説明

炭素繊維の製造方法

【課題】高強度かつ高弾性率を有する、繊維同士の融着のない極細炭素繊維の製造方法を提供すること。
【解決手段】熱可塑性樹脂、熱可塑性炭素前駆体及び熱不融成分からなる混合物から前駆体繊維を形成し、得られた前駆体繊維を沃素と酸素との混合ガス雰囲気下で安定化処理に付して安定化前駆体繊維を形成し、次いで安定化前駆体繊維から熱可塑性樹脂を除去して繊維状炭素前駆体を形成し、更に繊維状炭素前駆体を炭素化もしくは黒鉛化する工程を経て炭素繊維を製造する。

【発明の詳細な説明】
【技術分野】
【0001】
炭素繊維を製造する方法に関する。更に詳しくは、極細炭素繊維、具体的には繊維径が1μm未満である炭素繊維を製造する方法に関する。
【背景技術】
【0002】
炭素繊維は高強度、高弾性率、高導電性、軽量等の優れた特性を有している事から、高性能複合材料のフィラーとして使用されている。その用途は、従来からの機械的強度向上を目的とした補強用フィラーに留まらず、炭素材料に備わった高導電性を生かし、電磁波シールド材、静電防止材用の導電性樹脂フィラーとして、あるいは樹脂への静電塗料のためのフィラーとしての用途が期待されている。また炭素材料としての化学的安定性、熱的安定性と微細構造との特徴を生かし、フラットディスプレー等の電界電子放出材料としての用途も期待されている。
【0003】
このような、高性能複合材料用としての炭素繊維の製造法として、(1)気相法を用いた炭素繊維(Vapor Grown Carbon Fiber;以下「VGCF」と略記する。)製造法、(2)樹脂組成物の溶融紡糸から製造する方法の2つが報告されている。
【0004】
気相法を用いた製造法としては、たとえばベンゼン等の有機化合物を原料とし、触媒としてフェロセン等の有機遷移金属化合物をキャリアーガスとともに高温の反応炉に導入し、基盤上に生成させる方法(例えば、特許文献1を参照。)、浮遊状態で「VGCF」を生成させる方法(例えば、特許文献2を参照。)、あるいは反応炉壁に成長させる方法(例えば、特許文献3を参照。)等が開示されている。しかし、これらの方法で得られる炭素繊維は高強度、高弾性率を有するものの、分岐が多く、補強用フィラーとしては性能が非常に低いといった問題があった。また、コスト高になるといった問題があった。
【0005】
一方、樹脂組成物の溶融紡糸から炭素繊維を製造する方法としては、フェノール樹脂とポリエチレンの複合繊維から極細炭素繊維を製造する方法(例えば、特許文献4を参照)が開示されている。該方法の場合、分岐構造の少ない炭素繊維が得られるが、フェノール樹脂は完全非晶であるため、配向形成しにくく、且つ難黒鉛化性であるため得られる極細炭素繊維の強度、弾性率の発現は期待できない等の問題があった。また、ポリエチレンを介したフェノール樹脂の不融化を酸性溶液中で行なうため、ポリエチレン中への酸性溶液の拡散が律速となり、不融化に多大の時間を要する等の問題を有していた。また、炭化処理後炭素繊維同士の融着を引起こすなどの問題を有していた。
【0006】
【特許文献1】特開昭60−27700号公報(第2−3頁)
【特許文献2】特開昭60−54998号公報(第1−2頁
【特許文献3】特許第2778434号公報(第1−2頁)
【特許文献4】特開2001−73226号公報(第3−4頁)
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、上記従来技術では未だ達成できていなかった、高強度かつ高弾性率を有する、繊維同士の融着のない極細炭素繊維の製造方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。即ち、本発明の目的は、
