説明

発電装置、発電システム及び発電方法

【課題】太陽電池を用いて多くの電力を得ることを目的とする。
【解決手段】光エネルギーを電力に変換する太陽電池7が気嚢に搭載された飛行船43と、太陽電池7で変換された電力を蓄えるバッテリー10を有する複数の無人プレーン9とが編隊飛行する。ある無人プレーン9のバッテリー10が充電されると、その無人プレーン9は編隊飛行から離れ降下してバッテリー10を交換しに向かい、残りの無人プレーン9は編隊飛行を継続する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、太陽光発電技術に関する。
【背景技術】
【0002】
排出する二酸化炭素量がなく、安全性の高い発電技術として太陽電池を用いた太陽光発電技術が知られている。太陽電池を用いた発電を行う場合、太陽電池を設置する場所が必要になる。一般に、太陽電池は、建物の屋根や、郊外の土地等に設置されている。
【0003】
特許文献1には、太陽電池を搭載した航空機についての記載がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特表2003−522509号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
太陽電池を建物の屋根等の地上に設置する場合、設置できる場所が限られているため、発電量を大きくすることは難しい。また、特許文献1に記載されたように、太陽電池を航空機に取り付けたとしても、大きな太陽電池を航空機に取り付けることはできず、発電量を大きくすることは難しい。
この発明は、太陽電池を用いて安定して多くの電力を得ることを目的とする。
【課題を解決するための手段】
【0006】
この発明に係る発電装置は、
光エネルギーを電力に変換する太陽電池が気嚢に搭載された飛行船と、
前記飛行船に搭載された前記太陽電池に接続され前記飛行船とともに編隊飛行する複数の蓄電用飛行体であって、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用飛行体と
を備えることを特徴とする。
【0007】
また、この発明に係る発電装置は、光エネルギーを電力に変換する太陽電池と、
前記太陽電池に接続され前記太陽電池の周辺に編隊を組んで配備され、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用移動体と
を備え、
前記複数の蓄電用移動体は、一部の蓄電用移動体が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用移動体のうち少なくとも1機が編隊から外れ、残りの蓄電用移動体が前記太陽電池の周辺で編隊を組んで前記太陽電池に接続された状態で電力を蓄える
ことを特徴としても良い。
【発明の効果】
【0008】
この発明に係る発電装置は、太陽電池が搭載されたシートを、複数の飛行体が保持して編隊飛行することにより、上空にて発電を行う。上空にて発電を行うため、地上に太陽電池を設置する場合のように、設置場所がないということはない。また、複数の飛行体によりシートを保持するため、シートを大きくすることが可能であり、発電量を多くすることが可能である。
【0009】
また、この発明に係る発電装置は、太陽電池の周辺に電力を蓄えるバッテリーを有する複数の蓄電用移動体を編隊を組んで配備することにより、送電と蓄電を兼備えたシステムを簡便に構築することができる。また、大型構造物を組み立て及び撤去可能な仮設構造物で構成し、太陽電池のシートを適宜大型構造物の上部に敷設することで、緊急時に電力が必要な場合に、太陽光発電システムを簡便に設置することが可能となる。
【図面の簡単な説明】
【0010】
【図1】実施の形態1に係る発電システム1の構成図。
【図2】実施の形態1に係る発電装置2の機能構成を示すブロック図。
【図3】実施の形態1に係る運用装置3の機能構成を示すブロック図。
【図4】実施の形態1に係る発電システム1の動作の流れを示すフローチャート。
【図5】実施の形態1に係る運行管理部19が生成するフライトプランの説明図。
【図6】実施の形態1に係る無人プレーン9の構成図。
【図7】実施の形態1に係るシート8を上空へ上昇させる方法の説明図。
【図8】実施の形態1に係るシート8を上空へ上昇させる方法の説明図。
【図9】実施の形態2に係る二酸化炭素吸収システム31の構成図。
【図10】実施の形態2に係る二酸化炭素吸収装置32の機能構成を示すブロック図。
【図11】実施の形態2に係る運用装置3の機能構成を示すブロック図。
【図12】実施の形態2に係る二酸化炭素吸収システム31の動作の流れを示すフローチャート。
【図13】実施の形態3に係る発電システム42の構成図。
【図14】実施の形態3に係る飛行船43の機能構成を示すブロック図。
【図15】実施の形態3に係る無人プレーン44の機能構成を示すブロック図。
【図16】実施の形態3に係る発電システム42の動作の流れを示すフローチャート。
【発明を実施するための形態】
【0011】
実施の形態1.
