説明

生体センサ及び測定方法

【課題】生体情報を常時分析することが可能な小型の生体センサを提供する。
【解決手段】
シリコンから構成された基板101の上に、酸化シリコンからなる下部クラッド層102を備え、下部クラッド層102の上に、シリコンからなるコア103及びコア層104を備えている。コア103の一部領域で、検出領域121が構成され、検出領域121の上に、汗や皮脂腺分泌物などの生体分泌物を吸着する吸着膜131が接して設けられている。例えば、吸着膜131は、アンモニア、アミノ酸、尿酸、尿素、クレアチン、クレアチニン等の窒素化合物、及び皮脂腺分泌物であるコレステロール、脂肪酸、グルコース、乳酸などを選択的に吸着する機能膜であってもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、人体表面に貼り付け、また物体の表面に密着させるなどの簡便な方法により、生体物質や環境物質を検出し、人体の健康状態や人体を取り巻く環境状態を常時モニタすることが可能な生体センサ及び測定方法に関する。
【背景技術】
【0002】
健康状態の維持を目的とし、人間の体調を常時モニタし、あるいは病状をチェックするため、人体に影響のある環境物質を検出するセンサが盛んに開発されている。一例として、光と物質が相互作用することでスペクトルに生じる物質特有の吸収を観測することで、物質の種類や量を計測(定性、定量)する光センサがある。特に、近赤外光を利用したセンサでは、血液などの体液を直接採取することなく、非浸襲(針などで体液を採取しない)計測が可能であり、被験者あるいは患者の負担を減らすことができるため、開発が急がれている。
【0003】
光を用いた代表的な生体状態計測センサの例としては、血中の酸素濃度を計測するパルスオキシメータがある。これは、近赤外光を皮膚に照射し、透過してくる特定波長の光の吸収率の変化から、血液中の酸素濃度を同定するものである。また、皮膚表面に光ファイバやレンズを通して赤外光を照射し、皮膚直下の生体組織内で散乱される光を取り込んで分光し、幾つかの特定波長の光の強度変化データを用い、統計的手法を用いて解析して血液中の糖分濃度を同定するセンサが開発されている。
【0004】
また、汗成分は、尿あるいは血液成分と相関関係があり、身体情報や精神状態のモニタリングに利用可能な分泌物である。汗は、血液と異なり、通常の状態でも常時体表面に直接分泌されることから、汗を利用することにより、非浸襲計測がより容易に可能になることが期待されてる。
【0005】
例えば、発汗の原因と発汗量・成分の相関から身体情報を得るという人体装着型の発汗センサの例としては、発汗量測定を目的とするものとして、発汗量を水分(湿度)として計測する方法(特許文献1参照)、皮膚のインピーダンス変化を計測する方法(特許文献2参照)が提案されている。
【0006】
また、汗の成分測定を目的としたものでは、特定の成分ごとにその成分を検知する個別の検知部を複数配置する方法(特許文献3参照)、パッドに吸収させたサンプルを、パッドを取り外して収集してから従来の分析法で成分分析する方法なども提案されている。
しかし、光を用いて汗中の生体物質自体を直接計測する携帯型センサは、提案されていない。
【0007】
一方、皮膚に密着させた単結晶や薄膜中に光を伝搬させ、体内の物質量を同定しようとするセンサの開発が進められている。これは、単結晶や薄膜を皮膚表面に密着させることによって、単結晶や薄膜中より皮膚の側にしみだした光(エバネッセント光)が、皮膚表面の物質によって一部が吸収される現象を利用したものである。
【0008】
単結晶や薄膜を通過し、物質と相互作用してきた光を取り出して分光することにより、皮膚表面で光を吸収した物質を検出することができる。この方法は、ATR(Attenuated Total Reflecton)法と呼ばれている。ATR法を用いれば、透過光を利用する場合の光学系は不要であり、散乱される光を取り込む光学系も不要になるため、構成が単純になる。しかしながら、ATR法を、汗中の生体物質自体の計測に適用された例はこれまで皆無であった。
【0009】
なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
【特許文献1】特開平5−003857号公報
【特許文献2】特開平5−003875号公報
【特許文献3】特開平9−051877号公報
【非特許文献1】「マイクロマシン技術による超小型分光器の開発とその応用」、分光研究 第51巻 第1号(2002)
【発明の開示】
【発明が解決しようとする課題】
【0010】
身体に装着し、光を利用して非浸襲で汗中の生体物質を直接計測する人体装着型の発汗センサは、装着する者に苦痛や違和感を与えず、常時計測するための有力な手段である。しかし、前述のように、これまでは、汗を利用したセンサに関しては、発汗量を水分(湿度)として計測し、発汗の原因と発汗量の相関から体調を推定するという発汗センサがほとんどであり、汗中の生体物質自体を光で直接計測するATR法を用いた携帯型センサは皆無であった。
【0011】
ATR法では、次に示すことが問題となり、ATR法による携帯型センサが実現されていない。
皮膚表面に接触させた単結晶中に光を入射すると、多重反射する光が表面近傍で物質と相互作用してスペクトルが変化する。この種の、光を通しスペクトル変化を計測するセンサにおいては、光が物質と十分に相互作用しノイズの少ない信号を得るために、光と物質が相互作用する距離を長くする必要がある。
【0012】
このため、これらのセンサでは、感度を上げようとすると光を多重反射させて信号を得るための単結晶を大きくしなければならない。しかしながら、携帯型に利用するためには、装置を大きくすることができず、結果として、従来のATR法を用いた装置では、感度増加をすることが非常に困難である。
さらに、単結晶や薄膜に効率的に光を導入するための光学系は、別途に組み合わせることになるため、装置が大きくなり、小型化に向いていない。
【0013】
単結晶や薄膜に代わって、光を導波する導波路にして光路を折りたたむことで、導波距離を増やす方法も考えられるが、現在一般的に近赤外域で使用されている石英材の場合、導波路を曲げる半径が数cmと大きいため、小さな領域に長い導波路を詰め込むことはできないことから、センサの感度を上げることは困難であるという問題があった。
【0014】
また、一般的に、近赤外域の光で物質を同定するためには、1つ以上複数の波長の光の強度増減をモニタする必要があるため、吸収スペクトルを分光して計測する必要がある。しかしながら、通常使用されている分光器は可動機構を必要とするため、主に据え置き型の精密機械となっており、振動に弱く、また寸法や重量が大きいため、携帯することは困難であるという問題があった。
【0015】
また、MEMS技術を応用し、石英を用いた分光器が開発されつつあるが(非特許的文献1参照)、石英で導波路を作製しても、導波路を急峻に曲げることができないため、一定サイズ以下に分光器を小さくすることが難しいという問題があった。
【0016】
以上に説明したように、現在用いられている、あるいは開発が進められている近赤外光を利用した光センサは、大きなセンサヘッドと大きな分光器にならざるを得ず、人が違和感なく装着し、無意識に携帯できるようなセンサにはなっていない。
このため、小さくかつ高感度なセンサヘッドと、小さく可動部を持たない分光器を搭載したセンサ開発が望まれている。
【0017】
近赤外光を利用したセンサは、波長が異なれば違う物質をセンスできる潜在能力を有するため、小型で多種の物質を検出できるセンサの登場が期待されている。しかし、近赤外光を利用する場合、水の吸収を無視することはできないため、水による吸収がある波長帯域は使用できないという問題がある。
【0018】
水による吸収は波長1.4μmから始まって、広い波長域にわたり大きな影響を及ぼす。汗の主溶媒は水であり、これが近赤外を利用して汗中の生体物質成分を検出する方法が実用的になることを妨げている。特に・アンモニア,アミノ酸,尿酸などに代表される汗の主成分である窒素化合物は、水の吸収波長帯に吸収(N−H)を持つため、水の存在に強く影響される。従って、主成分だけを水と分離して検出することは困難であった。
【0019】
