説明

無線通信装置及び無線タグ通信システムの質問器

【課題】複素信号化に必要な虚数部を作成するための演算処理量を低減し、円滑かつ信頼性の高い無線通信制御をする。
【解決手段】無線タグ回路素子Toから送信された周波数fの信号を非接触で受信する受信アンテナ2A〜2Cと、これら受信した信号を4nf(nは正数)のレートでサンプリングし、最新の記憶データとそのnサンプリング前の記憶データとを出力可能なメモリ20と、最新の記憶データ及びnサンプリング前の記憶データを、実数部及び虚数部にそれぞれ用いて複素信号変換を行う入力信号実数−複素数変換部41とを有し、アダプティブ制御部50は、その複素信号変換されたデータに基づき、受信アンテナ2A〜2Cによる指向性を、アンテナ151に対する受信感度が最適となるように変化させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、外部と情報の無線通信を行う無線通信装置、及びその一類型である無線タグに対し情報の読み取り又は書き込みを行う無線タグ通信システムの質問器に関する。
【背景技術】
【0002】
応答器としての小型の無線タグに対し、質問器としてのリーダ/ライタより非接触で問い合わせの送信及び返答の受信を行うことで、無線タグの情報の読み取り/書き込みを行うRFID(Radio Frequency Identification)システムが知られている。
【0003】
例えばラベル状の無線タグに備えられた無線タグ回路素子は、所定の無線タグ情報を記憶するIC回路部とこのIC回路部に接続されて情報の送受信を行うアンテナとを備えている。IC回路部は、上記アンテナで受信された信号を復調して解釈するとともに、メモリに記憶された情報信号に基づいて上記受信した搬送波を反射変調しアンテナを介して質問器へ返信する。
【0004】
一方、上記質問器を含む無線通信装置一般において、上記のような無線通信における復調処理を高感度に行うために、従来、AAA(Adaptive Array Antenna)処理と称されるいわゆるアダプティブ制御の手法が知られている。この手法は、アンテナ(受信アンテナ)として複数のアンテナ素子を設け、これら複数のアンテナ素子により受信されたそれぞれの受信信号にウェイト(加重値)を加え(アダプティブ処理し)、このアダプティブ処理された受信信号を復調する。そして、この復調後の信号と参照信号との誤差が可及的に小さくなるようにウェイトを変更することにより、複数のアンテナ素子による指向性を送信側への受信感度が最適となるように変化させるものである。
【0005】
このようなアダプティブ制御を行うには、上記複数のアンテナ素子からの各受信信号の位相情報が必要となるため、信号を複素信号化する必要がある。通常、上記受信信号はデジタル信号であって実数部及び虚数部からなる複素信号のうち実数部のみであることから、受信信号に対し例えば非特許文献1に記載のヒルベルト変換等の処理を行うことにより、別途虚数部を作成している。
【0006】
【非特許文献1】Marvin E. Frerking, Kluwer Academic Publishers "Digital Signal Processing in Communication Systems" p.138
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述したように、従来技術においては、アンテナからの受信信号に含まれない虚数部を作成するためにヒルベルト変換等の煩雑な処理が必要となる。このため、無線通信装置あるいは無線タグ通信システムの質問器の中央演算装置(CPU)における演算量が膨大となって、演算処理に多大な時間を要し、円滑な無線通信制御が困難となっていた。またこの結果、無線通信制御の信頼性の向上が困難であった。
【0008】
本発明の目的は、複素信号化に必要な虚数部を作成するための演算処理量を低減し、円滑かつ信頼性の高い無線通信制御を実現できる無線通信装置及び無線タグ通信システムの質問器を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するために、第1の発明は、送信手段から送信された周波数fの変調信号を非接触で受信する複数のアンテナ素子と、これら複数のアンテナ素子で受信した前記変調信号又は該変調信号から周波数変換された変調信号fiを、nを正の整数として4nf又は4nfiのレートでサンプリングして順次記憶し、最新の記憶データとそのnサンプリング前後の記憶データとを出力可能な記憶手段と、この記憶手段から出力された前記最新の記憶データ及び前記nサンプリング前後の記憶データを、実数部又は虚数部にそれぞれ用いて複素信号変換を行う変換手段と、この変換手段で前記複素信号変換されたデータに基づき、前記複数のアンテナ素子による指向性を、前記送信手段に対する受信感度が最適となるように変化させる制御手段とを有することを特徴とする。
【0010】
一般に、正弦波信号等の周期性をもった信号では、実数成分と虚数成分とについて、虚数成分が実数成分より90°位相が遅れた同一波形となるという特質がある。本願第1発明では、この相関関係を利用し、受信した周波数fの変調信号を4nf(又は4nfi)レートでサンプリングし記憶手段に記憶していき、最新データとちょうどその位相90°遅れに相当するnサンプリング前のデータ(又はnサンプリング後のデータ)とを記憶手段より変換手段へ出力させる。変換手段では、その最新データを実数部に使用しnサンプリング前(又は後)のデータを虚数部に使用して複素信号変換を行う。そして、制御手段で、この複素信号変換後のデータを用いて、複数のアンテナ素子による指向性を送信手段への受信感度が最適となるように変化させるいわゆるアダプティブ制御を行う。
【0011】
このように、アダプティブ制御を行うための複素信号変換において必要な虚数部を、単に位相遅れ分前(又は後)のデータを流用して取得することにより、ヒルベルト変換等の煩雑な手法を用いる従来に比べ演算処理を著しく簡素化することができる。この結果、無線通信装置の中央演算装置における演算量を低減でき、円滑かつ信頼性の高い無線通信制御を実現することができる。
【0012】
第2の発明は、上記第1発明において、前記制御手段は、前記記憶手段に記憶された変調信号4nf又は4nfiを合成した合成出力信号に基づく信号と、予め定められた目標出力信号と、前記複素信号変換されたデータとを入力し、前記合成出力信号が前記目標出力信号に近づくように、前記合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段と、この重み付け決定手段で決定された重み付けを用いて前記合成出力信号を生成する合成出力信号生成手段とを有することを特徴とする。