実施の形態1では、太陽電池を用いて発電し、送電線を用いることなく発電した電力を必要とする場所へ届ける発電システム1について説明する。
【0012】
図1は、実施の形態1に係る発電システム1の構成図である。
発電システム1は、発電装置2、運用装置3(発電制御装置)、測位衛星4、運用衛星5、電子基準点6を備える。
発電装置2は、光エネルギーを電力に変換する太陽電池7(太陽電池セル)が搭載されたシート8と、シート8の周囲等を保持して編隊飛行する複数の無人プレーン9(蓄電用飛行体)とを備える装置であり、上空にて発電を行う。各無人プレーン9には、バッテリー10が設けられており、バッテリー10には太陽電池7により発電された電力が蓄えられる。運用装置3は、測位用補強情報やフライトプラン等を発電装置2へ送信して、発電装置2の動作を制御する装置である。運用装置3へは、発電装置2からテレメトリーデータが送信され、電子基準点6から電子基準点情報が送信される。測位衛星4は、測位信号を送信する衛星であり、例えばGPS(Global Positioning System)、GLONASS(Global Navigation Satellite System)、Galileo、COMPASS等の衛星である。運用衛星5は、発電装置2と運用装置3との間の通信を中継する衛星であり、例えばGEO(Geostationary Earth Orbit)、QZS(Quasi−Zenith Satellite)、MEO(Medium Earth Orbit)、LEO(Low Earth Orbit)等の衛星である。電子基準点6は、精度の高い測位を実現するために設けられた観測点である。
【0013】
図2は、実施の形態1に係る発電装置2の機能構成を示すブロック図である。
上述したように、発電装置2は、太陽電池7が搭載されたシート8と、複数の無人プレーン9とを備える。各無人プレーン9は、バッテリー10、コマンド受信部11、制御部12、測位信号受信部13、補強信号受信部14、測位部15、データ送信部16を備える。制御部12は、誘導部17、推進操舵部18を備える。
コマンド受信部11は、運用装置3から送信されたフライトプランやコマンド等の情報を、運用衛星5を介して受信する装置である。制御部12は、測位部15により計測された位置や速度と、コマンド受信部11が受信したフライトプランとから無人プレーン9の機体を制御する装置である。誘導部17は、位置、速度とフライトプランとから加速度を示す誘導指令信号を生成する装置である。推進操舵部18は、誘導部17が生成した誘導指令信号が示す加速度となるように、機体を制御する装置である。例えば、推進操舵部18は、無人プレーン9が備えるプロペラ推進や翼操舵のための入力信号を生成して、入力信号によりプロペラや翼を操作する。測位信号受信部13は、測位衛星4から送信された測位信号を受信する装置である。補強信号受信部14は、運用装置3から送信された補強信号を受信する装置である。測位部15は、測位信号受信部13が受信した測位信号と、補強信号受信部14が受信した補強信号とから位置や速度を計測する装置である。データ送信部16は、運用衛星5を介してテレメトリーデータを運用装置3へ送信する装置である。
なお、テレメトリーデータには、充電量情報、発生電力情報、温度情報、位置速度情報が含まれる。充電量情報は、各無人プレーン9に設けられたバッテリー10に蓄えられた電力量を示す情報である。発生電力情報は、太陽電池7により発電される電力単位時間当たりの電力量を示す情報である。温度情報は、太陽電池7の発電効率等に影響を与える発電装置2の温度であって、図示されていない温度センサにより計測された温度を示す情報である。この温度情報を用いることで、太陽電池7の発電効率を最適にするように図示されていないヒータによりコントロールすることもできる。位置速度情報は、測位部15によって測定された、各無人プレーン9の移動速度と位置とを示す情報である。
【0014】
図3は、実施の形態1に係る運用装置3の機能構成を示すブロック図である。
運用装置3は、運行管理部19、補強信号生成部20、データ送受信部21、充電電力管理部22、発生電力管理部23、需要管理部24、データ受信部200を備える。
運行管理部19は、フライトプランを生成する装置である。運行管理部19は、時刻毎の太陽の位置や、直近の各無人プレーン9の位置に基づき、フライトプランを生成する。補強信号生成部20は、電子基準点6から取得した電子基準点情報等に基づき、測位用補強情報を生成する装置である。データ送受信部21は、運行管理部19が生成したフライトプランや、補強信号生成部20が生成した測位用補強情報等を、運用衛星5を介して発電装置2へ送信する装置である。また、データ送受信部21は、テレメトリーデータを発電装置2から受信する。データ受信部200は、電子基準点情報を電子基準点6から受信する装置である。充電電力管理部22は、テレメトリーデータに含まれる充電量情報に基づき、各無人プレーン9に設けられたバッテリー10に蓄えられた電力量を管理する装置である。充電電力管理部22は、テレメトリーデータに含まれる温度情報に基づき、バッテリー10の充電能力に影響を与える発電装置2の温度も管理している。発生電力管理部23は、テレメトリーデータに含まれる発生電力情報に基づき、シート8に搭載された太陽電池7により発生する電力を管理する装置である。発生電力管理部23は、テレメトリーデータに含まれる温度情報に基づき、太陽電池7の発電効率に影響を与える発電装置2の温度も管理している。需要管理部24は、どの地域で電力が必要とされているかを示す電力需要を管理する装置である。
なお、測位用補強情報は、測位精度を高くするための情報であり、電離層情報、衛星時計情報、衛星軌道情報等が含まれる。フライトプランは、各無人プレーン9が居るべき位置やとるべき姿勢を時系列に示す情報であり、太陽の位置や、発電装置2から送信されるテレメトリーデータに含まれる位置速度情報等に基づき生成される。
【0015】
図4は、実施の形態1に係る発電システム1の動作の流れを示すフローチャートである。
(S11:飛行ステップ)
シート8が取り付けられた複数の無人プレーン9が上空で編隊飛行する。上空とは、例えば、雲や航空路よりも上の領域であって、ジェット気流の影響が小さい領域(例えば風速6m/s)である。例えば、上空とは、高度15−20km程度の領域である。
この際、各無人プレーン9では、測位信号受信部13が測位衛星4から受信した測位信号と、補強信号受信部14が運用装置3から運用衛星5を介して受信した測位用補強情報とに基づき、測位部15が位置や速度を計測する。各無人プレーン9は、測位信号に加えて測位用補強情報を用いて位置を計測することにより、数cmの誤差精度で位置を計測することができる。各無人プレーン9では、測位部15が計測した位置や速度と、コマンド受信部11が運用装置3から運用衛星5を介して受信したフライトプランとに基づき、制御部12が加速度を制御して飛行する。