さらに、汗の出る部位により身体状態、精神状態の異なった情報が得られることがわかっている。例えば、エクリン型汗腺は、手のひら,足裏,顔面に分布し、精神的緊張,興奮など身体状態に関係がある。また、同様のエクリン型汗腺であっても、腕,足,胴に分布するものは、体温調整などの身体状態に関連する。
【0020】
また、アポクリン型汗腺は、主に脇の下,外耳道,乳輪,へその周囲,陰部の周囲,肛門の周囲に分布し、精神的緊張、性的興奮に関わる身体状態の情報を与える。しかし、現状ではこのような汗の出る部位と成分による身体状態・精神状態め情報を分離する方法は困難で、実用化されていない。
【0021】
本発明は、以上のような問題点を解消するためになされたものであり、生体情報を常時分析することが可能な小型の生体センサ及び測定方法の提供を目的とする。
【課題を解決するための手段】
【0022】
本発明に係る生体センサは、基板の上に形成された下部クラッド層と、この下部クラッド層の上に形成されて少なくとも一部の面が検出領域で露出したコアと、このコアから構成された導波路の光入射端と、導波路の光出射端と、下部クラッド層の上に形成されて光入射端に光源光を入射する光源と、下部クラッド層の上に形成されて光出射端より出射された光を分光するスラブ型分光部と、このスラブ型分光部により分光された光を検出する光検出手段と、検出領域の上に接して配置されて生体分泌物を吸着する吸着膜とを少なくとも備え、検出領域で、コアは導波方向を変更して往復して配置され、スラブ型分光部は、コアの一部で構成されているものである。
このように、導波方向を変更して往復するコアから検出領域を構成し、前記コアの一部でスラブ型分光部を構成したので、より小さな検出領域に、より長いコアが配置されるようになる。
【0023】
上記生体分泌物は、汗及び皮脂腺分泌物の少なくとも1つであり、例えば、アンモニア,アミノ酸,尿酸,尿素,クレアチン,クレアチニンを含む窒素化合物,及びコレステロール,脂肪酸,グルコース,乳酸などを含んでいる。
また、吸着膜は、生体分泌物に含まれるアンモニア,アミノ酸,尿酸,尿素,クレアチン,クレアチニンを含む窒素化合物、及びコレステロール,脂肪酸,グルコース,乳酸の少なくとも1つを選択的に吸着するものであってもよい。
【0024】
また、本発明に係る測定方法は、クラッド層と、この下部クラッド層の上に形成されて少なくとも一部の面が検出領域で露出したコアと、このコアから構成された導波路の光入射端と、導波路の光出射端と、下部クラッド層の上に形成されて光入射端に光源光を入射する光源と、下部クラッド層の上に形成されて光出射端より出射された光を分光するスラブ型分光部と、このスラブ型分光部により分光された光を検出する光検出手段と、検出領域の上に接して配置されて生体分泌物などの検出対象の物質を吸着する吸着膜とを少なくとも備え、検出領域で、コアは導波方向を変更して往復して配置され、スラブ型分光部は、コアの一部で構成された生体センサを用意し、生体センサの吸着膜に汗を吸着させて吸着した汗の水分を気化させた後、導波路に光源から出射された光を導波させ、検出領域を導波する光の変化を光検出手段で検出するようにしたものである。
【発明の効果】
【0025】
以上説明したように、本発明では、導波方向を変更して往復するコアから検出領域を構成し、コアの一部でスラブ型分光部を構成したので、より小さな検出領域により長いコアを配置するようにした。従って、本発明によれば、より小さな検出領域でより高い感度を得ることが可能となるなど、生体情報を常時分析することが可能な小型の生体センサを提供できるようになるという優れた効果が得られる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の実施の形態について図を参照して説明する。
図1は、本発明の実施の形態における生体センサの構成例を示す断面図(a)及び平面図(b)である。この生体センサは、例えばシリコンから構成された基板101の上に、酸化シリコンからなる下部クラッド層102を備え、下部クラッド層102の上に、シリコンからなるコア103及びコア層104を備えている。
【0027】