【0013】
重み付け決定手段で、制御手段からの合成出力信号が目標出力信号に近づくように重み付けを決定し、その重み付けを用いて合成出力信号生成手段で合成出力信号を生成し、この生成した合成出力信号は重み付け決定手段へとフィードバックされる。このようにして重み付けを最適化することで、複数のアンテナ素子による指向性を送信手段に対する受信感度が最適となるように変化させることができる。
【0014】
第3の発明は、上記第1又は第2発明において、前記記憶手段は、最新の記憶データを入力し格納する一方、その最新の記憶データとそれまでに格納保持されていたそのnサンプリング前後の記憶データとを、順次出力可能なシフトレジスタであることを特徴とする。
【0015】
シフトレジスタにより、最新の記憶データを順次格納する都度、そのデータと、nサンプリング前後の記憶データとを変換手段へ出力することができる。
【0016】
第4の発明は、上記第1又は第2発明において、前記記憶手段は、第1記憶部及び第2記憶部を備えており、最新の記憶データを前記第1記憶部に入力して格納し、その第1記憶部に記憶されたデータを前記実数部用として前記変換手段へ出力する一方、前記第2記憶部に格納保持されていたnサンプリング前後のデータを前記虚数部用として前記変換手段へ出力する手順と、その後、最新の記憶データを前記第2記憶部に入力して格納し、その第2記憶部に記憶されたデータを前記実数部用として前記変換手段へ出力する一方、前記第1記憶部に格納保持されていたnサンプリング前後のデータを前記虚数部用として前記変換手段へ出力する手順とを、交互に繰り返すことを特徴とする。
【0017】
これにより、最新の記憶データを第1記憶部又は第2記憶部に順次格納する都度、そのデータと、第2記憶部又は第1記憶部に格納されたnサンプリング前後の記憶データとを併せて変換手段へ出力することができる。
【0018】
第5の発明は、上記第2発明において、前記合成出力信号生成手段は、前記記憶手段より出力された前記最新の記憶データと、前記重み付け決定手段からの前記重み付けとを用いて、前記合成出力信号の生成を行うことを特徴とする。
【0019】
記憶手段より出力された実数成分の最新記憶データと、重み付け決定手段からの重み付けとを用いて、実数形式の合成出力信号を生成することができる。
【0020】
第6の発明は、上記第5発明において、前記変換手段で複素信号変換されたデータに、所定の次元変換用の係数を乗じて前記制御手段へ出力する係数乗算手段を備えることを特徴とする。
【0021】
これにより、合成出力信号生成手段で、記憶手段からの最新記憶データに対し重み付け決定手段において決定した重み付けを乗じて実数形式の合成出力信号を生成するときに、最新記憶データと重み付けとの次元を整合し、円滑な演算を行うことができる。
【0022】
第7の発明は、上記第2発明において、前記合成出力信号生成手段は、前記記憶手段から出力され前記変換手段で前記複素信号変換された前記最新の記憶データと、前記重み付け決定手段からの前記重み付けとを用いて、複素信号形式の前記合成出力信号の生成を行うことを特徴とする。
【0023】
複素信号変換された最新記憶データと、重み付け決定手段からの重み付けとを用いて、複素信号形式の合成出力信号を生成することができる。
【0024】
第8の発明は、上記第5乃至第7発明のいずれか1つにおいて、前記合成出力信号生成手段で生成された前記合成出力信号を復調する復調手段を有することを特徴とする。
【0025】
すなわち、本願第8発明では、重み付け決定手段は、合成出力信号生成手段より出力された合成出力信号が復調手段で復調される前にこれを入力し、目標出力信号に近づくように重み付け決定を行う。これにより、復調した後の信号に基づいて重み付けを行う場合に比べ、演算手順を簡素化し、これによっても演算量を低減することができる。
【0026】
上記目的を達成するために、第9の発明は、質問対象の無線タグ回路素子のIC回路部から送信された周波数fの変調信号を非接触で受信する複数のアンテナ素子と、これら複数のアンテナ素子で受信した前記変調信号又は該変調信号から周波数変換された変調信号fiを、nを正の整数として4nf又は4nfiのレートでサンプリングして順次記憶し、最新の記憶データとそのnサンプリング前後の記憶データとを出力可能な記憶手段と、この記憶手段から出力された前記最新の記憶データ及び前記nサンプリング前後の記憶データを、実数部又は虚数部にそれぞれ用いて複素信号変換を行う変換手段と、この変換手段で前記複素信号変換されたデータに基づき、前記複数のアンテナ素子による指向性を、前記送信手段に対する受信感度が最適となるように変化させる制御手段とを有することを特徴とする。
【0027】
本願第9発明においては、受信した周波数fの変調信号を4nf(又は4nfi)レートでサンプリングし記憶手段に記憶していき、最新データとちょうどその位相90°遅れに相当するnサンプリング前のデータ(又はnサンプリング後のデータ)とを記憶手段より変換手段へ出力させる。変換手段では、その最新データを実数部に使用しnサンプリング前(又は後)のデータを虚数部に使用して複素信号変換を行う。そして、制御手段で、この複素信号変換後のデータを用いて、複数のアンテナ素子による指向性を送信手段への受信感度が最適となるように変化させるいわゆるアダプティブ制御を行う。このように、アダプティブ制御を行うための複素信号変換において必要な虚数部を、単に位相遅れ分前(又は後)のデータを流用して取得することにより、ヒルベルト変換等の煩雑な手法を用いる従来に比べ演算処理を著しく簡素化することができる。この結果、質問器の中央制御装置における演算量を低減でき、円滑かつ信頼性の高い無線通信制御を実現することができる。
【0028】
第10の発明は、上記第9発明において、前記制御手段は、前記記憶手段に記憶された変調信号4nf又は4nfiを合成した合成出力信号に基づく信号と、予め定められた目標出力信号と、前記複素信号変換されたデータとを入力し、前記合成出力信号が前記目標出力信号に近づくように、前記合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段と、この重み付け決定手段で決定された重み付けを用いて前記合成出力信号を生成する合成出力信号生成手段とを備えることを特徴とする。
【0029】