また、この際、各無人プレーン9では、データ送信部16が順次テレメトリーデータを送信する。一方、運用装置3では、運行管理部19が、無人プレーン9から送信されたテレメトリーデータに基づき、順次フライトプランを修正して、データ送受信部21が発電装置2へ送信する。また、補強信号生成部20が、測位用補強情報を順次更新して、データ送受信部21が発電装置2へ送信する。
【0016】
(S12:発電ステップ)
S11で発電装置2が上空を飛行することにより、シート8に搭載された太陽電池7により電力が発生され、発生された電力は各無人プレーン9が備えるバッテリー10に分散して蓄えられる。
この際、運用装置3では、無人プレーン9から送信されたテレメトリーデータに含まれる充電量情報に基づき、充電電力管理部22が各無人プレーン9に設けられたバッテリー10に蓄えられた電力量を監視する。具体的には、充電電力管理部22は、いずれかの無人プレーン9が有するバッテリー10に蓄えられた電力量が所定の量になったか(例えば、バッテリー10が満杯の100%充電になったか)を監視する。
【0017】
(S13:送電ステップ)
運用装置3の運行管理部19は、いずれかの無人プレーン9が有するバッテリー10に蓄えられた電力量が所定の量になった場合、その無人プレーン9を所定の場所へ降下させる降下コマンドを生成する。そして、データ送受信部21が降下コマンドを発電装置2へ送信する。すると、その無人プレーン9は、運用装置3からの降下コマンドに従い、指定された場所へ降下し、バッテリー10が空のものに交換される。
この際、他の無人プレーン9は編隊飛行し続け、発電を継続する。つまり、バッテリー10にある程度の電力が蓄えられた無人プレーン9から順に交代して降下して、バッテリー10が交換される。バッテリー10が交換された無人プレーン9は、飛行し、太陽電池7により発電された電力がバッテリー10に蓄えられるように再びシート8に接続され、編隊飛行に加わる。上述したように、無人プレーン9は数cmの誤差精度で位置を計測することができるので、バッテリー10の配線の接続を上空で行うことも可能である。
なお、無人プレーン9を降下させる場所は、需要管理部24が電力需要と、無人プレーン9の位置とに応じて決定される。
【0018】
図5は、実施の形態1に係る運行管理部19が生成するフライトプランの説明図である。
上述したように、運用装置3の運行管理部19は、太陽の位置や、各無人プレーン9の位置等に基づき、フライトプランを生成する。運行管理部19は、発電装置2が上空にいる際、太陽から受けるエネルギー量が最大になるように、各無人プレーン9の位置、姿勢の時系列データを生成する。具体的には、運行管理部19は、無人プレーン9によって展開されたシート8に搭載された太陽電池7へ、太陽光が常に垂直に入射するように、各無人プレーン9の位置、姿勢の時系列データを生成する。
なお、地球の自転の影響があるため、太陽光が常に垂直に入射するようにするには、常に各無人プレーン9を移動させる必要がある。しかし、その移動だけでは十分な揚力が得られない場合には、図5に矢印で示すように、太陽光が常に垂直に入射する状態を保ちつつ、例えば半径2−3km程度の円を描くように各無人プレーン9を旋回させてもよい。
【0019】
図6は、実施の形態1に係る無人プレーン9の構成図である。
上述したように、無人プレーン9は、バッテリー10が設けられている。さらに、無人プレーン9は、主翼25、垂直羽根26、プロペラ27、太陽電池28を備える。また、図示されていないが、無人プレーン9は、プロペラ27を作動させるためのモータや、離着陸時に使用する車輪等を備える。主翼25は例えば無後退角翼を用いても良く、主翼25の他に安定飛行用の前翼や尾翼を設けても良い。
なお、太陽電池28は、無人プレーン9の動力として使用される電力を発生させるものである。つまり、無人プレーン9は、原則として太陽電池28で発生された電力を用いて動作し、バッテリー10に蓄えられた電力は使用しない。但し、太陽電池28で十分な電力が得られないような特別な場合は、バッテリー10に蓄えられた電力を使用する。また、ここでは、バッテリー10はわかり易く示すため主翼25の上に設けている。しかし、バッテリー10は主翼25の下側等他の位置に設けてもよい。
【0020】
発電装置2の主な仕様について説明する。
シート8について説明する。シート8は、例えば、フィルム状の薄膜ソーラーシート(薄膜太陽電池パネル)である。太陽定数を1.38[kW/m]とし、発電効率を32[%]とし、太陽電池7の面積を10,000[m]とする。すると、発生電力=太陽定数×発電効率×面積であるので、単位時間当たりの発生電力=1.38×0.32×10,000=4,416[kW]となる。
バッテリー10について説明する。バッテリー10は、例えば、リチウムイオンバッテリーである。1台の発電装置2での目標電力(蓄えられる目標電力量であり、例えば1時間当たり5,000[kW]程度)は、1台の発電装置2を構成する複数の無人プレーン9が各々分担して、発電装置2で発生した電力を充電する。
無人プレーン9について説明する。無人プレーン9は、例えば、図6に示す構成の飛行体である。無人プレーン9の翼長は、例えば、50−100[m]程度である。翼面積当たりの質量は、例えば、500[g/m]程度以下の軽量素材である。無人プレーン9は、バッテリー10の交換の度に地上と上空の間を行き来するものであって、一種の送電装置としての機能を果たすものであり、地上と上空の間の電力線による接続が不要となる。
なお、太陽電池の発電効率やバッテリー10の蓄電効率や無人プレーン9の機体数に応じて、バッテリー10の交換までに要する時間を長時間化することができる。上述した通り、バッテリー10の交換時間の到来に応じて、順次、新たな無人プレーン9が地上から上昇して発電装置2に新たに接続され、満充電のバッテリー10を搭載した無人プレーン9が発電装置2から切り離されて地上に降下する。
【0021】
以上のように、実施の形態1に係る発電システム1では、発電装置2が上空で発電を行うため、地上に太陽電池を設置する場合のように、設置場所がないということはない。また、複数の飛行体によりシート8を保持するため、シート8を大きくすることが可能であり、発電量を多くすることが可能である。
また、発電装置2が上空で発電を行うため、太陽高度の日毎の変化や季節毎の変化による影響を小さくすることができる。さらに、雲よりも上で発電を行うため、雨や曇り等の気象現象による影響はない。また、大気の反射、吸収による太陽放射の減衰を抑えることができる。また、地上に設置した場合には、太陽電池7に塵等が堆積して付着することにより、集光面の反射率が低下して、発電効率が低くなる恐れがあるが、上空であれば塵が堆積することがない。
【0022】
また、実施の形態1に係る発電システム1では、充電が完了した無人プレーン9だけが降下して送電を行い、残りの無人プレーン9は上空に留まり発電を続ける。そのため、一旦上空へ運んだシート8を送電するために地上に降ろす必要がない。
【0023】
なお、上記説明では、運行管理部19は、太陽の位置と無人プレーン9の位置とからフライトプランを生成するとした。
運行管理部19は、太陽の位置と無人プレーン9の位置とに加えて、需要管理部24が管理する電力需要を考慮してフライトプランを生成してもよい。つまり、電力需要があり、次に送電する場所に近づくようなフライトプランを生成するようにしてもよい。
