説明

疲労度測定装置

【課題】乗員へ低負荷としつつ、シートに連続的に着座した状態での疲労度を測定すること。
【解決手段】 シート30に設置され当該シート30の垂直方向のシート加速度を測定してシート加速度信号Xnを生成するシート加速度センサ10と、乗員の頭部32に設置され当該頭部32の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する頭部加速度センサ12と、前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯BDを通過させるバンドパスフィルタ14と、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間Cn蓄積すると共に、当該一定時間Cnの前記シート加速度信号Xn及び頭部加速度信号Ynの統計値STに基づいて、前記乗員の疲労度TRを算出する疲労度算出部16とを備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、乗員の疲労度を評価する技術分野に関連し、特に、信号処理を用いて疲労度を測定する技術に関する。
【背景技術】
【0002】
自動車の乗員は、自動車の乗車時間の増加に伴って徐々に疲労を蓄積する。疲労の蓄積の度合いが小さいほど、快適な自動車であり自動車としての商品性は高いといえるため、開発段階で運転者の疲労の度合いを評価することは、シートやサスペンションの開発にとって重要な技術である。
このために、従来より、筋電図や心電図を計測し、また、血液中や唾液中の化学物質を計測して疲労状態を評価する手法が多く行われてきた。
【0003】
特許文献1には、疲労感に影響する筋疲労部位を特定することを目的として、乗員の腰背部に筋電位測定用の電極を装着し、着座前及び単位時間おきに(段落0026)、錘を持たせて負荷を与えた状態の筋電位信号(段落0044)について、平均パワースペクトルを算出し(段落0046)、疲労の主観的評価との相関を求める手法が開示されている。
特許文献2には、走行状態のシートに着座した人体の疲労度を測定することを目的として、採尿によるアドレナリン分泌量を測定し(段落0018)、シートのクッション特性及び振動特性を説明変数とし、特に振動特性として頭部や腰部の上下加速度や加速度変化率を採用して(段落0019)、重回帰分析により説明変数を選択(段落0022)する手法が開示されている。この特許文献2には、アドレナリン分泌量に影響する説明変数として、背中付近のたわみ量、大腿部付近のたわみ量、頭部の2から4 [Hz] での左右加速度変化率、シートの1から2 [Hz] での上下加速度が開示されている(段落0023)。
特許文献3には、疲労への交感神経機能の影響を反映させた疲労度を測定することを目的として、心拍数や脈波等の生体信号のパワー値を交感神経活動による代償分を補正し、補正したパワー値に基づいて代謝量を疲労度として算出する手法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2002-224072号公報
【特許文献2】特開2003-118458号公報
【特許文献3】特開2009-22610号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1では、筋電図を測定するために人体に電極を貼り付け、電極から信号処理装置までの配線が必要となり、非接触で運転動作を拘束せずに測定をすることができない。
上記特許文献2では、尿を採取してアドレナリン分泌量を測定しなければならないため、シートに着座した状態を継続させた状態での疲労度を測定することができない。その他、血液や唾液を採取する従来例では、測定される乗員の負担が大きく、多数の乗員についてのデータ収集が困難となる。
上記特許文献3では、心拍数や脈波は多様な要因に応じて変動するため、単独で疲労を算出することが難しい。特に、長時間の着座に関する疲労度の測定で誤差が大きくなってしまう。
【0006】
[課題1]このように、上記従来例では、シートに連続的に着座した状態の疲労度を乗員へ低負担で測定することができない、という不都合があった。
[課題2]さらに、上記従来例では、シートに連続的に着座した状態の疲労度に基づいて当該シートの良否を判定することができない、という不都合があった。
【0007】
[発明の目的]本発明の目的は、乗員へ低負荷としつつ、シートに連続的に着座した状態での疲労度を測定することにある。
【課題を解決するための手段】
【0008】
