説明

混練方法および混練機

【課題】混練方法および混練機において、被混練物を効率的にせん断することができ、分散性に優れた混練材料を効率よく製造することができることができるようにする。
【解決手段】基端側で回転可能に保持された軸状のスクリュー部2とスクリュー部2の先端および側部を囲繞するように配置されたシリンダー部3との間に形成された混練空間Kで、スクリュー部2を回転させることにより、2種類以上の被混練物m、…、mをスクリュー部2の基端側から先端に向かって移動させて混練を行う混練方法であって、混練空間K内を移動する被混練物m、…、mに、冷却されたガスGを注入し、被混練物m、…、mを注入されたガスGとともに先端側に移動させて混練を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、混練方法および混練機に関する。
【背景技術】
【0002】
従来、2種以上の非相溶性のポリマー同士、もしくはポリマーと粉末とからなる被混練物を溶融混練する混練方法では、被混練物の分散性を高めるために被混練物に高せん断を加えつつ、循環させて混練を行う循環式の混練機を用いている。
例えば、特許文献1には、このような混練方法に用いる混練機として、スクリューによって高分子ブレンド試料を溶融状態で混練する際のスクリュー回転数を50rpm〜3000rpmの範囲で任意に設定可能であり、通常の成形加工機の回転数(100rpm〜300rpm)をはるかに凌ぐ、500rpm〜3000rpmでの高速スクリュー回転を安定して動作させ、高せん断のもとで 混練を持続させるようにしたことを特徴とする微量型高せん断成形加工機が記載されている。特許文献1には、混練時の冷却については特に記載されていない。
ただし、特許文献2に記載されたように、このような高せん断を加える混練機あるいは循環式の混練機ではないが、混練工程を含む「従来の成形機において溶融樹脂温度を冷却するにはスクリュ内部に冷却物体を流して冷却したりバレルを同じく冷却流体により冷却していた」。
そして、特許文献2には、このような混練時の冷却に関連する技術として、スクリュに設けた2箇所のニーディングデスクと、同ニーディングデスクに対応するバレルと、同バレルに設けられ不活性ガスの流入および排出を行う注入口およびベント口とからなり、前記注入口から不活性ガスを圧入し前記ベント口から排出することにより溶融樹脂を冷却するようにした2軸混練押出機が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−313608号公報
【特許文献2】特開昭61−266221号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記のような従来の混練方法および混練機には、以下のような問題があった。
特許文献1に記載された微量型高せん断成形加工機では、被混練物を高回転のスクリューで混練すると、被混練物が低温のうちは高せん断が加わって分子レベルの混練が進むが、被混練物の樹脂が溶融されると樹脂の粘度が下がるため、混練の効率が落ちてしまうという問題がある。
このため、長時間混練を行っても、ある程度以上には分散性を向上させることができないという問題がある。
高い分散性を得るため、混練時に被混練物の温度が上がりすぎないように冷却を行うことも考えられるが、冷却流体を混練機のバレルやスクリューの内部に流通させて冷却を行う場合、間接的かつ広域的な冷却となるので冷却効率が低く、被混練物のせん断発熱を十分には抑えることができないという問題がある。
また、特許文献2のように、ガスを被混練物の搬送路に沿って流通させ、このガスによって被混練物の熱を奪って直接的に冷却することも考えられるが、スクリューを高速回転させて被混練物に大きなせん断を作用させる混練機では、被混練物が高速で循環するため特許文献2の装置のように混練流路においてガスを流通させる流路を設けることは困難であるという問題がある。
【0005】
本発明は、上記のような問題に鑑みてなされたものであり、被混練物を効率的にせん断することができ、分散性に優れた混練材料を効率よく製造することができる混練方法および混練機を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の課題を解決するために、本発明の混練方法は、基端側で回転可能に保持された軸状のスクリュー部と該スクリュー部の先端および側部を囲繞するように配置されたシリンダー部との間に形成された混練空間で、前記スクリュー部を回転させることにより、2種類以上の被混練物を前記スクリュー部の前記基端側から前記先端に向かって移動させて混練を行う混練方法であって、前記混練空間内を移動する前記被混練物に、冷却されたガスを注入し、前記被混練物を注入された前記ガスとともに前記先端側に移動させて混練を行う方法とする。
【0007】