また、運行管理部19は、太陽の位置と無人プレーン9の位置とに加えて、安全性を考慮してフライトプランを生成してもよい。例えば、何らかの事象により、シート8や無人プレーン9が落下した場合の安全性を考慮して、沿岸からある程度離れた海上のみを飛行ルートにするようなフライトプランを生成するようにしてもよい。また、安全性を考慮して、シート8や各無人プレーン9にバルーンやパラシュートを設け、落下する場合に膨らむあるいは広がるようにしておいてもよい。
【0024】
また、上記説明では、充電電力管理部22や発生電力管理部23が発電装置2の温度を管理するとした。シート8や無人プレーン9にヒータを設けておき、S12において充電電力管理部22や発生電力管理部23が管理する温度が所定の温度よりも低くなった場合には、ヒータにより温度を上げるようにしてもよい。これにより、発電効率の低下を防ぐことができる。
【0025】
また、上記説明では、発電装置2を地上から上空へ上昇させることについて詳しく説明しなかった。発電装置2を地上から上空へ上昇させる場合、地上ではシート8を折畳む、あるいは、丸めて小さくしておき、発電を行う領域へ到達してからシート8を広げるように無人プレーン9を編隊飛行させてもよい。これにより、シート8が大きい場合であっても、地上に広い面積の土地を用意せずに、発電装置2を上空へ上昇させることが可能である。
【0026】
また、無人プレーン9の揚力だけでなく、大型の飛行船29や大型のバルーンの浮力を合わせて用いて、シート8を上空へ上昇させてもよい。図7は、無人プレーン9とともに飛行船29を用いて、シート8を上空へ上昇させる方法の説明図である。飛行船29を用いる場合、飛行船29の気嚢の表面にシート8を貼り付けておき上空へ上昇させ(図7(a))、上空にて無人プレーン9の編隊飛行により気嚢からシート8を剥がしてシート8を広げる(図7(b))。シート8を上空へ上昇させた後、飛行船29も上空に留まらせ、運用装置3からの指示に基づく編隊飛行に加わる。なお、飛行船29には、操舵翼、安定翼、プロペラ等の制御手段が設けられており、位置制御可能となっている。また、飛行船29の上部には、飛行船29の動力として使用される電力を発生させる太陽電池30が設けられており、飛行船29は原則として太陽電池30で発生した電力により動作する。シート8は太陽電池30が設けられた部分を除いた領域に貼り付けられている。
【0027】
また、無人プレーン9を用いず、大型の飛行船29や大型のバルーンの浮力だけを用いて、シート8を上空へ上昇させてもよい。図8は、無人プレーン9を用いず飛行船29だけを用いて、シート8を上空へ上昇させる方法の説明図である。図7の場合と同様に、飛行船29の気嚢の表面にシート8を貼り付けておき上空へ上昇させ(図8(a))、上空にて無人プレーン9がシート8に接続され、無人プレーン9の編隊飛行により気嚢からシート8を剥がしてシート8を広げる(図8(b))。その後は、図7の場合と同様である。
【0028】
また、飛行船29を単にシート8を上空へ上昇させるためだけに用いてもよい。つまり、飛行船29の気嚢の表面に気嚢を包み込むようにシート8を貼り付けておき、上空にて気嚢からシート8を剥がしてシート8を広げ、その後飛行船29は下降させ無人プレーン9のみで編隊飛行させてもよい。
【0029】
また、無人プレーン9に代えて、運用装置3からの指示により位置制御可能な小型の飛行船を用いてもよい。小型の飛行船を下降させる場合には、気嚢に蓄えられたヘリウムガスを抜けばよい。
【0030】
また、図1では、発電装置2を1台だけ示しているが、発電装置2は必要な電力量に応じて複数台設けてもよい。
【0031】
また、上記説明では、上空とは、例えば、高度15−20km程度の領域であるとした。しかし、これに限らず、高度がもっと低い領域や高い領域であってもよい。
【0032】
また、上記説明では、測位用補強情報やフライトプランは、運用装置3から運用衛星5を介して発電装置2へ送信されるとした。測位用補強情報やフライトプランは、運用衛星5を介さず、例えば携帯電話網等を利用して運用装置3から発電装置2へ送信されてもよい。
また、運用衛星5は測位衛星4を兼ねていても良い。また、運用衛星5は測位用補強情報の中継機能とテレメトリーデータやフライトプランの中継機能を分離して、別々の衛星にそれぞれの機能を持たせて運用しても良い。
【0033】
実施の形態1をまとめると、次のようになる。
光エネルギーを電力に変換する太陽電池が搭載されたシートと、
前記シートに搭載された前記太陽電池に太陽光が入射するように前記シートを保持して編隊飛行する複数の飛行体であって、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の飛行体と
を備えることを特徴とする。
【0034】
前記複数の飛行体は、一部の飛行体が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の飛行体のうち少なくとも1機が前記シートから離れるとともに、残りの飛行体が前記太陽電池に太陽光が入射するように前記シートを保持して編隊飛行することを継続する
ことを特徴とする。
【0035】
前記シートから離れた飛行体は、所定の位置へ降下してバッテリーが交換された後、再び前記シートを保持する編隊飛行に加わる
ことを特徴とする。
【0036】
前記複数の飛行体は、前記太陽電池に対して太陽光が垂直に入射するように編隊飛行する
ことを特徴とする。
【0037】
前記複数の飛行体の各飛行体は、
衛星から送信された測位信号に基づき自己の位置を測る測位部と、
外部から飛行計画を示す飛行計画情報を受信する受信部と、
前記測位部が測った自己の位置と、前記受信部が受信した飛行計画情報とに基づき、加速度を計算して、計算した加速度となるように機体を制御する制御部と
を備えることを特徴とする。
【0038】
発電装置と、前記発電装置を制御する発電制御装置とを備える発電システムであり、
前記発電装置は、
光エネルギーを電力に変換する太陽電池が搭載されたシートと、
前記シートに搭載された前記太陽電池に太陽光が入射するように前記シートを保持して編隊飛行する複数の飛行体であって、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の飛行体と
を備え、
前記発電制御装置は、
前記複数の飛行体の各飛行体についての飛行計画を生成する飛行計画生成部と、
前記飛行計画生成部が生成した飛行計画を前記各飛行体へ送信する飛行計画送信部と
を備え、
前記各飛行体は、前記飛行計画送信部が送信した飛行計画に従い飛行する
ことを特徴とする。
【0039】
複数の飛行体が、光エネルギーを電力に変換する太陽電池が搭載されたシートを、前記太陽電池に太陽光が入射するように保持して編隊飛行する飛行ステップと、
前記太陽電池が、前記飛行ステップで複数の飛行体が編隊飛行することにより太陽光を受け、太陽光の光エネルギーを電力に変換する発電ステップと
を備えることを特徴とする。
【0040】
実施の形態2.