重み付け決定手段で、制御手段からの合成出力信号が目標出力信号に近づくように重み付けを決定し、その重み付けを用いて合成出力信号生成手段で合成出力信号を生成し、この生成した合成出力信号は重み付け決定手段へとフィードバックされる。このようにして重み付けを最適化することで、複数のアンテナ素子による指向性を送信手段に対する受信感度が最適となるように変化させることができる。
【発明の効果】
【0030】
本発明によれば、複素信号化に必要な虚数部を作成するための演算処理量を低減し、円滑かつ信頼性の高い無線通信制御を実現することができる。
【発明を実施するための最良の形態】
【0031】
以下、本発明の一実施の形態を図面を参照しつつ説明する。
【0032】
図1は、本実施形態の適用対象である無線タグ通信システムの全体概略を表すシステム構成図である。
【0033】
図1において、この無線タグ通信システムSは、本実施形態の無線通信装置としての質問器100(1つのみ図示しているが、複数あってもよい)と、これに対応する応答器としての無線タグTとから構成されるいわゆるRFID(Radio Frequency Identification)通信システムである。
【0034】
無線タグTは、アンテナ151とIC回路部150とを備えた無線タグ回路素子Toを有している。
【0035】
質問器100は、所定の平面内に指向性を有し最大電力で送信あるいは受信できる方向を可変であるように構成され、無線タグ回路素子Toの上記アンテナ151との間で無線通信により信号の送信・受信を行う、この例では1つの送信アンテナ1及び3つの受信アンテナ(アンテナ素子)2A,2B,2Cと、これらアンテナ1,2A〜2Cを介し上記無線タグ回路素子ToのIC回路部150へアクセスする(読み取り又は書き込みを行う)ために設けられ、送信信号(送信波Fc)をディジタル信号として出力したり、上記無線タグ回路素子Toからの返信信号(反射波Fr)を復調する等のディジタル信号処理を実行するDSP(Digital Signal Processor)10と、そのDSP10により出力された送信信号をアナログ信号に変換して送信アンテナ1に出力する送信信号D/A変換部11と、受信アンテナ2A〜2Cでの受信信号をディジタル信号に変換して上記DSP10に供給する受信信号A/D変換部12a,12b,12c(以下、特に区別しない場合には単に受信信号A/D変換部12と称する)とを有している。
【0036】
上記質問器100より送信信号である送信波Fcが送信されると、その送信波Fcを受信した上記無線タグTの無線タグ回路素子Toにおいて所定の情報信号に基づいてその送信波Fcが変調されて返信信号である反射波Frとして返信され、上記質問器100によりその反射波Frが受信されて復調されることによって情報の送受が行われる。
【0037】
図2は、上記無線タグTに備えられた無線タグ回路素子Toの機能的構成の一例を表すブロック図である。
【0038】
図2において、無線タグ回路素子Toは、上記質問器100側の上記アンテナ1,2A〜2CとUHF帯等の高周波を用いて非接触で上記送信波Fcの受信及び上記反射波Frの送信を行う上記アンテナ151と、このアンテナ151に接続されディジタル信号処理を行う上記IC回路部150とを有している。
【0039】
IC回路部150は、アンテナ151により受信された搬送波を整流する整流部152と、この整流部152により整流された搬送波のエネルギを蓄積し駆動電源とするための電源部153と、上記アンテナ151により受信された搬送波からクロック信号を抽出して制御部157に供給するクロック抽出部154と、所定の情報信号を記憶し得る情報記憶部として機能するメモリ部155と、上記アンテナ151に接続された変復調部156と、上記電源部153からの電源に基づき上記整流部152、クロック抽出部154、及び変復調部156等を介して上記無線タグ回路素子Toの作動を制御するための制御部157とを備えている。
【0040】
変復調部156は、アンテナ151により受信された上記質問器100の送信アンテナ1からの通信信号の復調を行うと共に、上記制御部157からの返信信号に基づき、アンテナ1から受信された搬送波を反射変調する。
【0041】
制御部157は、上記変復調部156により復調された受信信号を解釈し、上記メモリ部155において記憶された情報信号に基づいて返信信号を生成し、上記変復調部156により返信する制御等の基本的な制御を実行する。
【0042】
なお、上記は副搬送波を用いないタイプの無線タグ回路素子Toを例にとって説明したが、これに限られず、副搬送波発振部及び副搬送波変調部(いずれも図示せず)を備え、その副搬送波発振部により発生させられた副搬送波を、上記制御部157を介して入力される所定の情報信号に基づき副搬送波変調部で変調し、アンテナ151より返信するようにしてもよい。
【0043】
図3は、上記質問器100の機能的構成を表す機能ブロック図である。なお、図中、太実線は複素変換後の信号の流れを表し、細実線は実数信号の流れを表している。
【0044】
図3において、質問器100は、上記アンテナ1,2A〜2C、DSP10、送信信号D/A変換部11、及び受信信号A/D変換部12と、所定の周波数変換信号を出力する周波数変換信号出力部13と、上記送信信号D/A変換部11によりアナログ信号に変換されたDSP10からの送信信号の周波数をその周波数変換信号出力部13から出力される周波数変換信号の周波数だけ高くし上記送信アンテナ1へ出力するアップコンバータ14と、各受信アンテナ2A,2B,2Cにより受信された受信信号の周波数を上記周波数変換信号出力部13から出力される周波数変換信号の周波数だけ低くし、上記受信信号A/D変換部12a、12b、12cへ出力するダウンコンバータ15a、15b、15c(以下、特に区別しない場合には単にダウンコンバータ15と称する)と不用な周波数信号成分を除去するバンドパスフィルタ18,19a,19b,19cとを備えている。なおバンドパスフィルタに代えて周知の直接変調回路を用いてもよい。
【0045】
上記DSP10は、CPU、ROM、及びRAM等から成り、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行う所謂マイクロコンピュータシステムである。
【0046】