また、本発明の混練方法では、前記ガスは、前記混練空間における前記混練物の移動流路の下流側である前記スクリュー部の先端の近傍で注入することが好ましい。
【0008】
また、本発明の混練方法では、前記ガスは、前記被混練物が、前記スクリュー部の基端側から前記先端まで移動する間の複数箇所で注入することが好ましい。
【0009】
本発明の混練機は、2種類以上の被混練物を循環させて混練を行う混練機であって、基端側で回転可能に保持された軸状のスクリュー部と、該スクリュー部を回転させる駆動部と、前記スクリュー部の先端および側部を囲繞するように配置され、前記スクリュー部との間に前記被混練物を混練する混練空間を形成するシリンダー部と、前記スクリュー部または前記シリンダー部の内部に設けられ、前記スクリュー部の先端近傍の混練空間と前記スクリュー部の基端側の混練空間とを連通させて、前記被混練物を循環可能とする循環流路と、冷却されたガスを供給するガス供給部と、前記スクリュー部および前記シリンダー部の少なくともいずれかにおいて、前記混練空間に面して開口され、該混練空間に向けて前記ガス供給部から供給された前記ガスを注入するガス注入口とを備える構成とする。
【0010】
また、本発明の混練機では、前記ガス注入口は、前記スクリュー部の先端の近傍に設けられたことが好ましい。
【0011】
また、本発明の混練機では、前記ガス注入口は、前記スクリュー部の基端側から前記先端までの間の複数箇所に設けられたことが好ましい。
【0012】
また、本発明の混練機では、前記スクリュー部の先端に対向する前記シリンダー部に、前記被混練物中に混練された前記ガスを前記混練空間の外部に排出するガス排出部を備えることが好ましい。
【0013】
また、本発明の混練機では、前記ガス注入口の設置位置に対して前記混練空間における前記被混練物の移動方向の下流側の近傍位置に、前記被混練物の温度を測定する温度測定手段が設けられたことが好ましい。
【0014】
また、本発明の温度測定手段を備えた混練機では、前記温度測定手段によって測定された前記被混練物の温度に基づいて、前記ガス供給部からの前記ガスの供給量を制御する冷却制御部を備えることが好ましい。
【発明の効果】
【0015】
本発明の混練方法および混練機によれば、被混練物をガス注入口から注入した冷却されたガスによって直接的に冷却して、被混練物の粘度の低下を抑制することができるので、被混練物を効率的にせん断することができ、分散性に優れた混練材料を効率よく製造することができるという効果を奏する。
【図面の簡単な説明】
【0016】
【図1】本発明の実施形態に係る混練機の概略構成を示す模式的な断面図である。
【図2】本発明の実施形態に係る混練機のスクリュー部の中心軸を通る模式的な断面図である。
【図3】本発明の実施形態の変形例に係る混練機の概略構成を示す模式的な断面図である。
【図4】本発明の実施形態の変形例に係る混練機のスクリュー部の中心軸を通る模式的な断面図である。
【発明を実施するための形態】
【0017】
以下では、本発明の実施形態について添付図面を参照して説明する。
まず、本発明の実施形態に係る混練機について説明する。
図1は、本発明の実施形態に係る混練機の概略構成を示す模式的な断面図である。図2は、本発明の実施形態に係る混練機のスクリュー部の中心軸を通る模式的な断面図である。なお、各図は、模式図のため、各部の寸法や形状は誇張して描かれている(以下の図も同じ)。
【0018】
本実施形態の混練機1は、図1に示すように、2種以上の非相溶性の熱可塑性ポリマー同士、もしくは粉末や微粒子などの添加物と1種以上の熱可塑性ポリマーとからなる被混練物m、…、m(ただし、nは、2以上の整数)を、内部に循環させて溶融混練し、これらが微小な大きさで分散された混練材料Mを製造する装置である。本明細書では、「溶融混練」は、被混練物m、…、mのうちの熱可塑性のポリマーを溶融状態として混練していくことを意味する。また、「被混練物m、…、mが溶融状態」と言う場合も、被混練物m、…、mのうちの熱可塑性のポリマーが溶融状態になっているということを意味するものとする。すなわち、被混練物m、…、mが熱可塑性ポリマーの溶融温度程度で安定な添加物を含む場合に添加物が溶融されていることは意味しない。
混練機1の概略構成は、スクリュー部2、駆動部5、シリンダー部3、およびガス注入部9A、9B、9Cを備える。
【0019】
スクリュー部2は、略円柱状のスクリュー軸2aと、このスクリュー軸2aの円筒面状の外周側面2e上に、スクリュー軸2aの中心軸回りに旋回する螺旋状に設けられた螺旋スクリュー2bとを備える。
スクリュー部2の軸方向の両端部には、それぞれスクリュー軸先端面2c、スクリュー軸基端面2dが形成されている。スクリュー軸先端面2cは、本実施形態では、スクリュー軸2aの中心軸と直交する平面からなる。