実施の形態1では、シート8に太陽電池7を搭載して、上空で発電することについて説明した。実施の形態2では、シート8に光合成体33を搭載することについて説明する。
なお、実施の形態2では、実施の形態1と同様の構成要素については、同一の符号を付す。
【0041】
図9は、実施の形態2に係る二酸化炭素吸収システム31の構成図である。
二酸化炭素吸収システム31は、発電装置2に代えて、二酸化炭素吸収装置32を備えることを除き、図1に示す実施の形態1の発電システム1と同様である。
二酸化炭素吸収装置32は、図1に示す発電装置2における太陽電池7に代えて、シート8に光合成体33と毛細管34とが搭載され、図1に示す発電装置2におけるバッテリー10に代えて、タンク35が各無人プレーン9に搭載されている。光合成体33は、光合成色素を含み、水と光と二酸化炭素が与えられると光合成する。光合成体33は、例えば、藻やコケである。毛細管34は、光合成体33へ水を供給するための管である。タンク35は、毛細管34を介して光合成体33へ供給する水を蓄えておく容器である。
【0042】
図10は、実施の形態2に係る二酸化炭素吸収装置32の機能構成を示すブロック図である。
上述したように、二酸化炭素吸収装置32は、光合成体33と毛細管34とが搭載されたシート8と、複数の無人プレーン9とを備える。各無人プレーン9は、タンク35、コマンド受信部11、制御部12、測位信号受信部13、補強信号受信部14、測位部15、データ送信部16、水分センサ36、歪センサ37、光センサ38を備える。
コマンド受信部11〜データ送信部16は、図2に示す実施の形態1のコマンド受信部11〜データ送信部16と同様である。水分センサ36は、毛細管34の水分量を計測する。歪センサ37は、シート8の重量増加量を計測する。光センサ38は、光合成体33の大きさ(密度)変化を計測する。
なお、テレメトリーデータには、水分情報、シート情報、温度情報、位置速度情報が含まれる。水分情報は、各無人プレーン9に設けられたタンク35に蓄えられた水量を示す情報である。シート情報は、水分センサ36により計測された水分量と、歪センサ37により計測された重量増加量と、光センサ38により計測された光合成体33の大きさとを示す情報である。温度情報と位置速度情報とは、実施の形態1と同様である。
【0043】
図11は、実施の形態2に係る運用装置3の機能構成を示すブロック図である。
運行管理部19、補強信号生成部20、データ送受信部21、水分量管理部39、シート管理部40、二酸化炭素分布管理部41、データ受信部200を備える。
運行管理部19〜データ送受信部21、データ受信部200は、図3に示す実施の形態1の運行管理部19〜データ送受信部21、データ受信部200と同様である。水分量管理部39は、テレメトリーデータに含まれる水分情報に基づき、各無人プレーン9に設けられたタンク35に蓄えられた水量を管理する装置である。シート管理部40は、テレメトリーデータに含まれるシート情報に基づき、シート8の状態を管理する装置である。二酸化炭素分布管理部41は、上空における二酸化炭素の分布状態を管理する装置である。
【0044】
図12は、実施の形態2に係る二酸化炭素吸収システム31の動作の流れを示すフローチャートである。
(S21:飛行ステップ)
図4のS11と同様に、シート8が取り付けられた複数の無人プレーン9が上空で編隊飛行する。
【0045】
(S22:二酸化炭素吸収ステップ)
S11で二酸化炭素吸収装置32が上空を飛行することにより、シート8に搭載された光合成体33により光合成が行われ、上空に溜まった二酸化炭素が光合成体33に吸収される。
この際、各無人プレーン9のタンク35から毛細管34を介して光合成体33へ水が供給される。運用装置3では、無人プレーン9から送信されたテレメトリーデータに含まれる水分情報に基づき、水分量管理部39が各無人プレーン9に設けられたタンク35に蓄えられた水量を監視する。具体的には、水分量管理部39は、いずれかの無人プレーン9が有するタンク35に蓄えられた水量が所定の量になったか(例えば、タンク35が空になったか)を監視する。
【0046】
(S23:水補給ステップ)
運用装置3の運行管理部19は、いずれかの無人プレーン9が有するタンク35に蓄えられた水量が所定の量になった場合、その無人プレーン9を所定の場所へ降下させる降下コマンドを生成する。そして、データ送受信部21が降下コマンドを二酸化炭素吸収装置32へ送信する。すると、その無人プレーン9は、運用装置3からの降下コマンドに従い、指定された場所へ降下し、タンク35に水が補給される。
この際、他の無人プレーン9は編隊飛行し続け、二酸化炭素の吸収を継続する。つまり、タンク35の水量が減った無人プレーン9から順に交代して降下して、タンク35に水を補給させる。タンク35に水が補給された無人プレーン9は、飛行し、タンク35の水が毛細管34から光合成体33へ供給されるように再びシート8に接続され、編隊飛行に加わる。上述したように、無人プレーン9は数cmの誤差精度で位置を計測することができるので、タンク35と毛細管34との接続を上空で行うことも可能である。
【0047】
運行管理部19が生成するフライトプランについては、実施の形態1において図5に基づき説明したフライトプランと同様である。但し、運行管理部19は、二酸化炭素分布管理部41が管理する二酸化炭素の分布状態に基づき、二酸化炭素が多く溜まっている領域へ二酸化炭素吸収装置32が向かうようなフライトプランを生成する。
また、無人プレーン9の構成についても、上述した違いを除き、実施の形態1において図6に基づき説明した構成と同様である。
【0048】
以上のように、実施の形態2に係る二酸化炭素吸収システム31では、二酸化炭素吸収装置32が上空で二酸化炭素を吸収するため、地上に光合成体を設置する場合のように、設置場所がないということはない。また、複数の飛行体によりシート8を保持するため、シート8を大きくすることが可能であり、二酸化炭素吸収量を多くすることが可能である。