コア103の一部領域で、検出領域121が構成され、検出領域121の上に、吸着膜131が接している。例えば、吸着膜131は、汗や皮脂腺分泌物などの生体分泌物を吸着する。また、吸着膜131は、アンモニア、アミノ酸、尿酸、尿素、クレアチン、クレアチニンを含むの窒素化合物、及び皮脂腺分泌物であるコレステロール、脂肪酸、グルコース、乳酸などの生体分泌物に含まれる成分を選択的に吸着するものであってもよい。例えば、吸着膜131は、特定タンパク質を吸着する酵素反応膜であってもよい。上記各成分を選択的に吸着するようにした吸着膜131には、上述した分析対象となる物質が濃縮されるので、以降に説明するように、検出領域121において物質の選択的な分析が可能となる。
【0028】
検出領域121を構成しているコア103の一端には、スポットサイズ変換部106を介して光源105が接続されている。光源105は、例えば、半導体レーザや発光ダイオードなどの発光素子から構成された赤外線発光素子である。スポットサイズ変換部106は、コア103の一端が先細りとなっているテーパコア部103aと、テーパコア部103aを覆う変換部クラッド107とから構成されている。スポットサイズ変換部106を設けることで、光源105とコア103とを、効率よく光結合できる。
【0029】
コア103及び接続コア部103bは、コア層104にコアとなる部分を挾むように溝を形成することで形成できる。図1(b)の平面図において、グレーで示す領域は、下部クラッド層102が露出するようにコア層104に溝が形成されている領域である。
コア103は、断面の形状が、例えば、幅0.4μm,高さ0.2μmの長方形である。コア103は、これより構成される導波路が、シングルモードとなる寸法に形成されていればよい。
【0030】
また、コア層104の他の部分でスラブ型分光部108,光検出部111が構成されている。スラブ型分光部108は、コア103の一部から構成され、接続コア部103bにより検出領域121のコア103に接続し、検出領域121から連続している。スラブ型分光部108では、ローランド円110に沿って形成された溝部109aの側部に、グレーティング109が形成されている。グレーティング109を反射した光は、光検出部111を構成している光検出部コア112に導かれ、光検出部コア112に導かれた光は、光検出素子113に検出される。
【0031】
なお、光源105の光出力の制御や、光検出素子113が検出した光信号に対応する電気信号を増幅するなどの電気信号の処理は、図示しない制御回路により行われる。ここで、無線送受信部を備えるようにし、制御回路により処理された信号を、い無線送受信部により送信し、また、無線送受信部で受信された制御信号により、制御回路が制御動作や信号処理を行うようにしてもよい。
【0032】
例えば、公知のSOI(Silicon on Insulator)基板を利用し、埋め込み絶縁層の上の単結晶シリコン層を加工することで、単結晶シリコン層よりコア103,コア層104が形成できる。この場合、埋め込み絶縁層が下部クラッド層102となる。また、コア層104に、公知の半導体装置の製造工程により集積回路を製造することで、上述した制御回路が形成できる。なお、コア103は、シリコンの他に、GaAs系化合物、InP系化合物、ニオブ酸リチウム(LiNbO3)、酸化亜鉛(ZnO)などの化合物半導体や強誘電体、SiN、SiC、SiONなどの化合物を使用することができる。
【0033】
図1に示す生体センサでは、コア103よりなる導波路に光(分析光)を導波させると、コア103よりしみ出した光が、吸着膜131に吸着されている試料(生体分泌物)に含まれている成分の特性に応じて吸収され、この吸収の強さに応じて導波する光の強度が低下する。従って、コア103から構成されている導波路を導波する分析光の強度をある波長帯域に対して測定すれば、検出領域121に設けられた吸着膜131に吸着された分析対象の試料による吸収スペクトルが得られる。これらのことは、スラブ型分光部108,光検出部111により行える。吸着膜131に、分析対象の生体物質(生体分泌物)を吸着させるためには、例えば図1に示す生体センサを、対象物質を含む物体に接触させるだけで十分である。
【0034】