スクリュー部2は、スクリュー軸基端面2dにおいて、例えばモータなどからなる駆動部5の駆動軸5aと連結されている。ここで、スクリュー軸2aの中心軸線は、駆動部5の駆動軸5aの回転中心と同軸となるように連結されている。
このため、スクリュー部2は駆動部5によって基端部側で回転可能に支持されている。
駆動部5は、本実施形態では、不図示のベース部材上に、駆動軸5aを水平方向に延ばした状態で固定されている。
螺旋スクリュー2bは、スクリュー部2の軸方向の基端側から先端側を見て、時計回りに回転しつつ基端側から先端側に向かって旋回していく螺旋状に設けられている。このため、スクリュー部2を軸方向の基端側から先端側を見て時計回りに回転させると、スクリュー部2によって、被混練物m、…、mがこのような螺旋に沿って軸方向の基端側から先端側に向かって搬送できるようになっている。
【0020】
また、スクリュー部2の内部には、図2に示すように、スクリュー軸先端面2cと、スクリュー軸2aの外周側面2eとの間を連通させる管路である循環流路6が形成されている。
本実施形態の循環流路6はT字状の管路からなる。すなわち、スクリュー軸先端面2cの中心部に円状に開口された流入口6aからスクリュー軸2aの中心軸に沿って延ばされて、スクリュー軸2aの基端側寄りの軸方向中間部で径方向外側に向かう2方向に分岐され、スクリュー軸2aの外周側面2eの2箇所で、それぞれ円状の開口である流出口6b、6cを形成している。
スクリュー部2の材質は、適宜の金属材料、例えばステンレス鋼などを採用することができる。
【0021】
シリンダー部3は、図1に示すように、外形が四角柱状とされたブロック部材の一方の端部から、内部側に内周円筒面3aおよび内周底面3bからなる円穴部が形成された部材である。内周円筒面3aの裏面側には、四角柱状の外表面を形成する外周側面3cが設けられ、内周底面3bの裏面側には、外周側面3cの軸方向の端部を覆う外周底面3dが形成されている。
なお、シリンダー部3は、不図示のヒータによって被混練物m、…、mを略溶融状態とする温度Tに昇温できるようになっている。
【0022】
シリンダー部3の内周円筒面3aは、スクリュー部2の螺旋スクリュー2bの外形よりもわずかに大きな内径を有し、スクリュー部2の先端側から基端側まで覆うことが可能な長さを有する。
このようなシリンダー部3は、内周底面3bがスクリュー部2のスクリュー軸先端面2cに対して、例えば0.1mm〜3.0mm程度の隙間をあけて平行に対向され、内周円筒面3aの中心軸線が、スクリュー部2の中心軸線と同軸となるような位置関係に配置され、駆動部5と同様、不図示のベース部材上に固定されている。
このため、シリンダー部3は、スクリュー部2の先端(スクリュー軸先端面2c)および側部(外周側面2eおよび螺旋スクリュー2b)を囲繞するように配置されており、スクリュー部2とシリンダー部3との間には、被混練物m、…、mを混練するための混練空間Kが形成されている。
以下では、シリンダー部3の相対位置関係を説明する際、特に断らない限りは、スクリュー部2の先端側、基端側に合わせて、軸方向の外周底面3d側を先端側、駆動部5側の端部側を基端側と称する。また、スクリュー部2およびシリンダー部3の中心軸線に沿う方向を軸方向と称する。
【0023】
シリンダー部3の上側には、スクリュー部2の流出口6b、6cよりもさらに基端側の位置に、被混練物m、…、mを上方側から混練空間K内に投入する被混練物投入部4が設けられている。
また、被混練物投入部4よりも先端側のシリンダー部3の側部には、外周側面3cから内周円筒面3aに向かって厚さ方向に貫通させて設けられた管状部材からなるガス注入部9A、9B、9Cが設けられている。これらガス注入部9A、9B、9Cは、軸方向には、基端側から先端側に向かって互いに略均等な間隔をあけて、この順に配置されている。
ガス注入部9A、9B、9Cの混練空間K側の開口であるガス注入口9aは、内周円筒面3aに整列されているか、あるいは螺旋スクリュー2bの外形と干渉しない範囲で混練空間K側に突出されている。
【0024】
ガス注入部9Aの軸方向の配置位置は、少なくとも、被混練物投入部4から投入された被混練物m、…、mが溶融状態となるために必要な距離だけ被混練物投入部4から離されている。
また、ガス注入部9Cは、スクリュー軸先端面2cの近傍位置に設けられている。近傍の程度は、スクリュー軸先端面2cに近いほど好ましいが、具体的な距離は、混練機1の寸法や運転条件などに応じて適宜設定すればよい。本実施形態では、一例として、ガス注入部9Bとの距離よりもスクリュー軸先端面2cまでの距離の方が短くなるようなスクリュー軸先端面2cの近傍位置に配置されている。
【0025】
ガス注入部9A、9B、9Cにおいて、各ガス注入口9aと反対側の端部には、ガス配管9bが接続されている。各ガス配管9bの他端側は、冷却されたガスGを供給するガス供給部10に連結されている。