【0049】
特に、地表に植林等を行っても、地表付近の二酸化炭素だけしか吸収することはできず、上空に溜まった二酸化炭素を吸収することはできない。また、高度が高い領域にある二酸化炭素の濃度は地表付近に比べて変化が少ない。そのため、二酸化炭素吸収システム31により、上空に溜まった二酸化炭素を吸収することは効果的である。
【0050】
なお、上記説明では、テレメトリーデータに含まれるシート情報に基づき、シート管理部40がシート8の状態を管理するとした。S22において、シート管理部40は、シート情報が示す光合成体33の重量増加量や、光合成体33の大きさに基づき、光合成体33の成長度合いを監視してもよい。具体的には、シート管理部40は、シート8に搭載された光合成体33の重量や大きさが所定以上になったかを監視してもよい。無人プレーン9にはさみ等を搭載しておき、光合成体33の重量や大きさが所定以上になった場合、光合成体33を刈り取るようにしてもよい。また、無人プレーン9にはさみ等を搭載するのではなく、光合成体33を刈り取るための飛行体を別途飛ばして、光合成体33の一部を刈り取るようにしてもよい。
【0051】
また、上記説明では、タンク35に蓄えられた水を毛細管34を介して光合成体33へ供給するとした。無人プレーン9に水を放水する噴霧器等を備えておき、タンク35に蓄えられた水を噴霧器から光合成体33へ供給するようにしてもよい。上空では気圧が低く、放水した水が蒸発しやすいが、上述した高度15−20km程度であれば、十分に水を光合成体33へ供給可能である。
【0052】
実施の形態1ではシート8に太陽電池7を搭載して、上空で発電することについて説明し、実施の形態2ではシート8に光合成体33を搭載して、上空の二酸化炭素を吸収することについて説明した。実施の形態1の構成と実施の形態2と構成とを合わせて、上空で発電するとともに、上空の二酸化炭素を吸収するようにしてもよい。つまり、太陽電池7と、光合成体33及び毛細管34とをシート8に搭載してもよい。もちろん、この場合、無人プレーン9には、バッテリー10だけでなく、タンク35等も設けられる。
この場合、無人プレーン9を降下させるのは、バッテリー10に電力が溜まった場合と、タンク35の水が減った場合との両方としてもよいし、いずれか一方の場合のみとしてもよい。また、バッテリー10に電力が溜まったため無人プレーン9を降下させたとしても、バッテリー10を交換するだけでなく、タンク35に水を補給するようにしてもよい。逆に、タンク35の水が減ったため無人プレーン9を降下させたとしても、タンク35に水を補給するだけでなく、バッテリー10を交換するようにしてもよい。
【0053】
実施の形態2をまとめると、次のようになる。
光合成色素を含む光合成体であって、水と光と二酸化炭素が与えられると光合成する光合成体が搭載されたシートと、
前記シートに搭載された前記光合成体に太陽光が入射するように前記シートを保持して編隊飛行する複数の飛行体であって、前記光合成体へ供給する水が蓄えられたタンクを有する複数の飛行体と
を備えることを特徴とする。
【0054】
前記シートは、前記光合成体へ水を供給するための流路が設けられ、
前記複数の飛行体の各飛行体は、前記タンクに蓄えられた水を前記流路を介して前記光合成体へ供給する
ことを特徴とする。
【0055】
前記複数の飛行体は、一部の飛行体が有するタンクに蓄えられた水が所定の量以下になると、前記一部の飛行体のうち少なくとも1機が前記シートから離れるとともに、残りの飛行体が前記光合成体に太陽光が入射するように前記シートを保持して編隊飛行することを継続する
ことを特徴とする。
【0056】
前記シートから離れた飛行体は、所定の位置へ降下してタンクに水が蓄えられた後、再び前記シートを保持する編隊飛行に加わる
ことを特徴とする。
【0057】
前記複数の飛行体は、前記光合成体に対して太陽光が垂直に入射するように編隊飛行する
ことを特徴とする。
【0058】
前記複数の飛行体の各飛行体は、
衛星から送信された測位信号に基づき自己の位置を測る測位部と、
外部から飛行計画を示す飛行計画情報を受信する受信部と、
前記測位部が測った自己の位置と、前記受信部が受信した飛行計画情報とに基づき、加速度を計算して、計算した加速度となるように機体を制御する制御部と
を備えることを特徴とする。
【0059】
前記シートは、さらに、光エネルギーを電力に変換する太陽電池が搭載された
ことを特徴とする。
【0060】
二酸化炭素吸収装置と、前記二酸化炭素吸収装置を制御する制御装置とを備える発電システムであり、
前記二酸化炭素吸収装置は、
光合成色素を含む光合成体であって、水と光と二酸化炭素が与えられると光合成する光合成体が搭載されたシートと、
前記シートに搭載された前記光合成体に太陽光が入射するように前記シートを保持して編隊飛行する複数の飛行体であって、前記光合成体へ供給する水が蓄えられたタンクを有する複数の飛行体と
を備え、
前記制御装置は、
前記複数の飛行体の各飛行体についての飛行計画を生成する飛行計画生成部と、
前記飛行計画生成部が生成した飛行計画を前記各飛行体へ送信する飛行計画送信部と
を備え、
前記各飛行体は、前記飛行計画送信部が送信した飛行計画に従い飛行する
ことを特徴とする。
【0061】
複数の飛行体が、光合成色素を含む光合成体であって、水と光と二酸化炭素が与えられると光合成する光合成体が搭載されたシートを、前記光合成体に太陽光が入射するように保持して、前記光合成体へ水を供給しながら編隊飛行する飛行ステップと、
前記光合成体が、前記飛行ステップで複数の飛行体が編隊飛行することにより太陽光を受け、供給された水を用いて光合成して周囲の二酸化炭素を吸収する二酸化炭素吸収ステップと
を備えることを特徴とする。
【0062】
実施の形態3.