また、以下に説明するように、本センサは非常に小型で高感度とすることができる。シリコン(単結晶シリコン)は屈折率が3.5程度と非常に高く、光を強く閉じこめることができる。この結果、半径20μm以下で急峻に曲げても、もれることなく少ない損失で光を伝搬させることが可能となる。従って、図1(b)の平面図に示すように、コア103を、非常に小さい曲率で導波方向を変更して狭い間隔で往復させて配置させることが可能となる。
【0035】
このように、コア103をシリコンなどの高屈折率材料から構成することで、数mm2の領域に数cmの長さの導波路を収容できるため、生体センサを非常に小型にできる。また、検出領域を構成するコア103の長さ(導波路長)が長いので、導波路表面に存在する物質との相互作用距離が長くなり、センサとしての感度が増大する。
【0036】
次に、吸着膜131に尿素を吸着させ、スペクトルを計測した結果を図2に示す。この事例では、2mm×3mmとした検出領域121に、長さを6.7mm,9.3mm,17.2mmとしたコア103を収めた3種類のセンサを用い、各々検出領域121に吸着した尿素のスペクトルを計測した。コア103が長い場合ほど、スペクトルのピークが顕著に表れている。
【0037】
シリコンコアからなる導波路は、波長1.2〜1.4μmの光を導波するため、図1に示す生体センサによれば、波長1.2〜1.4μmの波長域に吸収を有する物質の分析が可能である。例えば、アルブミンなどのアミノ酸、グルコースなどの糖類、尿素などの窒素化合物、二酸化炭素、窒素酸化物、コレステロールなどの脂肪類が、図1に示す生体センサにより分析可能である。
【0038】
また、図1に示す生体センサによれば、検出領域121,スラブ型分光部108,光検出部111、制御回路、無線送受信部、さらには、これらに電源を供給する図示しない電源部を基板101の裏面に設け、これらを一体としたので、小型化が非常に容易である。 検出領域121,スラブ型分光部108,光検出部111は、公知のシリコン加工技術により同一の製造過程で形成可能であり、光源105や電源部は、装着することで一体化することが容易である。電源部としては、公知のポリマー電池などの小型電池を用いればよい。
【0039】
図1に示す生体センサによれば、検出領域121などの超小型化により、消費電力の低減も可能であり、制御回路などの電気回路、電源を小さくすることが可能となるため、一体化することが可能となる。また、微弱無線素子などの無線送受信部を同一プロセスで形成すれば、いつでもどこでも存在するだけで、検出物質のモニタをするシステムを組むことができる。これにより、移動する人や物体での物質を常にモニタすることが可能となる。また、基板として、GaAs系化合物やInP系化合物、ZnOなどの化合物半導体を使用することで、光源も半導体加工プロセスで形成できるため、製造プロセスをさらに簡便化することができる。
【0040】
ところで、図1に示す生体センサでは、スラブ型分光部108の構造をローランド円配置としたが、これに限るものではなく、他に様々な方式があり、導波路構造を利用した分光器構造であれば、検出領域121と結合が容易であり、同様に使用できることは明らかである。
【0041】
上述した本発明の政体センサでは、シリコンなどの高い屈折率を有する物質をコアに用いて導波路を構成し、導波路コアの表面にしみ出す光が導波路に近接して存在する生体分泌物の成分と相互作用して生じたズペクトル変化を、検出部と導波路で結合した超小型分光器で計測するようにしたものである。シリコンなど屈折率の高い材料から構成したコアは、光の閉じこめ能力が高く、急峻に曲げても損失が少ない導波路が作製可能である。このため、コアを、非常に小さい曲率で導波方向を変更して狭い間隔で往復させて配置させることが可能となる。
【0042】
高屈折率物質をコアに用いた本構成により初めて、物質を検出するヘッドを超小型化すると同時に高感度化を両立することが可能となる。さらに、シリコンなどの高屈折率物質を用いることで、導波路を小さな領域に集積し、特定の位置の光を外部に取り出す構造が実現できるため、従来と比較して面積で1/100以上小さくした超小型ながら波長分解能を維持した分光器を作製することができる。