なお、ガス注入部9A、9B、9Cは、混練空間K内の被混練物m、…、mを冷却するためのガスGを供給するものであるため、シリンダー部3に対して略断熱状態に取り付けられている。したがって、ガス注入部9A、9B、9C内を冷却されたガスGが通過してもシリンダー部3の温度はあまり下がらないようになっている。
【0026】
ガス供給部10から各ガス配管9bを通してガス注入部9A、9B、9Cに供給されるガスGの温度および流量は、本実施形態では、ガス供給部10に電気的に接続された冷却制御部11によって制御できるようになっている。
ガスGの種類としては、溶融状態の被混練物m、…、mと化学反応しない不活性なガスであれば、適宜のガスを採用することができる。例えば、アルゴン(Ar)やヘリウム(He)などの希ガスや、窒素ガス(N)、二酸化炭素(CO)などの不活性ガスを好適に採用することができる。
各ガスGの圧力は、溶融状態の被混練物m、…、mの内部にガスGを注入できる適宜の圧力を採用することができる。
【0027】
シリンダー部3の内周底面3bと外周底面3dとの間には、ガスベント7と混練材料吐出部8とが設けられている。
ガスベント7は、内周底面3bの略中心部から外周底面3dまでの厚さ方向に貫通するガス流路を形成し、このガス流路では、混練空間K内のガスGが外部に向けて透過可能とされ、溶融状態の被混練物m、…、mは透過できないようにしたものである。ガスベント7の構成としては、例えば、焼結合金などの多孔質材料や微細の間隙を有する部材などを採用することができる。
このようなガスベント7は、スクリュー部2の先端に対向するシリンダー部3に設けられ、被混練物m、…、m中に混練されたガスGを混練空間Kの外部に排出するガス排出部を構成している。
【0028】
混練材料吐出部8は、スクリュー軸先端面2cと内周底面3bとの間の混練空間Kに移動された溶融状態の被混練物m、…、mを混練空間Kの外部に吐出可能とする吐出流路である。
本実施形態では、溶融状態の被混練物m、…、mを内周底面3bの下端側の位置でスクリュー軸先端面2cに対向する位置に、例えば、電磁弁などによって開閉可能に設けられた吐出部入口8aから流入させ、シリンダー部3の内部を経由して、下面側の外周側面3cに設けられた吐出部出口8bまで導いて吐出させるようになっている。
【0029】
また、被混練物投入部4よりも先端側のシリンダー部3の側部には、混練空間K内で内周円筒面3aに沿って進む被混練物m、…、mの温度を測定するため、例えば熱電対などからなる温度センサー12D、12A、12B、12Cが、基端側から先端側に向かってこの順に配置されている。
温度センサー12Dは、循環流路6を通して、混練空間Kに還流する被混練物m、…、mの温度を測定するものであり、スクリュー部2の回転により流出口6b、6cが移動する軌跡に略対向する位置に設けられている。
また、温度センサー12A、12B、12Cはそれぞれ、混練空間K内を移動する被混練物m、…、mの温度を測定するものである。
温度センサー12Aの軸方向の配置位置は、ガス注入部9A、9Bの各ガス注入口9aの間の位置において、螺旋スクリュー2bによる搬送方向の下流側に設けられている。なお、図1には、ガス注入部9Aのガス注入口9aから、螺旋スクリュー2bの螺旋に沿って180度分螺旋移動した下流側の位置に設けられているが、180度以外の角度だけ螺旋移動した位置であってもよい。
また、温度センサー12Bの軸方向の配置位置は、ガス注入部9B、9Cの各ガス注入口9aの間の位置において、螺旋スクリュー2bによる搬送方向の下流側に設けられている。
また、温度センサー12Cの軸方向の配置位置は、ガス注入部9Cと、スクリュー軸先端面2cとの間の位置において、螺旋スクリュー2bによる搬送方向の下流側に設けられている。
これら温度センサー12D、12A、12B、12Cは、配線12aによって、それぞれ冷却制御部11に電気的に接続され、測定された各温度の情報を、冷却制御部11が検出できるようになっている。
【0030】
次に、混練機1の動作について、本発明の実施形態に係る混練方法とともに説明する。
以下では、一例として、被混練物mとしてポリカーボネート(融点;約230℃)、被混練物mとして高密度ポリエチレン(融点;約130℃)を1:1で配合した場合の例で説明する。
なお、各材料のJIS K 7210:1999によるメルトマスフローレート(MFR)は、ポリカーボネートが、5g/10min(300℃)、高密度ポリエチレンが、0.05g/10min(190℃)である。
混練機1の寸法的な条件としては、例えば、スクリュー部2の外径が30mm、螺旋スクリュー2bのピッチが10mm、シリンダー部3の内径が32mm、混練空間Kの軸方向にわたる長さが100mm、内周底面3bとスクリュー軸先端面2cとの間の隙間が1mmとする。
【0031】