[着眼点]本発明の発明者は、継続的な振動にさらされる人体の伝達関数を想定し、頭部の振動を当該伝達関数の出力と位置づけ、疲労との相関を検討するのが良い、という点に着目した。そして、頭部の振動に関する信号の信号処理を工夫することで、上記課題を解決できるのではないか、との着想に至った。
【0009】
[課題解決手段1]実施例1に対応する第1群の本発明は、シートに設置され当該シートの垂直方向のシート加速度を測定してシート加速度信号Xnを生成するシート加速度センサと、乗員の頭部に設置され当該頭部32の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する頭部加速度センサと、前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させるバンドパスフィルタと、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間蓄積すると共に、当該一定時間の前記シート加速度信号及び頭部加速度信号の統計値に基づいて、前記乗員の疲労度を算出する疲労度算出部とを備えた、という構成を採っている。
これにより、上記課題1を解決した。
【0010】
[課題解決手段2] 実施例2に対応する第2群の本発明は、第1群と同様に、シートに設置され当該シートの垂直方向のシート加速度を測定してシート加速度信号Xnを生成するシート加速度センサと、乗員の頭部に設置され当該頭部の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する頭部加速度センサと、前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させるバンドパスフィルタと、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間蓄積すると共に、当該一定時間の前記シート加速度信号及び頭部加速度信号の統計値に基づいて、前記乗員の疲労度TRを算出する疲労度算出部とを備えている。
そして、課題解決手段2は、取り替え可能にシートを保持するシート保持部と、前記シートを加振する加振部とを備えた、という構成を採っている。
これにより、上記課題2を解決した。
【発明の効果】
【0011】
本発明は、本明細書の記載及び図面を考慮して各請求項記載の用語の意義を解釈し、各請求項に係る発明を認定すると、各請求項に係る発明は、上記背景技術等との関連において次の有利な効果を奏する。
【0012】
[発明の作用効果1] 課題解決手段1の疲労度測定装置は、バンドパスフィルタが、シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させ、疲労度算出部が、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間蓄積すると共に、当該一定時間の前記シート加速度信号Xn及び頭部加速度信号Ynの統計値に基づいて、前記乗員の疲労度を算出することで、シートに着座後、時間経過に応じた疲労の蓄積に伴って大きくなる頭部加速度信号の特徴を捉えて、着座状態のまま時間的制約もない状態で疲労度を算出することができる。
【0013】
[発明の作用効果2] 課題解決手段2のシート評価装置は、 加振部が、評価対象のシートを加振し、疲労度算出部が、この加振に応じたシート加速度信号Xn及び頭部加速度信号Ynに応じて疲労度TRを算出するため、評価対象のシートでの疲労度を定量的に測定することができる。このように、シートに連続的に着座した状態の疲労度に基づいて当該シートの良否を判定することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の実施形態の構成例を示すブロック図である。(実施例1から2)
【図2】本実施形態のハードウエア資源の構成例を示すブロック図である。(実施例1から2)
【図3】乗員の頭部の振動の三次元での各成分の比率を示すグラフ図である。(実施例1から2)
【図4】頭部の振動のZ軸成分である頭部加速度信号の一例を示すグラフ図である。(実施例1から2)
【図5】実施例1の処理工程の一例を示すフローチャートである。(実施例1から2)
【図6】加速度信号の一例を示す説明図である。(実施例1から2)
【図7】伝達比変化量と主観的疲労度との相関関係の一例を示すグラフ図である。(実施例1から2)
【図8】各時点tnと、伝達比Tnと、伝達比変化量との関係の一例を示す説明図である。(実施例1から2)
【図9】実施例2の構成例を示すブロック図である。(実施例2)