実施の形態1では、太陽電池7を搭載したシート8を、複数の無人プレーン9が編隊飛行して上空へ上昇させ、上空で発電することについて説明した。実施の形態3では、大型の飛行船43の気嚢の表面に太陽電池7を搭載して、上空で発電することについて説明する。
なお、実施の形態3では、実施の形態1と同様の構成要素については、同一の符号を付す。
【0063】
図13は、実施の形態3に係る発電システム42の構成図である。
実施の形態3に係る発電システム42は、発電装置2がシート8に代えて太陽電池7が気嚢の表面に搭載された飛行船43を備えること、及び、複数の無人プレーン44(反射用飛行体)を備えることを除き、図1に示す実施の形態1の発電システム1と同様である。
飛行船43は、無人プレーン9と同様に、運用装置3から送信されたフライトプランやコマンド等の情報に従い、無人プレーン9とともに編隊飛行する。無人プレーン44は、太陽光を反射させる反射体45を有しており、飛行船43に搭載された太陽電池7へ反射させた光が入射するように、飛行船43及び無人プレーン9とともに編隊飛行する。特に、無人プレーン44は、飛行船43に搭載された太陽電池7へ、太陽光が常に垂直に入射するように、編隊飛行する。
【0064】
図14は、実施の形態3に係る飛行船43の機能構成を示すブロック図である。
上述したように、飛行船43は、太陽電池7を備える。また、飛行船43は、コマンド受信部11、制御部12、測位信号受信部13、補強信号受信部14、測位部15、データ送信部16を備える。コマンド受信部11〜データ送信部16は、図2に示す無人プレーン9のコマンド受信部11〜データ送信部16と同様である。
【0065】
図15は、実施の形態3に係る無人プレーン44の機能構成を示すブロック図である。
上述したように、無人プレーン44は、反射体45を備える。また、無人プレーン44は、コマンド受信部11、制御部12、測位信号受信部13、補強信号受信部14、測位部15、データ送信部16を備える。コマンド受信部11〜データ送信部16は、図2に示す無人プレーン9のコマンド受信部11〜データ送信部16と同様である。
【0066】
図16は、実施の形態3に係る発電システム42の動作の流れを示すフローチャートである。
(S31:飛行ステップ)
飛行船43と複数の無人プレーン9と複数の無人プレーン44とが上空で編隊飛行する。この際、飛行船43と各無人プレーン9と各無人プレーン44とでは、S11における無人プレーン9と同様に、位置や速度を計測して、計測した位置や速度と運用装置3から受信したフライトプランとに基づき、制御部12が加速度を制御して飛行する。
【0067】
(S32:発電ステップ)
S31で発電装置2が上空を飛行することにより、飛行船43に搭載された太陽電池7により電力が発生され、発生された電力は各無人プレーン9が備えるバッテリー10に分散して蓄えられる。なお、無人プレーン44により、太陽光が太陽電池7に入射するように反射されるので、効率的に電力が発生される。
この際、運用装置3では、S12と同様に、各無人プレーン9に設けられたバッテリー10に蓄えられた電力量を監視する。
【0068】
(S33:送電ステップ)
S13と同様に、バッテリー10に蓄えられた電力量が所定の量になった無人プレーン9は、運用装置3からの降下コマンドに従い、指定された場所へ降下し、バッテリー10が空のものに交換される。
この際、他の無人プレーン9、飛行船43、無人プレーン44は編隊飛行し続け、発電を継続する。
【0069】
飛行船43は、自身の浮力だけで地上から上空へ上昇してもよいし、無人プレーン9の揚力を合わせて使って地上から上空へ上昇してもよい。飛行船43は、自身の浮力だけで地上から上空へ上昇する場合には、無人プレーン9は飛行船43とは別に地上から上空へ上昇し、上空にて飛行船43に搭載された太陽電池7と接続してもよい。無人プレーン44は、飛行船43や無人プレーン9とともに地上から上空へ上昇してもよいし、飛行船43や無人プレーン9とは別に地上から上空へ上昇してもよい。
【0070】
以上のように、実施の形態3に係る発電システム42では、実施の形態1に係る発電システム1と同様の効果を奏することができる。特に、実施の形態1と同様に、一旦上空へ上がった大型の飛行船43は、降下する必要はなく、小型の無人プレーン9だけが必要に応じて降下すればよい。
【0071】
なお、飛行船43は、太陽電池7により発生した電力により動作すればよい。また、無人プレーン44は、無人プレーン9と同様に、自身の動力となる電力を発生させる太陽電池を備えるものとする。
【0072】
実施の形態3の構成と実施の形態2と構成とを合わせて、上空で発電するとともに、上空の二酸化炭素を吸収するようにしてもよい。つまり、太陽電池7と、光合成体33及び毛細管34とを飛行船43の気嚢に搭載してもよい。もちろん、この場合、無人プレーン9には、バッテリー10だけでなく、タンク35等も設けられる。
この場合、無人プレーン9を降下させるのは、バッテリー10に電力が溜まった場合と、タンク35の水が減った場合との両方としてもよいし、いずれか一方の場合のみとしてもよい。また、バッテリー10に電力が溜まったため無人プレーン9を降下させたとしても、バッテリー10を交換するだけでなく、タンク35に水を補給するようにしてもよい。逆に、タンク35の水が減ったため無人プレーン9を降下させたとしても、タンク35に水を補給するだけでなく、バッテリー10を交換するようにしてもよい。
また、太陽電池7に代えて、光合成体33及び毛細管34だけを飛行船43の気嚢に搭載し、発電は行わず、二酸化炭素の吸収だけを行うようにしてもよい。
【0073】
また、飛行船43の代わりに、光エネルギーを電力に変換する太陽電池のシートが搭載された、大型の船舶や人工浮体構造物を、母船として用いて海上に浮かべても良い。この場合、無人プレーン9の代わりに、母船に搭載された太陽電池に接続され母船の周辺に編隊を組んで配備され、太陽電池によって変換された電力を蓄えるバッテリー10を搭載した小型船舶のような複数の蓄電用船を用いても良く、蓄電用船は高精度に位置制御されながら遠隔操作によって無人で移動するものであっても良い。このような構成によって、太陽光が太陽電池に入射する間は、一部の蓄電用船が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用船のうち少なくとも1機が前記太陽電池との接続を切断して離れ、電力を必要とする場所(例えば地上の配電設備)に自らが移動して送電するとともに、残りの蓄電用船が前記太陽電池に接続された状態を保持し、編隊による蓄電を継続して電力を蓄えることができる。かくして、送電と蓄電を兼備えたシステムを簡便に構築することができる。また、太陽電池のシートを適宜母船上に敷設することで、緊急時に電力が必要な場合に、太陽光発電システムを簡便に設置することが可能となる。
【0074】