(1)熱可塑性樹脂100重量部並びにピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミドよりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体1〜150重量部と熱不融成分0.001〜15重量部からなる混合物から前駆体繊維を形成する工程、
(2)前駆体繊維を沃素と酸素の混合ガス雰囲気下で安定化処理に付して安定化前駆体繊維を形成する工程、
(3)安定化前駆体繊維から熱可塑性樹脂を除去して繊維状炭素前駆体を形成する工程、
(4)繊維状炭素前駆体を炭素化もしくは黒鉛化する工程、
を経る、炭素繊維の製造方法によって達成することができる。
【発明の効果】
【0009】
本発明によれば、繊維の分岐構造が少ない高強度・高弾性率の極細炭素繊維を効率的かつ安価に製造することができる。得られる極細炭素繊維は、高機能フィルター、電池用電極基材等に利用することができ、その工業的意義は大きい。
【発明を実施するための最良の形態】
【0010】
以下、本発明を(1)熱可塑性樹脂、(2)熱可塑性炭素前駆体、(3)熱不融成分、(4)熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分からなる混合物の製造、(5)炭素繊維を製造する方法、(6)炭素繊維の順に詳細に説明する。
【0011】
(1)熱可塑性樹脂
本発明で使用する熱可塑性樹脂は、安定化前駆体繊維を製造後、容易に除去される必要がある。このため、酸素または不活性ガス雰囲気下、350℃以上600℃未満の温度で5時間保持することで、初期重量の15wt%以下、より好ましくは10wt%以下、さらには5wt%以下にまで分解する熱可塑性樹脂を用いることが好ましい。このような熱可塑性樹脂として、ポリオレフィン、ポリメタクリレート、ポリメチルメタクリレート等のポリアクリレート系ポリマー、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリサルホン、ポリイミド、ポリエーテルイミド等が好ましく使用される。これらの中でもガス透過性が高く、容易に熱分解しうる熱可塑性樹脂として、例えば下記式(I)で表されるポリオレフィン系の熱可塑性樹脂やポリエチレンなどが好ましく使用される。
【0012】
【化1】

【0013】
上記式(I)で表される化合物の具体的な例としては、ポリ−4−メチルペンテン−1やポリ−4−メチルペンテン−1の共重合体、例えばポリ−4−メチルペンテン−1にビニル系モノマーが共重合したポリマーなどや、ポリエチレンを例示することができ、ポリエチレンとしては、高圧法低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどのエチレンの単独重合体またはエチレンとα−オレフィンとの共重合体;エチレン・酢酸ビニル共重合体などのエチレンと他のビニル系単量体との共重合体等が挙げられる。
【0014】
エチレンと共重合されるα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ヘキセン、1−オクテンなどが挙げられる。他のビニル系単量体としては、例えば、酢酸ビニル等のビニルエステル;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル等の(メタ)アクリル酸およびそのアルキルエステルなどが挙げられる。
【0015】
また、本発明の熱可塑性樹脂は熱可塑性炭素前駆体と容易に溶融混練できるという点から、非晶性の場合、ガラス転移温度が250℃以下、結晶性の場合、結晶融点が300℃以下であることが好ましい。
【0016】
(2)熱可塑性炭素前駆体