【0043】
例えば、シリコンで導波路構造の検出部と超小型分光器を1つの基板の同一面に作成し、両者を導波路で結合すれば、超小型ながら、吸収スペクトルを計測し同時にスペクトル分光し、生体分泌物の成分を高感度で検出することができるセンサを構成することができる。検出部及び分光器が小さく、かつ集積化できる構造であるため、センサそのものを例えば1cm2内に収納することができる。
【0044】
さらに、SOI基板を用いれば、検出部と分光器に加えて電子回路を同一の半導体基板上に形成できるため、量産に適したシリコン半導体加工プロセスを使用することが可能であり、量産化が可能である。量産化によって低価格な生体センサを提供することができる。
【0045】
本発明では、汗などの生体分泌物を分析するセンサとして、ATR法を利用しているため、人体表面に直接貼り付けたり、物体の表面に密着させて装着するなどの簡便な方法により、原理的に非侵襲で人体の情報を得ることができる。さらに、分光器を搭載しているため、スペクトルを解析することにより、同一構成で種々の物質を検出することが可能である。センス対象物質をアンモニア、アミノ酸、尿酸、尿素、クレアチン、クレアチニンなどの窒素化合物、及び皮脂腺分泌物であるコレステロール、脂肪酸、グルコース、乳酸などに特化しておくことにより、汗などの生体分泌物による身体情報、精神情報を得ることが可能になる。
【0046】
また、図1に示す生体センサは、以下に示す測定方法を適用することができる。まず、図1に示す生体センサを、手足,首,腹部,背中の表面、あるいは脇の下,胸部などの汗が出やすい部位に貼り付る。ついで、生体センサの吸着膜131に汗を直接付着させる、あるいは汗を付着させる。この後、吸着膜131を大気に露呈して水分を気化させ、汗に含まれる物質を検出領域121の表面に析出させて濃縮させる。
【0047】
この後、コア103よりなる導波路に光源105から出射された光(分析光)を導波させ、検出領域121を導波する光の変化の検出を、スラブ型分光部108,光検出部111により行う。これらのことにより、汗に含まれている成分の高感度分析が可能となり、汗による身体情報の収集が容易に可能となる。
【0048】
また、吸着膜131に、計測しようとする物質を濃縮する機能膜を用いるようにしてもよい。このようにすることで、検出領域121に選択的に検出物質を濃縮できるため、別の物質の吸収によるノイズを減らし高感度化することができる。例えば、機能膜が対象の物質のみを選択的に取り込んで濃縮する膜であれば、同一の波長をモニタするようにしても、特定の物質の量(濃度)を計測することが可能となる。例えば、特定タンパク質を吸着する酵素膜を数10nm形成して吸着膜131とすることで、窒素結合(N−H,N−O、N−C)に起因する波長の光をモニタするだけで物質を検出することができる。
【0049】
このように、機能膜を用いることで、高感度化と検出物質の多様化が容易にできる。特に機能膜として、対象物質をアンモニア、アミノ酸、尿酸、尿素、クレアチン、クレアチニンなどの窒素化合物、及び皮脂腺分泌物であるコレステロール、脂肪酸、グルコース、乳酸などを濃縮するものに特化しておくことにより、生体分泌物による身体情報、精神情報を得ることが可能になる。
【0050】
また、図1に示す生体センサを定常的に被験者の発汗部位などに装着し、アンモニア、アミノ酸、尿酸、尿素、クレアチン、クレアチニンなどの窒素化合物を常時モニタすることにより、腎臓関連疾患、代謝異常などの予知が可能になる。
また、図1に示す生体センサを、スポーツトレーニングを行う被験者のエクリン型汗腺分布部位に装着し、ウォーミングアップ段階の汗成分(尿素、皮脂腺分泌物中心)から定常運動段階の汗成分(水分、ミネラル中心)に変化することをリアルタイムで検知することにより、ウォーミングアップ段階から定常運動段階への移行をスムーズに行うことができ、効果的で安全なトレーニングが実現できる。
【0051】
また、図1に示す生体センサを、性的不能の薬物治療を行う被験者のアポクリン型汗腺分布部位に装着し、発汗成分に含まれる汗成分を常時測定し、性的興奮の状態をモニタすることにより、治療効果の確認、及び一定量レベルから外れた場合にアラームを発することにより、薬物の過剰投与を防止することが可能になる。