【図10】伝達比変化量の時間変化の一例を示すグラフ図である。(実施例1から2)
【発明を実施するための形態】
【0015】
発明を実施するための形態として、2つの実施例を開示する。実施例1は疲労度測定装置であり、実施例2はシート評価装置である。実施例1から2までを含めて実施形態という。
本実施形態は、自動車車室内等、エンジンや路面からの入力により、継続的に振動にさらされる状況にある人体の疲労の程度(疲労度TR)を、人体の頭部32の振動に基づいて測定しようとするものである。
【0016】
人体の頭部32は、骨盤から脊柱を通して人体最上部に支持されている。しかし脊柱そのものは、多くの関節が積層された柔軟な構造で、そのままでは柔らかいバネを垂直に立て、その上に重りを置いたような状況になり、頭部32を安定して支持することはできない。このため人体では、柔らかな脊柱の周囲を囲んだ多くの筋肉が発生する張力によって、姿勢を保持して頭部32を安定に保つような構造・性質を持っている。
しかし筋肉の状態は、ストレスや疲労の蓄積などによって変化するため、人体における頭部32が支持される状態も、筋肉の状態変化の影響を受けると考えられる。
実際に自動車運転時における人体へシート30から入力される振動と、頭部32の振動の状態を測定し、長時間の自動車走行にともなう変化を観測すると、一定の周波数範囲における振動のシート30から頭部32への伝達比率が変化する傾向が見られた。
本実施形態は、このことを利用して自動車運転のような人体が振動暴露される環境下において、人体の筋肉状態の変化、具体的には疲労の状態変化を、振動計測の結果化から推測・定量化しようとするものである。
【実施例1】
【0017】
<1 疲労度測定装置>
<1.1 頭部z軸の統計値>
まず、本実施形態の実施例1を開示する。実施例1は、乗員に低負荷な測定で、かつ、長時間シート30に着座した状態そのものの疲労度TRを測定するために、シート加速度と頭部32加速度とを測定し、信号処理により疲労度TRを算出しようとするものである。
【0018】
実施例1の疲労度測定装置は、その主要な要素として、シート加速度センサ10と、頭部加速度センサ12と、バンドパスフィルタ14と、疲労度算出部16とを備えている。
図1に示す例では、シート加速度センサ10は、シート30に設置され当該シート30の垂直方向のシート加速度を測定してシート加速度信号Xnを生成する。シート加速度は、路面、ブレーキ及びエンジンの影響による振動の加速度である。頭部加速度センサ12は、乗員の頭部32に設置され当該頭部32の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する。頭部加速度は、シート加速度による人体の加速と、このシートの振動に対抗して姿勢を維持した際のシート加速度より低減される頭部32の加速度である。バンドパスフィルタ14は、前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯BDを通過させることで、ノイズ成分を除去する。
【0019】
疲労度算出部16は、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間Cn蓄積すると共に、当該一定時間Cnの前記シート加速度信号Xn及び頭部加速度信号Ynの統計値STに基づいて、前記乗員の疲労度TRを算出する。
【0020】
図2に示す例では、疲労度測定装置は、ハードウエア資源として、頭部32及びシート30の加速度をそれぞれ測定する加速度センサ40と、この加速度センサ40からの信号(シート加速度信号Xn及び頭部加速度信号Yn)をそれぞれ増幅するアンプ42と、増幅された信号をデジタル信号に変換するA/Dコンバーター44と、このデジタル信号を処理する記録分析装置36とを備えている。
【0021】
記録分析装置36は、例えばコンピュータであり、デジタル信号を一時的に記憶する一次メモリー46と、このデジタル信号を処理するCPU等の演算装置48と、演算装置48の主記憶となる主記憶装置50と、不揮発にデータを記憶するハードディスク等の補助記憶装置52とを備えている。A/Dコンバーター44でデジタル信号に変換されたシート加速度信号Xn及び頭部加速度信号Ynは、補助記憶装置52に格納される。演算装置48は、疲労度測定用プログラムを実行することで、図1に示す疲労度算出部16として機能し、一定時間Cn分の統計値STを算出し、この統計値STに基づいて疲労度TRを算出する。
【0022】