まず、不図示のヒータによってシリンダー部3を加熱し、内周円筒面3aの温度が温度Tとなるように調整する。上記の被混練物m、mの例では、T=280(℃)が好適である。
【0032】
次に、駆動部5によって、スクリュー部2を基端側から先端側を見て時計回りの方向に回転させる。駆動部5による回転速度は、被混練物m、mが、良好に分散して混練されるように十分高速に設定される。本実施形態では、一例として、3000rpmで回転させる。
そして、被混練物投入部4から、例えば、ペレット化されるなどしたドライ状態の被混練物m、mを投入する。このとき、被混練物m、mは、混練後の混練材料Mの組成比の1:1となるように、配合比を計量して供給される。
【0033】
被混練物投入部4から混練空間Kに投入された被混練物m、mは、スクリュー軸2aの螺旋スクリュー2bとシリンダー部3の内周円筒面3aの間では螺旋スクリュー2bに沿って、外周側面2eと内周円筒面3aとの間ではスクリュー軸2aの回転方向に沿って搬送される。
このとき、内周円筒面3aに接触した被混練物m、mは、内周円筒面3aから熱を受けて溶融される。また、内周円筒面3aとスクリュー部2との相対運動によって、溶融された被混練物m、mはせん断を受けながら搬送されていく。
被混練物m、mがせん断を受けると、各ポリマーの分子鎖が分断され、より小さなサイズの分散粒子として互いに分散するように混練されていく。このとき、せん断に伴う発熱によって、被混練物m、mの温度が上昇する。
このため、被混練物m、mは温度上昇しつつ、混練空間K内を軸方向の基端側から先端側に向かって、スクリュー部2の中心軸回りに螺旋運動しながら搬送されていく。
ところが、被混練物m、mは温度が上がると粘度が低下するため、せん断を受けにくくなって分子鎖が分断されにくくなり、各材料の分散粒子径がある程度よりは小さくなりにくくなるため、分散が進まなくなってしまう。
【0034】
本実施形態では、溶融状態の被混練物m、mに、ガス注入部9A、9B、9Cの少なくともいずれかのガス注入口9aから、冷却されたガスGを注入し、被混練物m、mを直接的に冷却する。
例えば、ガスGとして、−196℃のNを採用する場合、総流量30mL/minで注入することが好適である。
このようにして注入されたガスGは、混練空間Kで混練されつつ搬送される溶融状態の被混練物m、mの内部に巻き込まれて、被混練物m、mとともに混練されつつ、移動されていく。その際、ガスGは、接触する被混練物m、mと熱交換して、被混練物m、mを冷却する。
その際、本実施形態では、ガスGは、各ガス注入口9aを介して、被混練物m、mに直接注入されるため、例えば、シリンダー部3やスクリュー部2などに接触して被混練物m、m以外の部材から熱を奪う割合が少ないため、効率的な冷却を行うことができる。
冷却された被混練物m、mは粘度が増大するため、再びせん断を受けやすくなって分子鎖の分断が起こりやすくなり、良好な混練が進行するようになる。
一方、せん断によって、被混練物m、mの温度は上昇に転じるため、ガスGは、軸方向に離間された複数の位置で注入されることが好ましい。
また、ガスGは、熱交換が終わっても混練空間K内にとどまる間は、被混練物m、mの内部で繰り返し練り込まれるため、被混練物m、mの内部を攪拌し、より均一な混練が進むのを補助する機能も有する。
【0035】
本実施形態では、ガス注入部9A、9B、9Cの下流側で、それぞれ温度センサー12A、12B、12Cによって、ガスGによる冷却後の被混練物m、mの温度を測定することができる。このため、ガスGによる冷却の効率が十分でない場合には、冷却制御部11によって、ガス供給部10の供給量を変更して、混練空間K内の被混練物m、mの手動または自動による温度制御を行うようにすることもできる。
その際、熱容量を有する他の部材を介して冷却することなく、直接的に被混練物m、mを冷却することができるので迅速な温度制御を行うことができる。
【0036】
このようにして、スクリュー軸先端面2cまで移動された被混練物m、mは、狭い隙間をあけて対向するスクリュー軸先端面2cと内周底面3bの間でせん断を受けながら螺旋状に回転して、スクリュー軸先端面2cの中央部に移動される。このとき、スクリュー軸先端面2cの外周部では、混練空間Kの中では最も強いせん断を受けることになる。
このため、効率的な混練を行うためには、スクリュー軸先端面2cの外周部に到達するまでに、被混練物m、mの温度を十分下げておくことが好ましい。
【0037】
スクリュー軸先端面2cの中心部に移動した被混練物m、mは、せん断による発熱によって粘度が低下している。このため、内部に練り込まれたガスGは、ガスベント7に当接するとガスベント7側に容易に抜けてゆき、ガスベント7を通して混練空間Kの外部に排出される。
一方、ガスGが抜けた被混練物m、mは、ガスベント7を通り抜けることができない。このため、吐出部入口8aが閉じられている場合には、流入口6aに流入し、循環流路6を通して流出口6b、6c側に流れ、基端側の混練空間Kに還流する。