このDSP10は、前記無線タグ回路素子Toへの送信信号をディジタル信号として出力する送信ディジタル信号出力部16と、その送信ディジタル信号出力部16から出力された送信ディジタル信号を所定の情報信号(送信情報)に基づいて変調して上記送信信号D/A変換部11に供給する変調部17と、上記受信アンテナ2A,2B,2Cによりそれぞれ受信された受信信号を記憶する記憶部として機能するメモリ20と、メモリ20より読み出された受信信号を復調してその受信信号に含まれる所定の情報信号(=無線タグ回路素子Toによる変調信号)を読み出すAM復調部30及びFSK復号部40と、上記メモリ20から読み出された受信信号(実数形式)を入力して複素数形式の複素信号変換する入力信号実数−複素数変換部41と、その複素信号変換されたデータに所定の次元変換用の係数(この例ではcosωt)を乗じる乗算部42a,42b,42cと、その係数が乗じられた後のデータが入力されるとともに、上記AM復調部30において上記メモリ20から読み出された受信信号に与える重み付け(ウェイト)を決定(制御)するアダプティブ制御部(LMS(=LeastMeanSquare)制御部)50と、上記AM復調部30からの合成出力信号(実数形式)を入力して複素数形式の複素信号変換する入力信号合成出力実数−複素数変換部51と備えている。
【0047】
上記AM復調部30は、好適には、IQ直交復調、すなわち入力信号を互いに位相が90°異なるI相(In phase)及びQ相(Quadrature phase)信号に変換した後、それらI相合成信号Yi及びQ相合成信号Yqを合成することにより前記受信信号の復調を行うものである。
【0048】
このAM復調部30は、前記アンテナ2A〜2Cそれぞれの受信信号をI相信号に変換するI相変換部31a〜cと、このI相変換部31a〜cによりI相信号に変換された各受信信号を合成してI相合成信号YiとするI相信号合成部32と、このI相信号合成部32から出力されるI相合成信号のうち所定の周波数以下の信号を通過させるI相LPF(Low-Pass Filter)33と、前記アンテナ2A〜2Cそれぞれの受信信号をQ相信号に変換するQ相変換部34a〜cと、このQ相変換部34a〜cによりQ相信号に変換された各受信信号を合成してQ相合成信号YqとするQ相信号合成部35と、このQ相信号合成部35から出力されるQ相合成信号のうち所定の周波数以下の信号を通過させるQ相LPF36と、上記I相LPF33から出力されるI相合成信号及びQ相LPF36から出力されるQ相合成信号を合成(二乗和の平方根)して復調信号を生成する復調信号生成部37と、この復調信号生成部37から出力される復調信号のうち所定の周波数以上の信号を通過させるHPF(High-Pass Filter)38とを備えている。
【0049】
上記I相変換部31a〜c及びQ相変換部34a〜cは、上記アダプティブ制御部50から指示されるウェイトにより各入力の位相及び振幅を制御する位相振幅制御部としても機能するものである。
【0050】
上記I相信号合成部32から出力されるI相合成信号Yi及びQ相信号合成部35から出力されるQ相合成信号Yqは、それぞれ入力信号合成出力実数−複素数変換部51において複素数形式の複素信号変換されて上記アダプティブ制御部50にもそれぞれ供給される。
【0051】
上記HPF38から出力されたAM復調信号は、上記FSK復号部40により復号されて復号情報(無線タグTによる変調に関する情報)として出力される。
【0052】
上記乗算部42a〜42cは、上記I相変換部31a〜c及びQ相変換部34a〜cでメモリ20からの最新記憶データに対しアダプティブ制御部50で決定した重み付けを乗じ実数形式の合成出力信号Yi,Yqを生成するときに、最新記憶データと重み付けとの次元を整合し、円滑な演算を行うようにするものである。
【0053】
上記構成において、送信ディジタル信号出力部16により送信ディジタル信号が出力され、その信号が変調部17により所定の送信情報に基づいて変調された後、送信信号D/A変換部11によってアナログ信号に変換される。このアナログ信号に変換された送信信号の周波数が、アップコンバータ14によって、上記周波数変換信号出力部13から出力される周波数変換信号の周波数だけ高められて送信アンテナ1に供給され、送信波Fcとして無線タグ回路素子Toに向けて送信される。
【0054】
前記質問器100の送信アンテナ1からの送信波Fcが無線タグ回路素子Toのアンテナ151により受信されると、その送信波Fcが前記変復調部156に供給されて復調される。また、送信波Fcの一部は整流部152により整流され、電源部153にてエネルギ源(電源)とされる。この電源によって前記制御部155がメモリ部155の情報信号に基づき返信信号を生成し、この返信信号に基づき変復調部156が上記送信波Fcを変調し、前記アンテナ151から反射波Frとして前記質問器100に向けて返信される。
【0055】
前記無線タグ回路素子Toのアンテナ151からの反射波Frが質問器100の受信アンテナ2A〜2Cにより受信されると、その反射波Frがアンテナ2A〜2Cからダウンコンバータ15に供給され、各受信信号の周波数が、周波数変換信号出力部13から出力される周波数変換信号の周波数だけ低められる。それらダウンコンバートされた受信信号は対応する受信信号A/D変換部12によりディジタル信号に変換され、前記メモリ20に供給されてそのメモリ20に記憶される。
【0056】
その後メモリ20から読みだされた受信信号はAM復調部30に供給され、それら受信信号が前記I相変換部31a〜c及びQ相変換部34a〜cにより互いに位相が90°異なるI相信号及びQ相信号にそれぞれ変換される。I相信号に変換された受信信号は上記I相信号合成部32により合成されI相合成信号Yiとされると共に、Q相信号に変換された受信信号は上記Q相信号合成部35により合成されQ相合成信号Yqとされる。
【0057】
そして、I相合成信号YiのうちI相LPF33により通過させられる所定の周波数以下の信号と、Q相合成信号YqのうちQ相LPF36により通過させられる所定の周波数以下の信号とが復調信号生成部37により合成(二乗和の平方根)され、復調信号が生成される。復調信号生成部37から出力される復調信号のうちHPF38により通過させられる所定周波数以上の信号がAM復調波として出力され、更にFSK復号部40によって復号されたデータが出力される。
【0058】
図4は、上記動作の要部であるDSP10によるアダプティブ処理動作の制御手順を表すフローチャートである。
【0059】
図4において、まずステップS110において、アダプティブ制御部(LMS)よりI相変換部31a〜c及びQ相変換部34a〜cへの制御信号で設定される位相とゲイン(信号の振幅)を所定の初期値に設定する。
【0060】