また、図1に示す生体センサを恒常的に薬物投与を受けている被験者の汗腺分布部位に装着し、発汗成分に含まれる薬物成分を常時モニタし、一定量レベルから外れた場合にアラームを発することにより、例えば痴呆症の被験者,精神状態不安定な被験者のミスによる過剰投与、投与忘れを防止することが可能になる。
【0052】
また、図1に示す生体センサを恒常的に微量の有害ガスが存在する環境で作業を行う被験者の汗腺分布部位に装着し、発汗成分に含まれる成分を常時モニタし、一定量レベルから外れた場合にアラームを発することにより、人体に対する危険を予知することが可能になる。
【図面の簡単な説明】
【0053】
【図1】本発明の実施の形態における生体センサの構成例を示す断面図(a)及び平面図(b)である。
【図2】図1に示すセンサの検出領域121に尿素を吸着させ、スペクトルを計測した結果を示す説明図である。
【符号の説明】
【0054】
101…基板、102…下部クラッド層、103…コア、103a…テーパコア部、103b…接続コア部、104…コア層、105…光源、106…スポットサイズ変換部、107…変換部クラッド、108…スラブ型分光部、109…グレーティング、109a…溝部、110…ローランド円、111…光検出部、112…光検出部コア、113…光検出素子、121…検出領域 131…吸着膜。


【特許請求の範囲】
【請求項1】
基板の上に形成された下部クラッド層と、
この下部クラッド層の上に形成されて少なくとも一部の面が検出領域で露出したコアと、
このコアから構成された導波路の光入射端と、
前記導波路の光出射端と、
前記下部クラッド層の上に形成されて前記光入射端に光源光を入射する光源と、
前記下部クラッド層の上に形成されて前記光出射端より出射された光を分光するスラブ型分光部と、
このスラブ型分光部により分光された光を検出する光検出手段と、
前記検出領域の上に接して配置されて生体分泌物を吸着する吸着膜と
を少なくとも備え、
前記検出領域で、前記コアは導波方向を変更して往復して配置され、
前記スラブ型分光部は、前記コアの一部で構成されている
ことを特徴とする生体センサ。
【請求項2】
請求項1記載の生体センサにおいて、
前記生体分泌物は、汗及び皮脂腺分泌物の少なくとも1つである
ことを特徴とする生体センサ。
【請求項3】
請求項1記載の生体センサにおいて、
前記吸着膜は、生体分泌物に含まれるアンモニア,アミノ酸,尿酸,尿素,クレアチン,クレアチニンを含む窒素化合物、及びコレステロール,脂肪酸,グルコース,乳酸の少なくとも1つを選択的に吸着する
こをと特徴とする生体センサ。
【請求項4】
クラッド層と、この下部クラッド層の上に形成されて少なくとも一部の面が検出領域で露出したコアと、このコアから構成された導波路の光入射端と、前記導波路の光出射端と、前記下部クラッド層の上に形成されて前記光入射端に光源光を入射する光源と、前記下部クラッド層の上に形成されて前記光出射端より出射された光を分光するスラブ型分光部と、このスラブ型分光部により分光された光を検出する光検出手段と、前記検出領域の上に接して配置されて検出対象の物質を吸着する吸着膜とを少なくとも備え、前記検出領域で、前記コアは導波方向を変更して往復して配置され、前記スラブ型分光部は、前記コアの一部で構成された生体センサを用意し、
前記生体センサの前記吸着膜に汗を吸着させて吸着した汗の水分を気化させた後、
前記導波路に前記光源から出射された光を導波させ、
前記検出領域を導波する光の変化を前記光検出手段で検出する
ことを特徴とする測定方法。


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−43120(P2006−43120A)
【公開日】平成18年2月16日(2006.2.16)
【国際特許分類】
【出願番号】特願2004−228285(P2004−228285)
【出願日】平成16年8月4日(2004.8.4)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】