図3に、運転中の人体の頭部32の振動の割合を示す。自動車運転時にあっては、頭部32に伝わる走行中の振動は主に垂直方向のZ軸成分が大きく観測され、例えば、振動成分を三次元に分割するとZ軸成分は75%となる。そして、このZ軸成分の振動の変化が疲労度と良い相関を示す。
このため、実施例1では、第1に、Z軸方向(垂直方向)の振動のみを用いて評価を行う。この例では、図1に示すシート加速度センサ10及び頭部加速度センサ12は、垂直成分であるZ軸成分の加速度を検出する。
【0023】
なお、頭部32のピッチ方向回転成分は、頭部32のできるだけ上の部分について、その前後方向の動きを計測することで近似できるため、ヘッドレストなど頭部32の近傍の基準点と頭部32の距離を光学的手段などで計測することにより、非接触で頭部32の動きを測定するようにしても良い。
【0024】
実施例1では、第2に、シート加速度信号Xn及び頭部加速度信号Ynについて、予め定められた周波数帯BDのみ抽出すると良い。
図4を参照すると、バンドパスフィルタ14が通過させる周波数帯BDは、0.5 [Hz] から20 [Hz] とすることが望ましい。0.5 [Hz] 以下の領域と、20 [Hz] 以上の領域とは、計測誤差などが大きいため、0.5 [Hz] から 20 [Hz]の帯域での比較が有効である。
【0025】
そして、シート30の座面から一定の振動を人体に継続して入力した際、頭部32の振動についてZ軸方向の加速度を観察すると、初期の時点t1での頭部32の頭部加速度信号Y1のパワーは図4の点線で示す状態であり、所定時間経過して疲労が蓄積された時点t2では、頭部加速度信号Y2は図4の実線で示す状態に変化する。
図4に示す例では、周波数帯BDにて示す範囲にて時点t2での実線で示す頭部加速度信号Y2のパワーがY1よりも大きい。
【0026】
さらに、実施例1では、第3に、図4に点線及び実線で示す周波数成分等を得るため、頭部加速度信号Ynを一定時間Cn蓄積し、その蓄積した信号の周波数を算出すると良い。この一定時間Cnとしては、数分から十数分程度が望ましい。
【0027】
図4に点線で示すように、着席直後の時点t1ではシート30の振動を人体で減衰させ頭部32の位置を安定させている状態では、頭部加速度信号Y1の振動成分は小さい。その後、図4に実線で示すように、所定の時間が経過して乗員に疲労が蓄積されると、頭部32の位置を安定させる人体の機能が弱まり、頭部32の振動が大きくなる。すると、時点t2では、図4に示すように、頭部加速度信号Y2のパワーは時点t1の頭部加速度信号Y1のパワーよりも大きくなる。
【0028】
この時間経過に伴う頭部加速度信号Ynの特徴を信号処理により効果的で安定して計算するために、実施例1では、第4に、頭部加速度信号Yn単体ではなく、シート加速度信号Xnと頭部加速度信号Ynとに基づいた処理をする。すなわち、まず、頭部加速度信号Y1の振動成分には、シート30の振動による成分と、シート30の振動に抗して頭部32の位置を安定させようとする人体の筋力による減衰を受けた振動成分とが含まれている。そして、この状態は、シート30の振動を入力とし、頭部32の振動を出力とした伝達系と考えることができる。さらに、頭部加速度信号Y1を単体で取り扱うのではなく、シート加速度信号Xnと関連させて取り扱うことで、頭部32を安定させる筋力の疲労の程度をより直接的に定量化することができる。シート加速度信号Xnと頭部加速度信号Ynとに基づいた処理の例としては、頭部32を維持する筋力の機能を伝達関数として捉えると、両信号を除する計算が適用できる。また、頭部加速度信号Y1に残存したシート加速度信号Ynの量を検出するには、両信号の減算としても良い。
【0029】
実施例1では、第5に、シート加速度信号Xnと頭部加速度信号Ynとに基づいた処理に際して、両信号の統計値STを用いる。両信号には、一定時間Cn分のデータが含まれており、全てのデータを両信号間で除算や減算しても値が不安定となってしまう。このため、実施例1では、両信号についてそれぞれ統計値STを算出しておき、この両者の統計値STを除算又は減算する。統計値STの例としては、図4に示す各時点tnでのパワーの差が良好に現れる統計値STとすることが望ましい。例えば、一定時間Cnの全体について、唯一の平均値や中央値とする。平均値にしても、加算平均や、二乗平均平方根を採用することができる。また、一定時間Cnを予め定められた周波数の区間で区切り、各区間について統計値STを算出し、周波数の区間毎に両信号の除算や減算をしても良い。
【0030】