その後、ステップS120で、送信ディジタル信号出力部16からの信号を変調部17で変調し、送信信号D/A変換部11、送信アンテナ1を介し対象とする無線タグTの無線タグ回路素子Toへ送信波Fcとして送信する。この変調部17で変調された送信波Fcの送信完了後は、ステップS125に移り、無線タグ回路素子Toへ電力供給などのために搬送波のみの送信波Fcを送信する。
【0061】
そして、ステップS130で、上記送信波Fcに応じて対応する無線タグ回路素子Toから送信された反射波Frを受信アンテナ2A〜2Cで受信し、さらに受信信号A/D変換部を介しメモリ20に取り込んで記憶する。なお、ステップS125及びステップS130は、1サンプル分の処理を表している。
【0062】
この場合、各受信アンテナ2A〜2Cによる指向性を受信感度が最適となるように変化させる。具体的には、前記I相信号合成部32及びQ相信号合成部35から入力信号合成出力実数−複素数変換部51を介し入力された変換後の上記合成信号Yi,Yqに関し、受信アンテナ2A〜2Cの受信感度が無線タグTの配置されている方向に対して最適になるように(=無線タグ回路素子Toによる変調成分の振幅を可及的に高くし予め定められた参照信号(目標出力信号)rに近づくように)各アンテナ2A〜2Cにより受信された受信信号それぞれの振幅及び位相を変更し指向性を制御することで、前記AM復調部30による復調処理の精度を可及的に高める。そのために、アダプティブ制御部50からI相変換部31a〜c及びQ相変換部34a〜cへの位相・振幅制御信号において各アンテナ2A,2B,2Cごとに所定の重み付けを行い、この重み付け(加重値;ウェイト)の更新計算は、ウェイトが収束するまで行う。
【0063】
したがって、上記ステップS130が終了した後、ステップS140で、アンテナ2A〜2Cに係る重み付けを決定してI相変換部31a〜c及びQ相変換部34a〜cへ出力され、その後ステップS150で対応する位相及び振幅(ゲイン)がI相変換部31a〜c及びQ相変換部34a〜cで設定される。
【0064】
このときのウェイトの値はDSP10内のRAM等の適宜の記憶手段に記憶されながらそれまでに記憶されたものとその大きさが比較されており、後述するようにステップS160の判定が満たされずステップS125に戻って同様の演算を繰り返していくときにそれまでの記憶値に比べ変化が所定値以下とみなされると演算が収束したと判定される。アダプティブ制御部50では、アンテナ2A〜2Cで生成される指向性がその無線タグ回路素子Toからの反射波成分が最大値すなわち最適感度となるように模索する。また妨害信号が検出された場合はこの妨害信号が小さくなるようにさらに指向性が最適化される。重みの値がほぼ一定となり演算が収束した場合はステップS160の判定が満たされるが、それでない場合は判定が満たされず、ステップS120に戻って同様の演算手順が繰り返される。
【0065】
このようしてステップS125→ステップS130→ステップS140→ステップS150→ステップS160を繰り返してアンテナ2A〜2Cそれぞれについてその受信感度が最適となる指向性が見つかったら演算が終了してステップS160の判定が満たされ、ステップS170に移る。このとき、無線タグTと同じ方向に妨害信号源がある場合など、タグ方向とアンテナの指向性にずれが生じる場合がある。また、複数の方向に極大を示す指向性となることもある。このため、タグの方向は、推定値あるいは確率値となる。
【0066】
ステップS170では、上記収束結果に基づき無線タグTの存在する方向を推定し、ステップS180で、上記収束したときの信号強度に基づき、無線タグTの存在する座標位置を推定する。
【0067】
以上のようにして、アンテナ2A〜2Cにより合成される指向性を無線タグ回路素子Toのアンテナ151に対する受信感度が最適となるよう変化させる、アダプティブアレイ制御が実行され、AM復調部30による復調処理の精度を可及的に高めて対象とする無線タグ回路素子Toを高感度で検出する。アダプティブ制御部50の制御信号により前記AM復調部30でアダプティブ処理されかつ復調された受信信号は、前記FSK復号部40によって最終的に復号信号とされ、データ出力される。この結果、アンテナ2A〜2Cの受信信号に含まれる所定の情報信号すなわち無線タグ回路素子Toによる変調信号を確実に且つ可及的速やかに読み出すことができる。
【0068】
以上の基本構成において、本発明の要部は、アダプティブ制御部50での上記重み付け決定のために必要である、アンテナ2A〜2Cで受信した信号の複素信号変換の手法にある。
【0069】
すなわち、アダプティブ制御を行うアダプティブ制御部50では、受信信号の位相情報と振幅情報とが含まれた解析信号、すなわち、
X(t)=Xi(t)+jXq(t) …(式1)
のような複素表現で表される信号が必要である。
【0070】
ここで、アンテナで受信しA/D変換した出力は通常実数部(上記式1の第1項部分)のみであり、虚数部(上記式1の第2項部分)は存在しない。そのため、この虚数部信号を別途作成する(複素信号変換を行う)必要がある。
【0071】
本実施形態は、正弦波のような周期性を備えた信号波形は、虚数部信号が実数部信号より位相90°遅れとなっていることに着目し、受信信号の最新のデータとそれより位相90°前の分の記憶データとをメモリ20から実数部データ及び虚数部データとして一組として取り出して利用することにより、極めて簡素な手法で複素信号変換を実行するものである。
【0072】
図5は、上記本発明の要部をなす複素信号変換の手法を概念的に説明する説明図である。図5において、本実施形態では、送信手段としての無線タグ回路素子Toのアンテナ151から周波数f(周期T=1/f)の周期性を備えた信号(この例では正弦波)が送信されることを前提に、その受信した正弦波信号を、4nf(n:正の整数)のレート(すなわち周期1/4nf=T/4n)で上記メモリ20がサンプリングして順次記憶する。
【0073】
例えば図示の例では、一つの波形において、T/4(n=1に相当)の間隔での5つの点の信号値がそれぞれXi(0),Xi(1),Xi(2),Xi(3),Xi(4)である。上述したように解析信号の虚数部の値は、実数部の信号の位相を90°遅らせた値に他ならないから、上記Xi(0),Xi(1),Xi(2),Xi(3)の値は実数部Xi(1),Xi(2),Xi(3),Xi(4)の虚数部にそれぞれ等しい。したがって、それぞれの解析信号値は、
X(1) = Xi(1) + j Xi(0)
X(2) = Xi(2) + j Xi(1)