本発明に用いられる熱可塑性炭素前駆体は、酸素または酸素と沃素との混合ガス雰囲気下、200℃以上350℃未満で2〜30時間保持した後、次いで350℃以上500℃未満の温度で5時間保持することで、初期重量の80wt%以上が残存する熱可塑性炭素前駆体を用いるのが好ましい。上記条件で、残存量が初期重量の80%未満であると、熱可塑性炭素前駆体から充分な炭化率で炭素繊維を得ることができず、好ましくない。
【0017】
より好ましくは、上記条件において初期重量の85%以上が残存することである。上記条件を満たす熱可塑性炭素前駆体としては、具体的にはレーヨン、ピッチ、ポリアクリロニトリル、ポリα−クロロアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリエーテルイミド、ポリベンゾアゾール、およびアラミド類等が挙げられ、これらの中でピッチ、ポリアクリロニトリル、ポリカルボジイミドが好ましく、ピッチがさらに好ましい。
【0018】
またピッチの中でも一般的に高強度、高弾性率の期待されるメソフェーズピッチが好ましい。なお、メソフェーズピッチとは溶融状態において光学的異方性相(液晶相)を形成しうる化合物を指す。メソフェーズピッチの原料としては石炭や石油の蒸留残渣を使用してもよく、有機化合物を使用しても良いが、安定化や炭素化もしくは黒鉛化のしやすさから、ナフタレン等の芳香族炭化水素を原料としたメソフェーズピッチを用いるのが好ましい。上記熱可塑性炭素前駆体は熱可塑性樹脂100重量部に対し1〜150重量部、好ましくは5〜100重量部を使用しうる。
【0019】
(3)熱不融成分
本発明で使用する熱不溶成分は炭素繊維の表面に付着し、安定化前駆体繊維から炭素繊維を製造する工程において、炭素繊維が軟化することにより生じる炭素繊維同士の融着を抑えるスペーサ−の役割を果たす。
【0020】
このため、本発明の熱不溶成分は、窒素またはアルゴン等の不活性ガス雰囲気下1000〜3000℃の温度範囲において溶融しない材料であれば特に限定されない。このような熱不融成分として、たとえばシリコンカーバイド、黒鉛材料、金属酸化物等のセラミック類などを例示することができるが、これらの中でも特に黒鉛材料、さらにはカーボンブラックが好ましい。
【0021】
また、本発明の炭素繊維はその繊維径が0.001〜2μm程度である。このため、本発明で使用する熱不溶成分はその粒子径が非常に細かい、具体的には繊維径よりも小さいことが要求される。本発明で使用する熱不溶成分は、その一次粒子径が1〜100nmであることが好ましい。通常、これらの熱不溶成分は一次粒子が凝集した二次粒子の形状で存在する。一次粒子径が100nmより大きいと二次粒子の大きさが非常に大きくなり、炭素繊維の繊維径と同等の大きさを有する二次粒子が付着することになり好ましくない。一方、1nm未満であるとハンドリングが困難となり好ましくない。
【0022】
(4)熱可塑性樹脂と熱可塑性炭素前駆体とからなる混合物の製造
本発明で使用する混合物は、熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分とから製造される。本発明で使用する混合物から、繊維径が1μm未満である炭素繊維を製造するためには、熱可塑性炭素前駆体の熱可塑性樹脂中への分散径が0.01〜50μmとなるのが好ましい。熱可塑性炭素前駆体の熱可塑性樹脂(I)中への分散径が0.01〜50μmの範囲を逸脱すると、高性能複合材料用としての炭素繊維を製造することが困難となることがある。熱可塑性炭素前駆体の分散径のより好ましい範囲は0.01〜30μmである。また、熱可塑性樹脂と熱可塑性炭素前駆体からなる混合物を、300℃で3分間保持した後、熱可塑性炭素前駆体の熱可塑性樹脂中への分散径が0.01〜50μmであることが好ましい。
【0023】