このように、第1に、シート30及び頭部32の垂直方向(Z軸方向)の振動を測定し、第2に、予め定められた周波数帯BD内の信号を取り出し、第3に、一定時間Cn分の蓄積をし、第4に、シート加速度信号Xnと頭部加速度信号Ynとに基づいた処理をし、そして、第5に、シート加速度信号Xn及び頭部加速度信号Ynのそれぞれの統計値STを算出して統計値STの除算や減算をすることで、乗員の疲労度TRを良好に算出することができる。そして、統計値STの除算や減算の値を、時点t1, t2, tnで比較することで、疲労の大きさに応じた疲労度TRを算出することができる。
【0031】
実施例1では、疲労度の指標算出に使用する頭部振動として、頭部Z軸方向並進加速度の0.5-20Hzの領域を利用しているが、頭部振動のピッチ方向回転成分(頭が頷く運動をする方向)も頭部Z軸並進の代替信号として使用可能で、頭部Z軸方向並進振動の測定と類似した結果を得ることができる。
【0032】
・1.1頭部z軸の統計値の効果
上述のように、バンドパスフィルタ14が、シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯BDを通過させ、疲労度算出部16が、前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間Cn蓄積すると共に、当該一定時間Cnの前記シート加速度信号Xn及び頭部加速度信号Ynの統計値STに基づいて、前記乗員の疲労度TRを算出することで、シート30に着座後、時間経過に応じた疲労の蓄積に伴って大きくなる頭部加速度信号Ynの特徴を捉えて、着座状態のまま時間的制約もない状態で疲労度TRを算出することができる。さらに、両信号の一定時間Cnの統計値STがあれば疲労度TRを算出できるため、着座状態のまま連続して同一の測定条件下で複数回の測定をすることができる。
【0033】
<1.2伝達比と伝達比変化量>
実施例1では、疲労及び疲労の蓄積の程度と極めて相関の高い測定をすることができる。この例では、主要な要素として、疲労度算出部16が、パワー算出処理18と、伝達比算出処理20とを備える。また、好ましい例では、伝達比変化量算出処理22を備えると良い。
【0034】
パワー算出処理18は、前記シート加速度信号Xnの前記一定時間Cnの二乗平均平方根XRnと、前記頭部加速度信号Ynの前記一定時間Cnの二乗平均平方根YRnとを算出する。
パワー算出処理18は、計測開始からある時点t1で一定時間Cn計測したシート加速度信号Xn、頭部加速度信号Ynに、周波数帯BDを0.1 [Hz] から20 [Hz] としたバンドパスフィルタ14を適用した後の信号について、信号の個々の値をxn, ynとした際、そのシグナルパワーに相当するXR1, YR1を次式(1)及び(2)で算出する。
$
図2に示すA/Dコンバーター44は、一定の間隔で加速度信号をA/D変換し、サンプリングする。すると、シート加速度信号Xn及び頭部加速度信号Ynは、それぞれ、N個の数値データとして収集される。
【0035】
X1 = {x1, x2, x3, ...xN} ... 0.1 [Hz] から20 [Hz] のシート加速度信号Xn
Y1 = {y1, y2, y3, ...yN} ... 0.1 [Hz] から20 [Hz] の頭部加速度信号Yn
【0036】
【数1】

【0037】
パワー算出処理18は、同様に、次のある時点t2での二乗平均平方根XR2, YR2を算出する。そして、測定時点tnが多数ある際には、各測定時点tnの一定時間Cnの個々の信号の値から二乗平均平方根を算出する。
【0038】
伝達比算出処理20は、次式(3)に従い、前記シート加速度信号Xnの二乗平均平方根XRnで前記頭部加速度信号YRnの二乗平均平方根YRnを除することで、前記シート30の振動の前記頭部32の振動への伝達比Tnを算出する。すなわち、伝達比算出処理20は、入力に相当するXRnで、出力に相当するYRnを除して比を算出し、これをある時点での振動の伝達比T1とする。この伝達比は、時点tnにおける乗員の疲労度TRを定量化した値である。
【0039】
【数2】

【0040】
好ましい例では、さらに、伝達比変化量算出処理22が、前記一定時間Cnを超える時間間隔の2つの時点tnについて、前記伝達比Tnを算出させると共に、次式(4)に従って、当該2つの時点tnの各伝達比Tnの差の絶対値を前記疲労度TRと相関する伝達比変化量DTnとして算出する。すなわち、時点t1から所定の時間経過後の時点t2において、同様にシート加速度信号X2及び頭部加速度信号Y2を用いて伝達比T2を計算し、このT2と時点t1で算出したT1との差の絶対値を、実施例1での伝達比変化量とする。
【0041】
【数3】

【0042】