X(3) = Xi(3) + j Xi(2)
X(4) = Xi(4) + j Xi(3) となって、
一般化すると、
X(t) = Xi(t) + j Xi(t-1) (ただしt≧1)
となる。
【0074】
上記はn=1の場合であり、nを含めて拡張すると、
X(t) = Xi(t) + j Xi(t-n) (ただしt≧n)
となる。
【0075】
本実施形態では、以上の考察に基づき、メモリ20が、前述したように順次4fレートでサンプリングして順次記憶しつつ、最新の記憶データとそのnサンプリング前の記憶データとを出力可能となっている。
【0076】
図6は、そのようなメモリ20の機能的構成を、n=1の場合を例にとって示した説明図である。
【0077】
図6において、このメモリ20はレジスタ0とレジスタ1とから構成された、いわゆる2段のシフトレジスタ機能を備えている。すなわち、レジスタ0へデータを書き込むとレジスタ1へデータがシフトするようになっている。この結果、受信信号A/D変換部12からの信号データを4f(n=1)のレート(1/4の周期)で毎回レジスタ0へ取り込むことで、レジスタ0の値(カレントデータ)を実数部 Xiとして、またレジスタ1の値(シフトレジスタ出力、1サンプリング前のデータ)を虚数部Xqとして入力信号実数−複素数変換部41に出力するだけで、入力信号実数−複素数変換部41は現在のデータに対応する実数部及び虚数部の値を得ることができ、これらを用いて複素信号変換を行うことができる。
【0078】
なお、以上はn=1の場合を例にとって説明したが、n≧2の場合についても同等の機能を果たすように構成すればよいことは言うまでもない。
【0079】
以上において、各請求項記載のメモリ20が、複数のアンテナ素子で受信した前記信号を、nを正の整数として4nfのレートでサンプリングして順次記憶し、最新の記憶データとそのnサンプリング前の記憶データとを出力可能な記憶手段を構成し、入力信号実数−複素数変換部41が、記憶手段から出力された最新の記憶データ及び前記nサンプリング前の記憶データを、実数部及び虚数部にそれぞれ用いて複素信号変換を行う変換手段を構成する。
【0080】
また、アダプティブ制御部50と、I相変換部31a〜c及びQ相変換部34a〜cと、I相信号合成部32及びQ相信号合成部35とが、上記変換手段で複素信号変換されたデータに基づき、複数のアンテナ素子による指向性を、送信手段に対する受信感度が最適となるように変化させる制御手段を構成する。そのうち、アダプティブ制御部50が、制御手段からの合成出力信号に基づく信号と、予め定められた目標出力信号と、複素信号変換されたデータとを入力し、合成出力信号が目標出力信号に近づくように、合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段を構成し、I相変換部31a〜c及びQ相変換部34a〜cと、I相信号合成部32及びQ相信号合成部35が、この重み付け決定手段で決定された重み付けを用いて合成出力信号を生成する合成出力信号生成手段を構成する。
【0081】
また、乗算部42a,42b,42cが、変換手段で複素信号変換されたデータに、所定の次元変換用の係数を乗じて制御手段へ出力する係数乗算手段を構成する。また、AM復調部30に備えられたI相LPF33及びQ相LPF36と、復調信号生成部37とが、合成出力信号生成手段で生成された合成出力信号を復調する復調手段を構成する。
【0082】
以上のように構成した本実施形態の作用効果を以下に説明する。
【0083】
本実施形態では、正弦波信号等の周期性をもった信号では実数成分と虚数成分とについて虚数成分が実数成分より90°位相が遅れた同一波形となるという相関関係を利用し、信号を4nfレートでサンプリングしてメモリ20に記憶していき、最新データとちょうどその位相90°遅れに相当するnサンプリング前のデータ(又は位相90°進みに相当するnサンプリング後のデータでもよい)とをメモリ20より入力信号実数−複素数変換部41へ出力させる。入力信号実数−複素数変換部41では、その最新データを実数部に使用しnサンプリング前のデータを虚数部に使用して複素信号変換を行う。そして、アダプティブ制御部50で、この複素信号変換後のデータを用いて、複数のアンテナ素子による指向性を無線タグ回路素子Toのアンテナ151への受信感度が最適となるように変化させるいわゆるアダプティブ制御を行う。
【0084】
このように、アダプティブ制御を行うための複素信号変換において必要な虚数部を、単に位相遅れ分前のデータ(又は位相進み分後のデータ)を流用して取得することにより、ヒルベルト変換等の煩雑な手法を用いる従来に比べ演算処理を著しく簡素化することができる。この結果、DSP10の中央演算装置(CPU)における演算量を低減でき、円滑かつ信頼性の高い無線通信制御を実現することができる。
【0085】
またこのとき、前記I相信号合成部32及びQ相信号合成部35からの合成出力信号Yi,Yq(すなわち復調前の出力)を入力信号合成出力実数−複素数変換部を介しアダプティブ制御部50へ供給することにより、復調した後の信号に基づいて重み付けを行う場合に比べ、前記I相LPF33、Q相LPF36、及びHPF38のタップ数に起因するディレイの影響の発生を防止でき、また演算手順を簡素化しこれによっても演算量を低減できる。
【0086】
なお、本発明は、上記実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で、種々の変形が可能である。以下、そのような変形例を説明する。
【0087】
(1)AM復調部を位相振幅制御部とは分離して設けた場合
すなわち、上記実施形態では、AM復調機能の要部をなす上記I相変換部31a〜c及びQ相変換部34a〜cが、上記アダプティブ制御部50から指示されるウェイトにより各入力の位相及び振幅を制御する位相振幅制御部としての機能を兼ねていたが、これをそれぞれ分離独立して設けた場合である。
【0088】
図7は、このような変形例による質問器100′の構成の要部をなすを表す機能ブロック図であり、上記実施形態の図3に相当する図である。上記実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。なお、図中、太実線は複素変換後の信号の流れを表し、細実線は実数信号の流れを表している。
【0089】
図7に示すこの質問器100′は、DSP10′では位相振幅制御機能のみを行い、これと別に新たに設けたAM復調部130でAM復調を行う。
