2103 遮蔽部
2104 ジェット衝突混合室

【特許請求の範囲】
【請求項1】
流体を流入させる流入口と、流体を搬送する流路と、前記流路中に設けられた流体の進行方向を変化させ分岐させる分岐部と、該分岐部を経た流体を流出させる複数の流出口とを有する流体搬送路であって、前記流入口と、前記分岐部と、の間に流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有しており、第二の円弧は(A−1)×θの角度を有していることを特徴とする流体搬送路。
【請求項2】
流体を流入させる1個の流入口から、流体の進行方向を変化させ分岐させる分岐部で第一の分岐をして2個の第一の分岐路が設けられ、該第一の分岐路の各々から第二の分岐をして各々第二の分岐路が設けられて、さらに順次分岐をして設けられた分岐路の、流入口から流出口に至る1系列の流体搬送路であって、前記分岐路中には流体の進行方向を変化させる領域が存在し、該領域において、前記流路中の流体の進行方向における中心線が、異なる位置を中心とする二つの円弧の連なりに沿うと共に、該連なりは各円弧に沿った流体の回転方向が互いに逆となるような二つの円弧を組み合わせたものであり、流体の進行方向の変化する角度をθとして、第一の円弧はA×θ(但し、Aは正の整数または小数を表す。)の角度を有しており、第二の円弧は(A−1)×θの角度を有していることを特徴とする流体搬送路。
【請求項3】
前記Aは1.8以上2.2以下であることを特徴する請求項1または2に記載の流体搬送路。
【請求項4】
前記第一の円弧の半径をR1、前記第二の円弧の半径をR2とすると、該R1と該R2との比(R1/R2)が0.5以上1.5以下であることを特徴とする請求項1乃至3のいずれかの項に記載の流体搬送路。
【請求項5】
前記二つの円弧は連続的に組み合わされたものであることを特徴とする請求項1乃至4のいずれかの項に記載の流体搬送路。
【請求項6】
前記第一の円弧と前記第二の円弧との間に前記円弧を形成する流路の直径の1/10以下の長さを有する直線状の流路を有することを特徴とする請求項1乃至5のいずれかの項に記載の流体搬送路。
【請求項7】
前記円弧は、円、楕円、複数の辺を組合わせて円弧状にしたものであることを特徴とする請求項1乃至6のいずれかの項に記載の流体搬送路。
【請求項8】
前記流入口と前記分岐部との間または前記分岐部と前記分岐部との間に流体の進行方向を変化させる領域が2つ有することを特徴とする請求項1乃至7のいずれかの項に記載の流体搬送路。
【請求項9】
第一の流体分配流路と、該第一の流体分配流路に対応して設けられた第二の流体分配路を有し、該第一の流体分配路の流出口から流出する第一の流体と、該第二の流体分配路の流出口から流出する第二の流体とを衝突させて流体の混合または反応を行う流体処理装置であって、前記第一の流体分配流路および第二の流体分配路に請求項1及至8のいずれかに記載の流体搬送路が設けられていることを特徴とする流体処理装置。
【請求項10】
請求項9に記載の流体処理装置と、流体を搬送する搬送手段と、該搬送手段を制御する流体制御手段と、前記流体処理装置に供給する流体を貯留する供給流体貯留装置と、前記流体処理装置から流出する流体を貯留する流出流体貯留装置とを備えていることを特徴とする流体処理システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25A】
image rotate

【図25B】
image rotate

【図26】
image rotate


【公開番号】特開2008−212814(P2008−212814A)
【公開日】平成20年9月18日(2008.9.18)
【国際特許分類】
【出願番号】特願2007−53255(P2007−53255)
【出願日】平成19年3月2日(2007.3.2)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】