図5を参照すると、疲労度測定装置は、まず、シート30に設置され当該シート30の垂直方向(Z軸方向)のシート加速度を測定して図6に示すシート加速度信号Xnを補助記憶装置50に記録する(ステップS01,シート加速度記録工程)。このステップS01と並行して、乗員の頭部32に設置され当該頭部32の垂直方向(Z軸方向)の頭部加速度を測定して図6に示す頭部加速度信号Ynを補助記憶装置50に記録する(ステップS02,頭部加速度記録工程)。そして、前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯BDを通過させることで、ノイズ成分を除去する(ステップS03,S04,バンドパスフィルタ工程)。周波数帯BDとしては、上述のように、0.5 [Hz] から 20 [Hz]とすると良い。
【0043】
そして、疲労度算出部16は、図6に示す予め定められた一定時間Cnの前記シート加速度信号Xn及び頭部加速度信号Ynの統計値STに基づいて、前記乗員の疲労度TRを算出する(疲労度算出工程)。この疲労度算出工程では、まず、前記一定時間Cnを超える時間間隔の2つの時点tnについて、前記シート加速度信号Xnの統計値STで前記頭部加速度信号Ynの統計値STを除することで、前記シート30の振動の前記頭部32の振動への伝達比Tnを算出する(ステップS05,伝達比算出工程)。統計値STとしては、例えば、二乗平均平方根XRn, YRnとすると良い。
【0044】
この伝達比Tnについて、運転前の時点t1と所定の時間経過後の時点t2の値を比較すると、図7に示すように、筋肉状態の変化や姿勢の崩れを原因としてその比率が減少または増大する。すなわち、前記2つの時点tnの各伝達比Tnの差の絶対値を前記疲労度TRと相関する伝達比変化量DTnとして算出する(ステップS06,伝達比変化量算出工程)。
なお、2つの条件、例えば、2種類のシート30の比較やサスペンションの比較をするためには、伝達比Tnの差の絶対値ではなく、単純に差として、この差の値が2種類の測定結果で異なるか否かという判定をしても良い。
【0045】
この伝達比Tnは、乗員によって増大する場合と、減少する場合とがある。しかし、総じて、人体の骨格がとる姿勢やそれをささえる筋肉の状態が、初期(疲労していない状態)から変化した大きさに応じて変化すると考えられる。そして、伝達比変化量DTnは、図7に示すように、人間が感じる主観的な疲労度と良い相関を示す。
【0046】
実施例1では、このことを利用して、 0.5 [Hz] から 20 [Hz]の周波数帯BDにおける垂直方向のシート30の座面の振動エネルギーと乗員の頭部32の振動エネルギー比率の変化を観測することで、人体の疲労度TRを推定する。
【0047】
図8に示すように、実施例1記載の手法では、長時間の着座について同一条件下で複数回の測定を安定して行うことができ、そして、時点t1, t2, t3についてシート加速度信号X1, X2, X3及び頭部加速度信号Y1, Y2, Y3を得て、伝達比T1, T2, T3を算出し、伝達比変化量DT1_2, DT2_3のみならず、DT1_3を算出することもできる。
【0048】
図5に示す処理工程は、図2に示す演算装置48が疲労度測定用プログラムを実行することで、実現することができる。この疲労度測定用プログラムは、図1のパワー算出処理18、伝達比算出処理20、伝達比変化量算出処理22の機能を発揮するためのプログラムコードを備えると良い。
【0049】
・1.2 伝達比と伝達比変化量の効果
上述のように、伝達比算出処理20が、統計値STとして伝達比Tnを算出し、伝達比変化量算出処理22が、時点t1の伝達比T1と時点t2の伝達比T2との差(の絶対値)DT1_2を算出し、これを疲労度TRとするため、図7に示すように主観的疲労度との相関の高い疲労度TRを着座状態のままで、乗員への負荷が小さい状態で、かつ、長時間連続的な測定環境を構築しつつ、複数の時点Tn間で蓄積された疲労度TRを定量化することができる。
【0050】
このように、実施例1では、人体の頭部32の垂直方向並進加速度について、 0.5 [Hz] から 20 [Hz] の周波数帯を抽出して、数秒から数十秒間の二乗平均平方根(統計値ST)を算出する。そして、人体が着座するシート30の座面についても、同様に0.5-10Hzの周波数帯で垂直方向並進加速度の二乗平均の平方根を算出する。さらに、算出した二乗平均値について、人体の頭部32の値をシート30の値で除して、信号の伝達比Tnを算出する。そして、一定時間経過後の信号伝達比T2と、初期の伝達比T1との差の絶対値DT1_2を算出して、その大きさから人体の疲労度TRを推測する。