一般に、熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分の溶融混練で得た混合物を、溶融状態で保持しておくと時間と共に熱可塑性炭素前駆体が凝集するが、熱可塑性炭素前駆体の凝集により、分散径が50μmを超えると、高性能複合材料用としての炭素繊維を製造することが困難となることがある。熱可塑性炭素前駆体の凝集速度の程度は、使用する熱可塑性樹脂と熱可塑性炭素前駆体との種類により変動するが、より好ましくは300℃で5分間以上、さらに好ましくは300℃で10分間以上、0.01〜50μmの分散径を維持していることが好ましい。なお、混合物中で熱可塑性炭素前駆体は島相を形成し、球状あるいは楕円体状となるが、本発明で言う分散径とは混合物中で熱可塑性炭素前駆体の球形の直径または楕円体状の長軸径を意味する。
【0024】
熱可塑性炭素前駆体の使用量は、熱可塑性樹脂100重量部に対して1〜150重量部、好ましくは5〜100重量部である。熱可塑性炭素前駆体の使用量が150重量部を超えると所望の分散径を有する熱可塑性炭素前駆体が得られず、1重量部未満であると目的とする炭素繊維を安価に製造する事ができない等の問題が生じるため好ましくない。また、熱不溶成分の使用量は熱可塑性樹脂100重量部に対して0.001〜15重量部である。熱不溶成分の使用量が0.001重量部未満であると、安定化前駆体繊維から炭素繊維を製造する工程において、炭素繊維同士の融着を引起こしてしまい好ましくない。一方、15重量部を越えると、前駆体繊維を製造する工程において糸切れなどを引起こしてしまい、生産性を著しく低下させるために好ましくない。熱不溶成分の使用量のより好ましい範囲は0.003〜10重量部である。
【0025】
熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分とから混合物を製造する方法は、溶融状態における混練が好ましい。熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分との溶融混練は公知の方法を必要に応じて用いる事ができ、例えば一軸式溶融混練押出機、二軸式溶融混練押出機、ミキシングロール、バンバリーミキサー等が挙げられる。これらの中で上記熱可塑性炭素前駆体と熱不溶成分とを熱可塑性樹脂中に良好にミクロ分散させるという目的から、同方向回転型二軸式溶融混練押出機が好ましく使用される。
【0026】
溶融混練温度としては100℃〜400℃で行なうのが好ましい。溶融混練温度が100℃未満であると、熱可塑性炭素前駆体が溶融状態にならず、熱可塑性樹脂とのミクロ分散が困難であるため好ましくない。一方、400℃を超える場合、熱可塑性樹脂と熱可塑性炭素前駆体の分解が進行するためいずれも好ましくない。溶融混練温度のより好ましい範囲は150℃〜350℃である。
【0027】
また、溶融混練の時間としては0.5〜20分間、好ましくは1〜15分間である。溶融混練の時間が0.5分間未満の場合、熱可塑性炭素前駆体のミクロ分散が困難であるため好ましくない。一方、20分間を超える場合、炭素繊維の生産性が著しく低下し好ましくない。
【0028】
本発明では、熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分とから溶融混練により混合物を製造する際に、酸素ガス含有量10体積%未満のガス雰囲気下で溶融混練することが好ましい。本発明で使用する熱可塑性炭素前駆体は酸素と反応することで溶融混練時に変性不融化してしまい、熱可塑性樹脂中へのミクロ分散を阻害することがある。このため、不活性ガスを流通させながら溶融混練を行い、できるだけ酸素ガス含有量を低下させることが好ましい。より好ましい溶融混練時の酸素ガス含有量は5体積%未満、さらには1体積%未満である。上記の方法を実施することで、炭素繊維を製造するための、熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分の混合物を製造することができる。
【0029】
(5)炭素繊維を製造する方法
本発明の炭素繊維は、上述の熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分からなる混合物から製造することができる。即ち、本発明の炭素繊維は、(5−1)熱可塑性樹脂100重量部と熱可塑性炭素前駆体1〜150重量部と熱不溶成分0.001〜15重量部からなる混合物から前駆体繊維を形成する工程、(5−2)前駆体繊維を安定化処理に付して前駆体繊維中の熱可塑性炭素前駆体を安定化して安定化前駆体繊維を形成する工程、(5−3)安定化前駆体繊維から熱可塑性樹脂を除去して繊維状炭素前駆体を形成する工程、そして、(5−4)繊維状炭素前駆体を炭素化もしくは黒鉛化する工程を経ることで製造される。各工程について、以下に詳細に説明する。
【0030】
(5−1)熱可塑性樹脂と熱可塑性炭素前駆体からなる混合物から前駆体繊維を形成する工程
本発明では、熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分の溶融混練で得た混合物から前駆体繊維を形成する。前駆体繊維を製造する方法としては、熱可塑性樹脂と熱可塑性炭素前駆体とからなる混合物を紡糸口金より溶融紡糸することにより得る方法などを例示することができる。溶融紡糸する際の紡糸温度としては150℃〜400℃、好ましくは180℃〜350℃である。紡糸引取り速度としては10m/分〜2000m/分である事が好ましい。また、別法として熱可塑性樹脂と熱可塑性炭素前駆体の溶融混練で得た混合物から、メルトブロー法により前駆体繊維を形成する方法も例示することができる。メルトブローの条件としては、吐出ダイ温度が150〜400℃、ガス温度が150〜400℃の範囲が好適に用いられる。メルトブローの気体噴出速度は、前駆体繊維の繊維径に影響するが、気体噴出速度は、通常2000〜100m/sであり、より好ましくは1000〜200m/sである。
【0031】
熱可塑性樹脂と熱可塑性炭素前駆体と熱不溶成分の混合物を溶融混練し、その後ダイより吐出する際、溶融混練した後溶融状態のままで配管内を送液し吐出ダイまで連続的に送液するのが好ましく、溶融混練から紡糸口金吐出までの移送時間は10分間以内である事が好ましい。
【0032】
(5−2)前駆体繊維を安定化処理に付して前駆体繊維中の熱可塑性炭素前駆体を安定化して安定化前駆体繊維を形成する工程
本発明の製造方法における第二の工程では、上記で作成した前駆体繊維を沃素と酸素の混合ガス雰囲気下で安定化処理に付して前駆体繊維中の熱可塑性炭素前駆体の安定化と熱可塑性樹脂のゲル化を促進させて安定化前駆体繊維を形成する。熱可塑性炭素前駆体の安定化は炭素化もしくは黒鉛化された炭素繊維を得るために必要な工程であり、これを実施せず次工程である熱可塑性樹脂の除去を行った場合、熱可塑性炭素前駆体が熱分解するなどの問題が生じる。また、熱可塑性樹脂のゲル化は、熱分解による熱可塑性樹脂の除去時に、熱可塑性樹脂のメルトを抑える効果がある。このため、熱可塑性樹脂除去時に、プレフォームが作成されている場合、その形状を維持できるといった長所を有する。例えば、メルトブローで前駆体繊維を作成した場合、その形状は一般に不織布状となる。熱可塑性樹脂のゲル化が著しく低い場合、熱可塑性樹脂を除去する際、熱可塑性樹脂がメルトし、その結果不織布の形態を維持できなくなる。また、熱可塑性樹脂のメルトにより、不織布の緻密化が進行するといった問題を有する。本発明では、前駆体繊維中の熱可塑性炭素前駆体の安定化と熱可塑性樹脂のゲル化を促進させるための方法として、沃素と酸素の混合ガス雰囲気下で安定化処理する方法を好的に用いる。沃素と酸素の混合ガスによる不融化は、温度50〜350℃、好ましくは80〜300℃で、5時間以下、好ましくは2時間以下で所望のガス雰囲気中で処理する事が好ましい。