また、飛行船43の代わりに、光エネルギーを電力に変換する太陽電池のシートが設置された大型構造物又は大型トラックを、地上に設置しても良い。この場合、無人プレーン9の代わりに、太陽電池に接続され太陽電池の周辺に編隊を組んで配備され、太陽電池によって変換された電力を蓄えるバッテリー10を搭載した例えば電気自動車のような複数の蓄電用移動体を用いても良く、蓄電用移動体は高精度に位置制御されながら遠隔操作によって無人で移動するものであっても良い。このような構成によって、太陽光が太陽電池に入射する間は、一部の蓄電用移動体が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用移動体のうち少なくとも1機が前記太陽電池との接続を切断して離れ、電力を必要とする場所(例えば地上の配電設備)に自らが移動して送電するとともに、残りの蓄電用移動体が前記太陽電池に接続された状態を保持し、編隊による蓄電を継続して電力を蓄えることができる。かくして、送電と蓄電を兼備えたシステムを簡便に構築することができる。また、大型構造物を組み立て及び撤去可能な仮設構造物で構成し、太陽電池のシートを適宜大型構造物の上部に敷設することで、緊急時に電力が必要な場合に、太陽光発電システムを簡便に設置することが可能となる。
【0075】
以上の実施の形態において、「〜部」として説明したものは、「〜装置」、「〜回路」、「〜ステップ」、「〜処理」と読み替えてもよく、「〜ステップ」として説明したものは、「〜処理」と読み替えてもよい。
また、以上の実施の形態において、「〜部」として説明したものは、ソフトウェアやプログラムで実現されていてもよい。この場合、「〜部」として説明したものは、それを備える装置の記憶装置に記憶され、処理装置により実行される。
【符号の説明】
【0076】
1 発電システム、2 発電装置、3 運用装置、4 測位衛星、5 運用衛星、6 電子基準点、7 太陽電池、8 シート、9 無人プレーン、10 バッテリー、11 コマンド受信部、12 制御部、13 測位信号受信部、14 補強信号受信部、15 測位部、16 データ送信部、17 誘導部、18 推進操舵部、19 運行管理部、20 補強信号生成部、21 データ送受信部、22 充電電力管理部、23 発生電力管理部、24 需要管理部、25 主翼、26 垂直羽根、27 プロペラ、28 太陽電池、29 飛行船、30 太陽電池、31 二酸化炭素吸収システム、32 二酸化炭素吸収装置、33 光合成体、34 毛細管、35 タンク、36 水分センサ、37 歪センサ、38 光センサ、39 水分量管理部、40 シート管理部、41 二酸化炭素分布管理部、42 発電システム、43 飛行船、44 無人プレーン、45 反射体。

【特許請求の範囲】
【請求項1】
光エネルギーを電力に変換する太陽電池が気嚢に搭載された飛行船と、
前記飛行船に搭載された前記太陽電池に接続され前記飛行船とともに編隊飛行する複数の蓄電用飛行体であって、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用飛行体と
を備えることを特徴とする発電装置。
【請求項2】
前記複数の蓄電用飛行体は、一部の蓄電用飛行体が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用飛行体のうち少なくとも1機が編隊飛行から外れるとともに、残りの蓄電用飛行体が前記飛行船とともに編隊飛行することを継続する
ことを特徴とする請求項1に記載の発電装置。
【請求項3】
編隊飛行から外れた蓄電用飛行体は、所定の位置へ降下してバッテリーが交換された後、再び編隊飛行に加わる
ことを特徴とする請求項2に記載の発電装置。
【請求項4】
前記発電装置は、さらに、
太陽光を反射させる反射体を有し、反射させた太陽光が前記太陽電池に入射するように前記飛行船と編隊飛行する反射用飛行体
を備えることを特徴とする請求項1から3までのいずれかに記載の発電装置。
【請求項5】
前記飛行船と、前記複数の蓄電用飛行体の各蓄電用飛行体とは、
衛星から送信された測位信号に基づき自己の位置を測る測位部と、
外部から飛行計画を示す飛行計画情報を受信する受信部と、
前記測位部が測った自己の位置と、前記受信部が受信した飛行計画情報とに基づき、加速度を計算して、計算した加速度となるように機体を制御する制御部と
を備えることを特徴とする請求項1から4までのいずれかに記載の発電装置。
【請求項6】
前記飛行船は、さらに、光合成色素を含む光合成体であって、水と光と二酸化炭素が与えられると光合成する光合成体が気嚢に搭載された
ことを特徴とする請求項1から5までのいずれかに記載の発電装置。
【請求項7】
発電装置と、前記発電装置を制御する発電制御装置とを備える発電システムであり、
前記発電装置は、
光エネルギーを電力に変換する太陽電池が気嚢に搭載された飛行船と、
前記飛行船に搭載された前記太陽電池に接続され前記飛行船とともに編隊飛行する複数の蓄電用飛行体であって、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用飛行体と
を備え、
前記発電制御装置は、
前記飛行船と前記複数の蓄電用飛行体の各蓄電用飛行体とについての飛行計画を生成する飛行計画生成部と、
前記飛行計画生成部が生成した飛行計画を前記飛行船と前記各蓄電用飛行体とへ送信する飛行計画送信部と
を備え、
前記飛行船と前記各蓄電用飛行体とは、前記飛行計画送信部が送信した飛行計画に従い飛行する
ことを特徴とする発電システム。
【請求項8】
光エネルギーを電力に変換する太陽電池が気嚢に搭載された飛行船と、前記飛行船に搭載された前記太陽電池に接続され、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用飛行体とが、前記太陽電池に太陽光が入射するように編隊飛行する飛行ステップと、
前記太陽電池が、前記飛行ステップで前記飛行船と前記複数の蓄電用飛行体とが編隊飛行することにより太陽光を受け、太陽光の光エネルギーを電力に変換する発電ステップと
を備えることを特徴とする発電方法。
【請求項9】
光エネルギーを電力に変換する太陽電池が搭載された母船と、
前記母船に搭載された前記太陽電池に接続され前記母船の周辺に編隊を組んで配備され、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用船と
を備え、
前記複数の蓄電用船は、一部の蓄電用船が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用船のうち少なくとも1機が編隊から外れ、残りの蓄電用船が前記船の周辺で編隊を組んで前記太陽電池に接続された状態で電力を蓄える
ことを特徴とする発電装置。
【請求項10】
光エネルギーを電力に変換する太陽電池と、
前記太陽電池に接続され前記太陽電池の周辺に編隊を組んで配備され、前記太陽電池によって変換された電力を蓄えるバッテリーを有する複数の蓄電用移動体と
を備え、
前記複数の蓄電用移動体は、一部の蓄電用移動体が有するバッテリーに蓄えられた電力量が所定の量以上になると、前記一部の蓄電用移動体のうち少なくとも1機が編隊から外れ、残りの蓄電用移動体が前記太陽電池の周辺で編隊を組んで前記太陽電池に接続された状態で電力を蓄える
ことを特徴とする発電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−244837(P2012−244837A)
【公開日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2011−114559(P2011−114559)
【出願日】平成23年5月23日(2011.5.23)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】