【0090】
DSP10′においては、メモリ20から読みだされた受信信号(実数形式)は入力信号実数−複素数変換部41に入力されて複素数形式の複素信号変換され、この複素信号が、アダプティブ制御部50′及び乗算部131a,131b,131cに供給される。アダプティブ制御部50は、機能的には上記実施形態のアダプティブ制御部50に相当するものであり、上記乗算部131a〜cより加算部132で合算された合成出力信号に関し、受信アンテナ2A〜2Cの受信感度が無線タグTの配置されている方向に対して最適になるように(=無線タグ回路素子Toによる変調成分の振幅を可及的に高くし予め定められた参照信号(目標出力信号)rに近づくように)各アンテナ2A〜2Cにより受信された受信信号それぞれの振幅及び位相を変更し指向性を制御することで、AM復調部130による復調処理の精度を可及的に高めるものである。そのために、アダプティブ制御部50′から乗算部131a〜cへの位相・振幅制御信号において各アンテナ2A,2B,2Cごとに所定の重み付けを行い、この重み付け(加重値;ウェイト)の更新計算はウェイトが収束するまで行う。アダプティブ制御部50′の制御信号により乗算部131a〜cでアダプティブ処理された受信信号は加算部132で合算された後、上記AM復調部130に出力される。
【0091】
メモリ20は、上記実施形態と同様、アンテナ2A〜2Cで受信した正弦波信号を、4nfのレートでサンプリングして順次記憶しつつ、最新の記憶データとそのnサンプリング前(又はnサンプリング後)の記憶データとをそれぞれ実数部 Xi及び虚数部Xqとして入力信号実数−複素数変換部41に出力し、入力信号実数−複素数変換部41はこれらを用いて複素信号変換を行う。
【0092】
AM復調部130は、詳細な説明は省略するが、図3のAM復調部30と同様に、DSP10′からの入力信号をI相(In phase)及びQ相(Quadrature phase)信号に変換し、それらI相合成信号Yi及びQ相合成信号Yqを合成することにより受信信号をIQ直交復調し、FSK復号部40へ出力する。
【0093】
上記において、アダプティブ制御部50′が、各請求項記載の、合成出力信号に基づく信号と、予め定められた目標出力信号と、複素信号変換されたデータとを入力し、合成出力信号が目標出力信号に近づくように、合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段を構成する。
【0094】
また、乗算部131a〜c及び加算部132が、記憶手段から出力され変換手段で複素信号変換された最新の記憶データと、重み付け決定手段からの重み付けとを用いて、複素信号形式の合成出力信号の生成を行う合成出力信号生成手段を構成する。
【0095】
さらに、AM復調部130が、合成出力信号生成手段で生成された合成出力信号を復調する復調手段を構成する。
【0096】
本変形例によっても、上記実施形態と同様、演算処理を簡素化してDSP10′の中央演算装置(CPU)における演算量を低減でき、円滑かつ信頼性の高い無線通信制御を実現できる効果がある。
【0097】
(2)他のメモリ形式
上記実施形態及び(1)の変形例においては、メモリ20はシフトレジスタ機能を備えるものであったが、これに限られない。すなわち、第1記憶部(メモリ1)と第2記憶部(メモリ2)とに選択的に交互に記憶を行う2段メモリでもよい。
【0098】
図8は、この変形例によるメモリ20′の機能を概念的に表した説明図である。図8に示すように、この場合、メモリ20′は、受信信号A/D変換部12a,12b,12cの出力信号を、メモリ1とメモリ2とに交互に書き込む。図8(a)のようにメモリ1へ書き込んだときは、そのメモリ1の最新データが受信信号の実数部信号として入力信号実数−複素数変換部41へ出力され、前回(n=1の場合;一般的にはnサンプリング前に)書き込んだメモリ0のデータが受信信号の虚数部信号として入力信号実数−複素数変換部41へ出力される。同様に、図8(b)のようにメモリ0へ書き込んだ時は、そのメモリ0のデータが受信信号の実数部信号となり、前回(n=1の場合;一般的にはnサンプリング前に)書き込んだメモリ0のデータが虚数部信号となる。
【0099】
この変形例のメモリ20′によっても、前述のメモリ20と同等の機能を果たすことができる。なお、前述したようにnサンプリング後のデータを用いてもよい。
【0100】
(3)その他
以上においては、メモリ20,20′、AM復調部30、FSK復号部40、及びアダプティブ制御部50,50′は、DSP10,10′に設けられたものであったが、それらはDSP10,10′とは別体としてそれぞれ独立の制御装置として設けられるものであっても構わない。
【0101】
また、以上において、質問器100,100′には、無線タグ回路素子Toに向けて送信波Fcを送信する送信アンテナ1と、その無線タグ回路素子Toから返信される反射波Frを受信する受信アンテナ2A〜2Cが別体として設けられていたが、これにも限られず、無線タグ回路素子Toに向けて送信波Fcを送信すると共にその無線タグ回路素子Toから返信される反射波Frを受信する送受信アンテナを備えたものであっても構わない。この場合には、サーキュレータ等の送受信分離器がその送受信アンテナに対応して設けられる。
【0102】
さらに、以上においては、前記質問器100,100′は、図1の通信システムSにおける質問器として用いられていたが、これに限られず、本発明は、無線タグ回路素子Toに所定の情報を書き込み無線タグTを作成する無線タグ作成装置や、情報の読み出し及び書き込みを行う無線タグリーダ/ライタにも好適に適用されるものである。
【0103】
その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
【図面の簡単な説明】
【0104】
【図1】本実施形態の適用対象である無線タグ通信システムの全体概略を表すシステム構成図である。
【図2】図1に示した無線タグに備えられた無線タグ回路素子の機能的構成の一例を表すブロック図である。
【図3】図1に示した質問器の機能的構成を表す機能ブロック図である。
【図4】図3に示したDSPによるアダプティブ処理動作の制御手順を表すフローチャートである。
【図5】複素信号変換の手法を概念的に説明する説明図である。
【図6】図3に示したメモリの機能的構成を示した説明図である。
【図7】AM復調部を位相振幅制御部とは分離して設けた変形例による質問器の構成の要部をなすを表す機能ブロック図である。