【0033】
本発明では、沃素と酸素の混合ガス雰囲気下における安定化処理により、100℃の熱デカリンへの溶解量が50wt%未満となる安定化前駆体繊維を形成することが好ましい。100℃の熱デカリンへの溶解量が50wt%以上である安定化前駆体繊維を用いて、次工程である熱可塑性樹脂の除去、炭素化・黒鉛化を行なった場合、前駆体繊維中の熱可塑性炭素前駆体の安定化が不十分であるばかりでなく、熱可塑性樹脂のゲル化も不十分であるため、得られる炭素繊維が融着してしまうだけでなく、プレフォームを作成している場合にはその形状も維持できないといった問題を有する。融着のない炭素繊維、プレフォームの形状を維持するためには、100℃の熱デカリンへの溶解量が30wt%未満、より好ましくは10wt%未満であることが好ましい。
【0034】
(5−3)安定化前駆体繊維から熱可塑性樹脂を除去して繊維状炭素前駆体を形成する工程
本発明の製造方法における第三の工程は安定化前駆体繊維に含まれる熱可塑性樹脂を熱分解で除去するものであり、具体的には安定化前駆体繊維中に含まれる熱可塑性樹脂を除去し、安定化された繊維状炭素前駆体のみを分離し、繊維状炭素前駆体を形成する。この工程では、繊維状炭素前駆体の熱分解をできるだけ抑え、かつ熱可塑性樹脂を分解除去し、繊維状炭素前駆体のみを分離する必要がある。
【0035】
熱可塑性樹脂の除去は、酸素存在雰囲気および不活性ガス雰囲気のどちらでもよい。酸素存在雰囲気で熱可塑性樹脂を除去する場合には、350℃以上600℃未満の温度で除去する必要がある。なお、ここで言う酸素存在雰囲気下とは、酸素濃度が1〜100%のガス雰囲気を指しており、酸素以外に二酸化炭素、窒素、アルゴン等の不活性ガスや、沃素、臭素等の不活性ガスを含有していても良い。これら条件の中でも、特にコストの関係から空気を用いることが特に好ましい。
【0036】
安定化前駆体繊維に含まれる熱可塑性樹脂を除去する温度が350℃未満のときには、繊維状炭素前駆体の熱分解は抑えられるものの、熱可塑性樹脂の熱分解を充分行なうことができず好ましくない。また、600℃以上であると、熱可塑性樹脂の熱分解は充分行なうことができるものの、繊維状炭素前駆体の熱分解も起こってしまい、結果として熱可塑性炭素前駆体から得られる炭素繊維の炭化収率を低下させてしまい好ましくない。
【0037】
安定化前駆体繊維に含まれる熱可塑性樹脂を分解する温度としては、酸素雰囲気下380〜500℃であることが好ましく、特に400〜450℃の温度範囲で、0.5〜10時間処理するのが好ましい。上記処理を施すことで、熱可塑性樹脂は使用した初期重量の15wt%以下にまで分解される。また、熱可塑性炭素前駆体は使用した初期重量の80wt%以上が繊維状炭素前駆体として残存する。
【0038】
また、不活性ガス雰囲気下で熱可塑性樹脂を除去する場合には、350℃以上600℃未満の温度で除去する必要がある。なお、ここで言う不活性ガス雰囲気下とは、酸素濃度30ppm以下、より好ましくは20ppm以下の二酸化炭素、窒素、アルゴン等のガスをさす。なお、沃素、臭素等のハロゲンガスを含有していても良い。
【0039】
なお、本工程で使用する不活性ガスとしては、コストの関係から二酸化炭素と窒素が好ましく用いることができ、窒素が特に好ましい。安定化前駆体繊維からなる不織布に含まれる熱可塑性樹脂を除去する温度が350℃未満のとき、繊維状炭素前駆体の熱分解は抑えられるものの、熱可塑性樹脂の熱分解を充分行なうことができず好ましくない。また、600℃以上であると、熱可塑性樹脂の熱分解は充分行なうことができるものの、繊維状炭素前駆体の熱分解も起こってしまい、結果として熱可塑性炭素前駆体から得られる炭素繊維からなる不織布の炭化収率を低下させてしまい好ましくない。安定化前駆体繊維に含まれる熱可塑性樹脂を分解する温度としては、不活性ガス雰囲気下380〜550℃とすることが好ましく、特に400〜530℃の温度範囲で、0.5〜10時間処理するのが好ましい。上記処理を施すことで、使用した熱可塑性樹脂の初期重量の15wt%以下にまで分解される。また、使用した熱可塑性炭素前駆体の初期重量の80wt%以上が繊維状炭素前駆体として残存する。