【0051】
このため、人体の疲労の状態について、手間がかかり比較的誤差が大きくなる主観的官能評価を用いず、外部から電気信号として測定できる加速度データを利用して推測できる。そして、0.5 [Hz] から 20 [Hz] の周波数帯に限定して利用することで、ノイズなどの影響を受けにくくして疲労による人体振動の変化を計測できる。
さらに、車室内での人体の頭部32の振動は垂直並進方向の成分が多く、この方向のみを計測・評価することで、3軸全てを計測・評価するのと同等な効果を簡便に得られるまた、人体の頭部32の振動は、車体側の振動の大きさに影響を受けるため、シート30の座面振動との比率を用いることで、車両走行状態の観測値への影響を最小限とする。
そして、シート30の性質や個人差などによる疲労状態の違いにより、単純な数値の増減では疲労状態評価がやり難い。初期の伝達比と、一定時間経過後の伝達比の変化量絶対値をとることで、主観による疲労感の大小と相関のよい物理値を得ることができる。
【実施例2】
【0052】
<2 シート評価装置>
次に、実施例2を開示する。
実施例2のシート評価装置は、その主要な要素として、実施例1の主要な要素に加え、シート保持部24と、加振部26とを備えている。
図8に示す例では、さらに、スクリーン28を備えると共に、図2に示すアンプ42及び記録分析装置36を備えている。
【0053】
シート保持部24は、取り替え可能にシート30を保持する。四輪車用のシート30を取付可能な機構を有すると良い。加振部26は、前記シート30を加振する。この加振は、実際の四輪車の走行状態をシミュレートするための加振であり、予め設定された走行環境と車速とに応じた振動をシート30に与えると良い。スクリーン28に、走行環境の画像を記憶し乗員の操作に応じて走行環境を表示制御するコンピュータを併設し、スクリーン28に走行環境を表示することで、擬似的な運転環境を提供すると良い。
【0054】
シート加速度センサ10と、頭部加速度センサ12と、バンドパスフィルタ14と、疲労度算出部16(記録分析装置36)の構成は実施例1と同様である。
【0055】
図9に示すシート評価装置は、実施例1による測定を行うための加振機能をもったシミュレータである。運転席床面に接続された加振部26によって、シート30を経由して人体に自動車走行を模擬した振動を与えながら、予め定められた時間の運転シミュレーションを行って、シート30の座面と乗員の頭部32に固定した加速度センサ40によって、頭部加速度信号Xnとシート加速度信号Ynとのデータを収集する。頭部加速度信号Xnとシート加速度信号Ynを収集すると、図5に示す手順に従って伝達比Tnを算出する。
【0056】
具体的な使用例としては、例えば、自動車の乗員用のシート30について、何種類かを比較した場合に、一定時間の走行実験、あるいは自動車の走行振動を模擬したシミュレータ実験を行ったあとに、シート30からの入力振動と、人体の頭部32の振動を用いて伝達比変化量DTnを算出して比較することで、シート30の違いによる乗員の疲労への影響の大小を比較することができ、より疲れない自動車のシート30の開発を支援することが可能となる。
【0057】
図10に、シート評価装置を用いて、2種類のシート30について、実験開始直後の伝達比をT1として、同じシミュレータ実験を行いながら、時間経過に伴って3回の伝達比計測を行い、それぞれについてT1との間で伝達比変化量を算出した例を示す。図10に示すように、2種類のシート30について、双方とも時間経過に比例して疲労度TRが増加すること、点線で示すシート30の方が大きい疲労度をもたらしている。このように2つのシート30の間で伝達比の変化に差があった場合、伝達比変化量の時間経過に伴う増加が少ないシート30は疲労が少なく、変化の多いシート30が疲労の多いシート30であると推測することができる。
また、シート30の軽量化やコストダウンなどの改良を行う際、構造変更によって人体の疲労感を増加させるような、性能の劣化が出ているか否かを評価することが可能となる。
【0058】
・2 シート評価装置の効果
上述のように、実施例2では、加振部26が、評価対象のシート30を加振し、疲労度算出部16が、この加振に応じたシート加速度信号Xn及び頭部加速度信号Ynに応じて疲労度TRを算出するため、評価対象のシート30での疲労度TRを定量的に測定することができる。この疲労度TRの評価については、実施例1と同様の効果を奏する他、シート30に連続的に着座した状態の疲労度TRに基づいて、複数のシート30の良否を比較し、判定することができる。