【図8】メモリに関する変形例における機能を概念的に表した説明図である。
【符号の説明】
【0105】
1 送信アンテナ
2 受信アンテナ(アンテナ素子)
20 メモリ(記憶手段)
20′ メモリ(記憶手段)
31a〜c I相変換部(合成出力信号生成手段、制御手段)
32 I相信号合成部(合成出力信号生成手段、制御手段)
33 I相LPF(復調手段)
34a〜c Q相変換部(合成出力信号生成手段、制御手段)
35 Q相信号合成部(合成出力信号生成手段、制御手段)
36 Q相LPF(復調手段)
37 復調信号生成部(復調手段)
41 入力信号実数−複素数変換部(変換手段)
42a〜c 乗算部(係数乗算手段)
50 アダプティブ制御部(重み付け決定手段、制御手段)
50′ アダプティブ制御部(重み付け決定手段、制御手段)
100 質問器(無線通信装置)
100′ 質問器(無線通信装置)
130 AM復調部(復調手段)
131a〜c 乗算部(合成出力信号生成手段、制御手段)
132 加算部(合成出力信号生成手段、制御手段)
151 アンテナ(送信手段)
S 無線タグ通信システム

【特許請求の範囲】
【請求項1】
送信手段から送信された周波数fの変調信号を非接触で受信する複数のアンテナ素子と、
これら複数のアンテナ素子で受信した前記変調信号又は該変調信号から周波数変換された変調信号fiを、nを正の整数として4nf又は4nfiのレートでサンプリングして順次記憶し、最新の記憶データとそのnサンプリング前後の記憶データとを出力可能な記憶手段と、
この記憶手段から出力された前記最新の記憶データ及び前記nサンプリング前後の記憶データを、実数部又は虚数部にそれぞれ用いて複素信号変換を行う変換手段と、
この変換手段で前記複素信号変換されたデータに基づき、前記複数のアンテナ素子による指向性を、前記送信手段に対する受信感度が最適となるように変化させる制御手段とを有することを特徴とする無線通信装置。
【請求項2】
請求項1記載の無線通信装置において、
前記制御手段は、
前記記憶手段に記憶された変調信号4nf又は4nfiを合成した合成出力信号に基づく信号と、予め定められた目標出力信号と、前記複素信号変換されたデータとを入力し、前記合成出力信号が前記目標出力信号に近づくように、前記合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段と、
この重み付け決定手段で決定された重み付けを用いて前記合成出力信号を生成する合成出力信号生成手段とを有することを特徴とする無線通信装置。
【請求項3】
請求項1又は2記載の無線通信装置において、
前記記憶手段は、最新の記憶データを入力し格納する一方、その最新の記憶データとそれまでに格納保持されていたそのnサンプリング前後の記憶データとを、順次出力可能なシフトレジスタであることを特徴とする無線通信装置。
【請求項4】
請求項1又は2記載の無線通信装置において、
前記記憶手段は、第1記憶部及び第2記憶部を備えており、
最新の記憶データを前記第1記憶部に入力して格納し、その第1記憶部に記憶されたデータを前記実数部用として前記変換手段へ出力する一方、前記第2記憶部に格納保持されていたnサンプリング前後のデータを前記虚数部用として前記変換手段へ出力する手順と、
その後、最新の記憶データを前記第2記憶部に入力して格納し、その第2記憶部に記憶されたデータを前記実数部用として前記変換手段へ出力する一方、前記第1記憶部に格納保持されていたnサンプリング前後のデータを前記虚数部用として前記変換手段へ出力する手順とを、交互に繰り返すことを特徴とする無線通信装置。
【請求項5】
請求項2記載の無線通信装置において、
前記合成出力信号生成手段は、前記記憶手段より出力された前記最新の記憶データと、前記重み付け決定手段からの前記重み付けとを用いて、前記合成出力信号の生成を行うことを特徴とする無線通信装置。
【請求項6】
請求項5記載の無線通信装置において、
前記変換手段で複素信号変換されたデータに、所定の次元変換用の係数を乗じて前記制御手段へ出力する係数乗算手段を備えることを特徴とする無線通信装置。
【請求項7】
請求項2記載の無線通信装置において、
前記合成出力信号生成手段は、前記記憶手段から出力され前記変換手段で前記複素信号変換された前記最新の記憶データと、前記重み付け決定手段からの前記重み付けとを用いて、複素信号形式の前記合成出力信号の生成を行うことを特徴とする無線通信装置。
【請求項8】
請求項5乃至7のいずれか1項記載の無線通信装置において、
前記合成出力信号生成手段で生成された前記合成出力信号を復調する復調手段を有することを特徴とする無線通信装置。
【請求項9】
質問対象の無線タグ回路素子のIC回路部から送信された周波数fの変調信号を非接触で受信する複数のアンテナ素子と、
これら複数のアンテナ素子で受信した前記変調信号又は該変調信号から周波数変換された変調信号fiを、nを正の整数として4nf又は4nfiのレートでサンプリングして順次記憶し、最新の記憶データとそのnサンプリング前後の記憶データとを出力可能な記憶手段と、
この記憶手段から出力された前記最新の記憶データ及び前記nサンプリング前後の記憶データを、実数部又は虚数部にそれぞれ用いて複素信号変換を行う変換手段と、
この変換手段で前記複素信号変換されたデータに基づき、前記複数のアンテナ素子による指向性を、前記送信手段に対する受信感度が最適となるように変化させる制御手段とを有することを特徴とする無線タグ通信システムの質問器。
【請求項10】
請求項9記載の無線タグ通信システムの質問器において、
前記制御手段は、
前記記憶手段に記憶された変調信号4nf又は4nfiを合成した合成出力信号に基づく信号と、予め定められた目標出力信号と、前記複素信号変換されたデータとを入力し、前記合成出力信号が前記目標出力信号に近づくように、前記合成出力信号生成のために用いられる重み付けを決定する重み付け決定手段と、
この重み付け決定手段で決定された重み付けを用いて前記合成出力信号を生成する合成出力信号生成手段とを備えることを特徴とする無線タグ通信システムの質問器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−33799(P2006−33799A)
【公開日】平成18年2月2日(2006.2.2)
【国際特許分類】
【出願番号】特願2005−155209(P2005−155209)
【出願日】平成17年5月27日(2005.5.27)
【出願人】(000005267)ブラザー工業株式会社 (13,856)
【Fターム(参考)】