【0040】
(5−4)繊維状炭素前駆体を炭素化もしくは黒鉛化する工程
本発明の製造方法における第四の工程は、熱可塑性樹脂を初期重量の15wt%以下にまで除いた繊維状炭素前駆体を不活性ガス雰囲気中で炭素化もしくは黒鉛化し炭素繊維を製造するものである。本発明において繊維状炭素前駆体は不活性ガス雰囲気下での高温処理により炭素化もしくは黒鉛化することで、所望の炭素繊維となる。得られる炭素繊維の繊維径としては0.001μm〜2μmであることが好ましい。
【0041】
本発明では繊維状炭素前駆体を炭素化もしくは黒鉛化する際に、熱不溶成分が析出してくることを最大の特徴としている。熱不溶成分が炭素繊維の表面に存在することで、炭素化もしくは黒鉛化の工程中に軟化する炭素繊維同士の融着を抑えることができる。
【0042】
繊維状炭素前駆体からなる不織布の炭素化もしくは黒鉛化は公知の方法で行なうことができる。使用される不活性ガスとしては窒素、アルゴン等があげられ、温度は500℃〜3500℃、好ましくは800℃〜3000℃である。なお、炭素化もしくは黒鉛化する際の、酸素濃度は20ppm以下、さらには10ppm以下であることが好ましい。上記の方法を実施することで、炭素繊維を製造することができる。
【0043】
(6)炭素繊維
上述の通りの製造方法を実施することで、繊維径が2μm未満である炭素繊維を製造することができる。なお、本発明では上記方法で作成した炭素繊維が不織布の形態であっても良い。なお、本発明で言う不織布とは繊維径0.001〜20μmの繊維が複雑に絡み合ってできた厚み1μm〜100000μm程度の面状形態を指す。
【0044】
本方法で得られた炭素繊維は、その表面に熱不溶成分が均一に分散している。熱不溶成分の一次粒子径は好ましくは1〜500nm、より好ましくは1〜100nmであるが、一次粒子が凝集して形成された二次粒子の形で炭素繊維に付着していても良い。二次粒子径としては5〜1000nmの範囲が好ましい。
【0045】
本発明の炭素繊維は実質的に分岐構造を有さず、かつ炭素繊維同士の融着がない。このため、有機溶剤中で超音波処理等を施すことにより、容易に有機溶剤中に均一分散させることができる。
【実施例】
【0046】
以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けることは無い。尚、本発明において、前駆体繊維の繊維径、炭素繊維径、炭素繊維に付着した熱不融成分の大きさは走査電子顕微鏡(株式会社日立製作所製「S−2400」)にて測定した。また、熱不融成分の一次粒子径は透過型電子顕微鏡(株式会社日立製作所製「H−9000UHR」)にて測定した。
【0047】
[実施例1]
熱可塑性樹脂としてポリ−4−メチルペンテン−1(TPX:グレードRT-18[三井化学株式会社製])100重量部と熱可塑性炭素前駆体としてメソフェーズピッチAR−HP(三菱ガス化学株式会社製)11.1部と熱不融成分としてのカーボンブラック#3030B(三菱化学株式会社製)0.3重量部を同方向二軸押出機(株式会社日本製鋼所製TEX−30、バレル温度290℃、窒素気流下)で溶融混練して混合物を作成した。なお、透過型電子顕微鏡で評価した熱不融成分の平均一次粒子径は25nmであった。この条件で得られた混合物の、熱可塑性炭素前駆体の熱可塑性樹脂中への分散径は0.05〜2μmであった。また、この混合物を300℃で10分間保持したが、熱可塑性炭素前駆体の凝集は認められず、分散径は0.05〜2μmであった。
【0048】
次いで、上記混合物をメルトブロー法により不織布としたが、その際には、330℃で吐出孔より吐出し、吐出孔直下で350℃、500m/分の空気を溶融状態にある繊維に吹き付けることで、繊維径0.5〜5μmの前駆体繊維からなる不織布を作成した。
【0049】
この前駆体繊維からなる不織布10重量部に対して0.5重量部の沃素とが含有されるように、空気とともに1リットル容積の耐圧ガラス内に仕込み、180℃で48時間保持して安定化処理を施すことで、安定化前駆体繊維からなる不織布を作成した。この安定化前駆体繊維からなる不織布を窒素ガス雰囲気下、昇温速度5℃/分で550℃まで昇温することで熱可塑性樹脂を除去して繊維状炭素前駆体からなる不織布を作成した。この繊維状炭素前駆体からなる不織布をアルゴンガス雰囲気下、室温から2800℃まで3時間で昇温することで炭素繊維からなる不織布を作成した。得られた不織布の炭素繊維径は、100〜600nm前後であった。また、炭素繊維の表面には熱不融成分が30〜100nmの二次凝集体として付着していた。図1に電子顕微鏡図を掲載するが、電子顕微鏡写真図からは炭素繊維同士の融着は観察されなかった。
【0050】
[比較例1]
実施例1において、熱不融成分0.3重量部を用いなかったこと以外は同様の操作を行なって、炭素繊維を得た。図2に電子顕微鏡写真図を掲載するが、電子顕微鏡写真図からは炭素繊維同士の融着が観察された。
【図面の簡単な説明】
【0051】
【図1】実施例1の操作で得られた不織布表面を走査型電子顕微鏡(株式会社日立製作所製「S−2400」)により撮影した写真図(撮影倍率1万倍)である。
【図2】比較例1の操作で得られた不織布表面を走査型電子顕微鏡(株式会社日立製作所製「S−2400」)により撮影した写真図(撮影倍率1万倍)である。

【特許請求の範囲】
【請求項1】
(1)熱可塑性樹脂100重量部並びにピッチ、ポリアクリロニトリル、ポリカルボジイミド、ポリイミド、ポリベンゾアゾールおよびアラミドよりなる群から選ばれる少なくとも1種の熱可塑性炭素前駆体1〜150重量部と熱不融成分0.001〜15重量部からなる混合物から前駆体繊維を形成する工程、
(2)前駆体繊維を沃素と酸素の混合ガス雰囲気下で安定化処理に付して安定化前駆体繊維を形成する工程、
(3)安定化前駆体繊維から熱可塑性樹脂を除去して繊維状炭素前駆体を形成する工程、
(4)繊維状炭素前駆体を炭素化もしくは黒鉛化する工程、
を経る、炭素繊維の製造方法。
【請求項2】
熱不融成分としてカーボンブラックを用いる請求項1記載の製造方法。
【請求項3】
カーボンブラックの一次粒子径が1〜100nmである請求項2記載の製造方法。
【請求項4】
(1)の工程において前駆体繊維をメルトブロー法で形成する、請求項1記載の製造方法。
【請求項5】
(1)の工程において形成された前駆体繊維の繊維径が0.01〜20μmの範囲である、請求項1記載の製造方法。
【請求項6】
ピッチがメソフェーズピッチである、請求項1記載の製造方法。
【請求項7】
熱可塑性樹脂が下記式(I)で表される熱可塑性樹脂である、請求項1記載の製造方法。
【化1】

【請求項8】
熱可塑性樹脂がポリ−4−メチルペンテン−1またはその共重合体である、請求項7記載の製造方法。
【請求項9】
熱可塑性樹脂がポリエチレンである、請求項7記載の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−63476(P2006−63476A)
【公開日】平成18年3月9日(2006.3.9)
【国際特許分類】
【出願番号】特願2004−246431(P2004−246431)
【出願日】平成16年8月26日(2004.8.26)
【出願人】(000003001)帝人株式会社 (1,209)
【Fターム(参考)】