このようにして、被混練物m、mは、混練空間K内では軸方向の基端側から先端側に向かって、繰り返し循環しながら混練される。これにより分子鎖の分断が進行し被混練物m、mがそれぞれ小さな分散粒子に分断され、互いの間に分散していくため、高分散性の混練材料Mが形成されていく。
このような混練を一定時間続けた後、ガスGの供給を停止し、吐出部入口8aを開放して、吐出部出口8bから混練材料Mを吐出させる。これにより混練材料Mが混練機1の外部に回収される。
以上で、混練機1による混練が終了する。
【0038】
[実施例]
ここで、本実施形態の作用について、実施例1、2、3、および比較例に基づいて具体的に説明する。
実施例1〜3、および比較例では、上記に一例として説明した数値例の混練機1を用い、ガス注入部9A、9B、9Cから注入するガスGの流量を変えて、被混練物m、mを3分間、混練した。
そして、温度センサー12A、12B、12C、12Dによる温度測定結果と、得られた混練材料Mの分散粒子最大径を測定した。分散粒子最大径は、透過型電子顕微鏡を用いて測定した。
下記の表1に、各実施例、比較例のガス流量の設定と、温度および分散粒子最大径の測定結果を示す。表1において、注入口A、B、Cは、それぞれガス注入部9A、9B、9Cの各ガス注入口9aからのガス流量を示す。また、センサーA、B、C、Dは、それぞれ温度センサー12A、12B、12C、12Dの温度測定結果を示す。
【0039】
【表1】

【0040】
表1に示すように、実施例1は、混練空間Kの基端側のガス注入部9Aのガス注入口9aのみから、ガスGを流量30mL/minで注入した例である。また、実施例2は、混練空間Kの先端側のガス注入部9Cのガス注入口9aのみから、ガスGを流量30mL/minで注入した例である。また、実施例3は、ガス注入部9A、9B、9Cの各ガス注入口9aから、それぞれガスGを、流量5mL/min、10mL/min、15mL/minとなるように、基端側から先端側に流量を漸次低減させて注入した例である。
各実施例ともガスGの流量の総和は30mL/minになっている。
また、比較例は、ガスGを注入しないで、混練した場合の例である。
【0041】
表1に示すように、実施例1の混練空間Kにおける温度分布は、基端側から先端側に向かって、297℃、302℃、311℃のように漸次温度上昇する変化を示し、温度センサー12Dで測定された混練空間Kに還流する被混練物m、mの温度(以下、還流温度と称する)は348℃であった。
分散粒子最大径は、平均値が95nm、標準偏差σが56nm、標準偏差σを平均値で割った変動係数が58.9%であった。
また、実施例2の混練空間Kにおける温度分布は、基端側から先端側に向かって、347℃、351℃、300℃のように先端側で急激に温度低下する変化を示し、還流温度は344℃であった。
分散粒子最大径は、平均値が72nm、標準偏差σが54nm、変動係数が75.0%であった。
また、実施例3の混練空間Kにおける温度分布は、基端側から先端側に向かって、318℃、307℃、293℃のように漸次温度低下する変化を示し、還流温度は334℃であった。
分散粒子最大径は、平均値が53nm、標準偏差σが28nm、変動係数が52.8%であった。
【0042】
これに対して、比較例の混練空間Kにおける温度分布は、基端側から先端側に向かって、374℃、365℃、360℃のように漸次温度低下する変化を示し、還流温度は377℃であった。
分散粒子最大径は、平均値が197nm、標準偏差σが151nm、変動係数が76.6%であった。
【0043】
これらの結果から、実施例1〜3はいずれも、分散粒子最大径の平均値が比較例に比べて半分以下の格段に小さい値になっており、優れた分散性を有していることが分かる。これは、ガスGによる冷却がなされない比較例では、混練空間Kの平均温度が約366℃と高いため、粘度が低くなりすぎて被混練物m、mを効率よくせん断することができないからである。
一方、各実施例の温度分布を比較すると、分散粒子最大径の平均値、すなわち分散性は、混練空間Kの最も先端側の温度(センサーCの温度)との相関が高いと言える。実施例1は混練空間Kの平均温度は約303℃と最も低いにもかかわらず、同じく平均温度が約333℃、306℃の実施例2、3に比べると、分散性は相対的に劣っている。
これは、被混練物m、mに最も大きなせん断が作用するのは、スクリュー軸先端面2cの外周部であるため、スクリュー軸先端面2cに到達したときの温度が低い方が、材料が効率的にせん断されやすいからである。
この結果、分散性が最も良好となるのは、混練空間K中の平均温度が比較的低く、混練空間Kの先端側の温度が最も低くなる実施例3であった。
実施例3では、ガスGの総流量は同じでも、ガスGを混練空間Kの軸方向に沿う複数のガス注入口9aに分配して、被混練物m、mを軸方向の基端側から先端側の複数箇所で多段階に冷却することで、混練空間Kを移動中のせん断による発熱を抑制している。このため、ガスGを効率的に冷却に利用して、先端側での温度が最も低くなる温度分布を達成することができた。
また、各実施例でセンサーCとセンサーDの値の差を見れば分かるように、混練空間Kの先端側で低温となることで被混練物m、mの粘度が増大しても、スクリュー部2の先端で作用するせん断による発熱で、すぐに温度上昇するため、循環流路6を通過する際には低粘度となって円滑に還流させることができている。
【0044】
以上に、説明したように、混練機1を用いた混練方法によれば、被混練物m、mをガス注入口9aから注入した冷却されたガスGによって直接的に冷却して、被混練物m、mの粘度を増大させることができるので、被混練物m、mに効率的にせん断することができ、分散性に優れた混練材料Mを効率よく製造することができる。
【0045】
次に、本実施形態の変形例について説明する。
図3は、本発明の実施形態の変形例に係る混練機の概略構成を示す模式的な断面図である。図4は、本発明の実施形態の変形例に係る混練機のスクリュー部の中心軸を通る模式的な断面図である。
【0046】
本変形例の混練機1Aは、図3、4に示すように、上記実施形態の混練機1のスクリュー部2、シリンダー部3に代えて、それぞれスクリュー部22、シリンダー部23を備える。
スクリュー部22は、上記実施形態のスクリュー部2のスクリュー軸2aに代えて、スクリュー軸2aから循環流路6を削除したスクリュー軸22aを備える。
シリンダー部23は、上記実施形態のシリンダー部3に循環流路26を追加したものである。
以下、上記実施形態と異なる点を中心に説明する。また、同一または相当する部材には上記実施形態と同一の符号を付し、共通する説明は省略する。
【0047】
本変形例の混練機1Aでは、スクリュー軸22aのスクリュー軸先端面2c、外周側面2e、および螺旋スクリュー2bと、シリンダー部23の内周底面3bおよび内周円筒面3aとの間に、上記実施形態の混練機1と同様な混練空間Kが形成されている。
ただし、上記実施形態の混練機1が混練空間Kの被混練物m、…、mをスクリュー部2の内部の循環流路6を通して循環させる内部循環型の混練機であるのに対して、混練機1Aは混練空間Kの被混練物m、…、mをシリンダー部23に設けられた循環流路26を通して循環させる外部循環型の混練機となっている。
循環流路26は、図4に示すように、内周底面3bの中心部で、ガスベント7に隣接して開口された流入口26aと、基端側の内周円筒面3aに開口された流出口26bとの間を連通させるシリンダー部23の内部に設けられた管路である。
流出口26bの軸方向の位置は、ガス注入部9Aと被混練物投入部4との間において、上記実施形態の流出口6b、6cが設けられたのと同等の位置に設けられる。
【0048】
このような混練機1Aによれば、被混練物投入部4から投入された被混練物m、…、mは、混練空間Kで上記実施形態と同様にして、混練され、スクリュー部22の先端に到達する。内周円筒面3aの中心部では、ガスGが上記実施形態と同様にガスベント7から混練空間Kの外部に排出される。また、溶融状態の被混練物m、…、mは、流入口26aから循環流路26の内部を流れて、流出口26bから、混練空間Kの基端側に環流される。
このため、混練空間K内で溶融状態の被混練物m、…、mが循環して繰り返し混練されることで、上記実施形態と同様に、分散粒子径が小さく、分散性の良好な混練材料Mが製造される。
【0049】
なお、上記の説明では、ガス注入口をシリンダー部に設けた場合の例で説明したが、ガス注入口は、スクリュー部およびシリンダー部の少なくともいずれかに設けられていればよい。
スクリュー部にガス注入口を設けるには、例えば、スクリュー部2の内部に焼結合金などを用いた多孔質体によって基端側からスクリュー部の側部を連通させるガス流路を形成し、このガス流路の基端側の端部に回転ジョイントなどを介して、回転中にガスを供給できるようにした構成を採用することができる。またこのガス流路は、スクリュー部の側部側の端部で焼結合金などの多孔質体で覆われ内部が空洞とされた管路であってもよい。
また、循環流路をシリンダー部側に設ける場合には、少なくともスクリュー部のスクリュー軸を焼結合金などの多孔質体で形成することで、スクリュー軸の外周面全体にガス注入口が設けられた構成としてもよい。
【0050】
また、上記の説明では、混練機のガス注入口は、3箇所に設けられた場合の例で説明したが、4箇所以上設けられていてもよい。
また、上記実施例1、2のように1箇所からガスを注入する場合には、1箇所に設けられているだけでもよい。
【0051】
また、上記の説明では、温度測定手段として、混練空間における被混練物の温度を直接測定する温度センサーが設けられている場合の例で説明したが、温度測定手段は、混練空間の外部に設けられた温度センサーや赤外線モニターなどで構成し、例えばシリンダー部などの温度を測定することで、その結果から被混練物の温度を間接的に推定できるようにしてもよい。
また、例えば、予めガスの注入条件と被混練物の温度との関係が分かっているような場合には、温度測定手段を備えていなくてもよい。
【0052】
また、上記の説明では、冷却制御部が、温度測定手段で測定した温度が目標温度となるように、ガス流量などを制御できるようにした場合の例で説明したが、このような温度制御を行わなくても、ガス注入条件を一定にするのみで、混練空間内の混練物の温度分布を安定させることが分かっているような場合には、冷却制御部はこのような温度制御を行わない構成としてよい。
【0053】
また、上記に説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせて実施することができる。
【符号の説明】
【0054】
1、1A 混練機
2、22 スクリュー部
2b 螺旋スクリュー(スクリュー部の側部)
2c スクリュー軸先端面(スクリュー部の先端)
2e 外周側面(スクリュー部の側部)
3、23 シリンダー部
3a 内周円筒面
3b 内周底面
5 駆動部
6、26 循環流路
7 ガスベント
9A、9B、9C ガス注入部
9a ガス注入口
10 ガス供給部
11 冷却制御部
12A、12B、12C、12D 温度センサー
G ガス
K 混練空間
M 混練材料
、m、m 被混練物

【特許請求の範囲】
【請求項1】
基端側で回転可能に保持された軸状のスクリュー部と該スクリュー部の先端および側部を囲繞するように配置されたシリンダー部との間に形成された混練空間で、前記スクリュー部を回転させることにより、2種類以上の被混練物を前記スクリュー部の前記基端側から前記先端に向かって移動させて混練を行う混練方法であって、
前記混練空間内を移動する前記被混練物に、冷却されたガスを注入し、
前記被混練物を注入された前記ガスとともに前記先端側に移動させて混練を行うことを特徴とする混練方法。
【請求項2】
前記ガスは、
前記混練空間における前記混練物の移動流路の下流側である前記スクリュー部の先端の近傍で注入することを特徴とする請求項1に記載の混練方法。
【請求項3】
前記ガスは、
前記被混練物が、前記スクリュー部の基端側から前記先端まで移動する間の複数箇所で注入することを特徴とする請求項1または2に記載の混練方法。
【請求項4】
2種類以上の被混練物を循環させて混練を行う混練機であって、
基端側で回転可能に保持された軸状のスクリュー部と、
該スクリュー部を回転させる駆動部と、
前記スクリュー部の先端および側部を囲繞するように配置され、前記スクリュー部との間に前記被混練物を混練する混練空間を形成するシリンダー部と、
前記スクリュー部または前記シリンダー部の内部に設けられ、前記スクリュー部の先端近傍の混練空間と前記スクリュー部の基端側の混練空間とを連通させて、前記被混練物を循環可能とする循環流路と、
冷却されたガスを供給するガス供給部と、
前記スクリュー部および前記シリンダー部の少なくともいずれかにおいて、前記混練空間に面して開口され、該混練空間に向けて前記ガス供給部から供給された前記ガスを注入するガス注入口とを備えることを特徴とする混練機。
【請求項5】
前記ガス注入口は、
前記スクリュー部の先端の近傍に設けられたことを特徴とする請求項4に記載の混練機。
【請求項6】
前記ガス注入口は、
前記スクリュー部の基端側から前記先端までの間の複数箇所に設けられたことを特徴とする請求項4または5に記載の混練機。
【請求項7】
前記スクリュー部の先端に対向する前記シリンダー部に、前記被混練物中に混練された前記ガスを前記混練空間の外部に排出するガス排出部を備えることを特徴とする請求項4〜6のいずれかに記載の混練機。
【請求項8】
前記ガス注入口の設置位置に対して前記混練空間における前記被混練物の移動方向の下流側の近傍位置に、前記被混練物の温度を測定する温度測定手段が設けられたことを特徴とする請求項4〜7のいずれかに記載の混練機。
【請求項9】
前記温度測定手段によって測定された前記被混練物の温度に基づいて、前記ガス供給部からの前記ガスの供給量を制御する冷却制御部を備えることを特徴とする請求項8に記載の混練機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−284911(P2010−284911A)
【公開日】平成22年12月24日(2010.12.24)
【国際特許分類】
【出願番号】特願2009−141112(P2009−141112)
【出願日】平成21年6月12日(2009.6.12)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】