【符号の説明】
【0059】
10 シート加速度センサ
12 頭部加速度センサ
14 バンドパスフィルタ
16 疲労度算出部
18 パワー算出処理
20 伝達比算出処理
22 伝達比変化量算出処理
24 シート保持部
26 加振部
28 スクリーン
30 シート
32 頭部
36 記録分析装置
40 加速度センサ
42 アンプ
44 A/Dコンバーター
46 一次メモリー
48 演算装置
50 主記憶装置
52 補助記憶装置
Xn, X1, X2, X3 シート加速度信号
Yn, Y1, Y2, Y3 頭部加速度信号
BD 周波数帯
Cn 一定時間
ST 統計値
TR 疲労度
XRn, YRn 二乗平均平方根
Tn, T1, T2, T3 伝達比
tn, t1, t2, t3 時点
DTn, DT1_2, DT1_3, DT2_3 伝達比変化量

【特許請求の範囲】
【請求項1】
シートに設置され当該シートの垂直方向のシート加速度を測定してシート加速度信号Xnを生成するシート加速度センサと、
乗員の頭部に設置され当該頭部の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する頭部加速度センサと、
前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させるバンドパスフィルタと、
前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間蓄積すると共に、当該一定時間の前記シート加速度信号及び頭部加速度信号の統計値に基づいて、前記乗員の疲労度を算出する疲労度算出部と、を備えた、
ことを特徴とする疲労度測定装置。
【請求項2】
前記疲労度算出部が、
前記シート加速度信号Xnの前記一定時間の二乗平均平方根と、前記頭部加速度信号Ynの前記一定時間の二乗平均平方根とを算出するパワー算出処理と、
前記シート加速度信号Xnの二乗平均平方根で前記頭部加速度信号の二乗平均平方根を除することで、前記シートの振動の前記頭部の振動への伝達比を算出する伝達比算出処理と、を備えた、
ことを特徴とする請求項1記載の疲労度測定装置。
【請求項3】
前記疲労度算出部が、
前記一定時間を超える時間間隔の2つの時点について、前記伝達比を算出させると共に、当該2つの時点の各伝達比の差の絶対値を前記疲労度と相関する伝達比変化量として算出する伝達比変化量算出処理を備えた、
ことを特徴とする請求項2記載の疲労度測定装置。
【請求項4】
シートに設置され当該シートの垂直方向のシート加速度を測定してシート加速度信号Xnを記録するシート加速度記録工程と、
このシート加速度記録工程と並行して、乗員の頭部に設置され当該頭部の垂直方向の頭部加速度を測定して頭部加速度信号Ynを記録する頭部加速度記録工程と、
前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させるバンドパスフィルタ工程と、
予め定められた一定時間の前記シート加速度信号Xn及び頭部加速度信号Ynの統計値に基づいて、前記乗員の疲労度を算出する疲労度算出工程とを備え、
この疲労度算出工程が、
前記一定時間を超える時間間隔の2つの時点について、前記シート加速度信号Xnの統計値で前記頭部加速度信号Ynの統計値を除することで、前記シートの振動の前記頭部の振動への伝達比を算出する伝達比算出工程と、
前記2つの時点の各伝達比の差を前記疲労度と相関する伝達比変化量として算出する伝達比変化量算出工程と、を備えた、
ことを特徴とする疲労度測定方法。
【請求項5】
請求項4記載の方法を演算装置を用いて実行するための疲労度測定用プログラム。
【請求項6】
取り替え可能にシートを保持するシート保持部と、
前記シートを加振する加振部と、
シートに設置され当該シートの垂直方向のシート加速度を測定してシート加速度信号Xnを生成するシート加速度センサと、
乗員の頭部に設置され当該頭部の垂直方向の頭部加速度を測定して頭部加速度信号Ynを生成する頭部加速度センサと、
前記シート加速度信号Xn及び頭部加速度信号Ynについて予め定められた周波数帯を通過させるバンドパスフィルタと、
前記シート加速度信号Xn及び頭部加速度信号Ynを予め定められた一定時間蓄積すると共に、当該一定時間の前記シート加速度信号及び頭部加速度信号の統計値に基づいて、前記乗員の疲労度TRを算出する疲労度算出部と、を備えた、
ことを特徴とするシート評価装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate